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Abstract

Morphological profiling aims to create signatures of genes, chemicals and diseases
from microscopy images. Current approaches use classical computer vision-based
segmentation and feature extraction. Deep learning models achieve state-of-the-art
performance in many computer vision tasks such as classification and segmentation.
We propose to transfer activation features of generic deep convolutional networks
to extract features for morphological profiling. Our approach surpasses currently
used methods in terms of accuracy and processing speed. Furthermore, it enables
fully automated processing of microscopy images without need for single cell
identification.

1 Introduction

Modern microscopy and automation technologies enable large-scale experiments which can produce
millions of cell images per day [7]. This changes the way biologists analyze microscopy images
from targeted measurements (‘screening’) to a more wide-ranging feature extraction (‘profiling’) that
aims to capture a broad set of measurements representing the cellular phenotypes. Such ‘unbiased’
representations of phenotype enable new analysis based on similarities and differences among
chemical or genetic perturbations, which might lead to new insights in functional genomics, drug
discovery and target identification [1].

Morphological profiling can be interpreted as a computer vision task to extract relevant features
from microscopy images. Many current approaches use specialized software such as CellProfiler [3]
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and rely on hand-tuned segmentation and feature extraction for each assay [6]. Recent successes
in computer vision, however, were driven by learning features directly from data [4], [8], [14], an
approach that can be applied to profiling.

In this work, we study the problem of transferring features learned on natural images [11] to obtain
unbiased morphological profiles from fluorescence microscopy images of cultured human cells.
By obviating the need for single cell identification, the proposed approach offers the following
advantages:

• Speed: It enables faster profile extraction than the classical pipeline with image segmentation
and feature extraction.
• Autonomous: It eliminates the need for human input to tweak parameters.
• Performance: The extracted profiles achieve a better accuracy than a baseline approach

based on handcrafted features.

2 Related work

This work lies at the intersection of morphological profiling and deep learning. In morphological
profiling, Ljosa et al. [9] compared various profiling algorithms using the same experimental setup,
which is also used in the current paper (BBBC021 [2]): cells from a human breast cancer cell
line (MCF7) were treated with different compounds at several concentrations, a high-throughput
microscope was used to acquire images of all treatment conditions, and these images were analyzed
to extract features from individual cells after segmenting them. Segmentation and feature extraction
were performed using CellProfiler. Several categories of features were extracted, including size,
intensity, shape, texture and neighborhood information. More than 400 features in total were extracted
per cell. The simplest algorithm comprised averaging these single cell measurements across all cells
for each each treatment condition (a compound at a given concentration) to generate the treatment
‘profile’.

These profiles were evaluated on the task of classifying each treatment condition into its ‘mechanism-
of-action’ (MOA) - a label that was assigned to each compound based on prior knowledge. A
1-nearest neighbor classifier was used to assign each treatment to an MOA. When finding the nearest
neighbor, other treatment conditions of the same compound, but different concentrations, were left
out (‘leave-one-compound-out’ cross-validation).

Ljosa et al. [9] found that reducing dimensionality using factor analysis (prior to computing averages)
was the best performing profiling method, yielding a mean accuracy of 94%. Singh et al. [13]
followed a similar approach, and focusing on the improvement gained by correcting illumination bias
in the images, showed that 90% accuracy could be achieved by directly computing averages, after the
images had been corrected for the bias. Furthermore, they found that these ‘mean profiles’ seem to
be more robust than ‘factor analysis profiles’.

Deep learning has been applied to profiling for profile aggregation [16], MOA classification from
CellProfiler features [5] and MOA classification from raw images [6]. Zamparo et al. [16] showed that
autoencoders can be used for dimensionality reduction to improve the quality of profiles. Kandaswamy
et al. [5] found that classifiers trained on CellProfiler features extracted for one set of compounds
learn features that can be transferred to another set of compounds. Kraus et al. [6] evaluated their
method on the same BBBC021 image set as used in this paper. Using deep learning on raw images
they outperformed prior classical results. However, only a small subset of the BBBC021 image set
was split into single training and test sets. We hypothesize that, this smaller dataset as well as the
possibility of matching to the same compound leads to overfitting.

3 Experimental Setup

This work used the BBBC021 [2] image set, which was the basis for the comparisons presented
in Ljosa et al. [9], and is available from the Broad Bioimage Benchmark Collection [10]. We
hypothesized that generic neural networks pre-trained on natural images are able to extract biologically
meaningful features from microscopy images without segmenting individual cells3.

3Implementation available at https://github.com/carpenterlab/2016_pawlowski_mlcb
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Table 1: Results of the profiles extracted using VGG16, ResNet-101, ResNet-152 and Inception-v3.
The images (1280px× 1024px) were resized to fit the input shape of each network 299px× 299px
for Inception-v3, (224px× 224px for both ResNets and VGG16). Random chance would yield 8%
accuracy.

Inception-v3 ResNet-152 ResNet-101 VGG 16

Full Images 70.87% 55.34% 57.28% 66.02%
+ illumination corrected 69.90% 65.05% 65.04% 63.11%
+ greyscale 86.41% 75.72% 70.87% 71.84%
+ illumination corrected & greyscale 91.26% 78.64% 79.61% 83.50%

We tested this hypothesis with both full images and cropped images. Illumination correction was
performed to reduce the effect of uneven brightness in the image ([13]). The full images were
downsampled to fit the input shape of the pre-trained networks. The images have three channels
corresponding to DNA, actin and tubulin stains, which do not map to RGB channels in natural images.
We dealt with this using two approaches: (1) using an arbitrary mapping (DNA→ R, tubulin→ G
and actin→ B), or (2) using the network on each greyscale stain image separately and concatenating
all corresponding features to build one feature vector.

We extracted features from the images by passing them through pre-trained neural networks without
fine-tuning. The networks were modified by cutting off the final classification layer, so that the
penultimate layer represents the feature embedding. The features were extracted with pre-trained
versions of Inception-v34 [15], VGG165 [12], and ResNet6 [4]. For comparison to the classical
results, the features of each treatment were averaged over the different replicate images to generate
treatment profiles. This resembles the mean profiling method, used in Singh et al. [13]. As with the
classical approach, the profiles were evaluated on the task of classifying each treatment condition into
its MOA using a 1-nearest neighbor classifier. To ensure that the measured performance is directly
comparable, we used the same leave-one-compound-out cross-validation as Ljosa et al. [9] and Singh
et al. [13].

4 Results

We found that ImageNet pre-trained neural networks are able to extract biologically informative
features from microscopy images with accuracies ranging from 55% to 91%, compared to random
chance which yields 8% (Table 1). Inception-v3 achieves the best performance, though all networks
extract rich features. Furthermore, the use of different stains as individual greyscale images always
performs better than an arbitrary RGB mapping. This could be due to the fact that the relations be-
tween the channels of the images are different for microscopy images and natural images. Illumination
correction improves the performance of almost all network and data configurations.

The presented approach can slightly outperform the classical mean profiling method. From non-
corrected images, the Inception-v3 network extracted features that achieve 86% accuracy compared to
84% using classical methods[13]. From illumination corrected images, the network generated features
that achieve 91% accuracy compared to 90%. Figure 1 shows the confusion matrices for the classical
and deep learning case. Interestingly, the errors of both approaches seem to be complementary, which
suggests that the deep learning model captures different features than the classical method.

The deep learning model also showed improvement in terms of processing time. The transformation
of the images took 22 minutes using the Inception-v3 network. CellProfiler takes more than 10 hours
to process the same amount of images, when running on a single core. Both algorithms were tested
on a system with two 8-core Xeon CPUs, 128GB of memory and no GPU acceleration.

4Implementation from https://github.com/tensorflow/models/tree/master/inception.
5Implementation from https://github.com/ry/tensorflow-vgg16.
6Implementation from https://github.com/ry/tensorflow-resnet.
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(a) Confusion matrix of the Inception-v3 based
classification from illumination corrected images,
using each stain as greyscale image.
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(b) Confusion matrix of the classical profiles from
illumination corrected images.

Figure 1: Comparison of the confusion matrices of the profiles generated using classical methods and
from pretrained neural networks. The classical results were taken from Singh et al. [13]. The deep
learning results were generated using the Inception-v3 architecture. Each stain was transformed as
separate greyscale image.

5 Conclusion

We have shown that deep networks pre-trained on natural images are capable of extracting biologically
rich features from microscopy images without fine-tuning. This enables us to propose a fully
automated pipeline using deep feature transfer for generating morphological profiles without human
interaction. This pipeline achieves higher accuracies than previous classical methods, needs less time
and expertise to extract profiles and is the first to allow for true automated high content screening by
taking the human out of the loop.

We note that although the improvement in accuracy is marginal, obviating the need for an image
analysis expert is a significant advantage of using deep networks. Our work builds the foundation
for future explorations of transfer learning within this domain. Future work might evaluate the
performance of cropped full-resolution images as well as the use of different hidden representations
as extracted features. Further, fine-tuning of those feature extractors could be possible given larger
microscopy image sets. We note that deep learning, usually performs better with a higher number of
data points and thus hypothesize that bigger image sets will enable deep learning to flourish.
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