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Abstract We hypothesized that human genes and disease-associated alleles might be

systematically functionally annotated using morphological profiling of cDNA constructs, via a

microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable

morphological profiles, which grouped into biologically meaningful gene clusters consistent with

known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-

based visualization methods to interpret the morphological changes for specific clusters. This

unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/

WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the

NF-kB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding

knowledge of these two signaling pathways that critically regulate tumor initiation and progression.

We make the images and raw data publicly available, providing an initial morphological map of

major biological pathways for future study.

DOI: 10.7554/eLife.24060.001

Introduction
The dramatic increase in human genome sequence data has created a significant bottleneck. The

number of genes and variants known to be associated with most human diseases has increased dra-

matically (Amberger et al., 2015). Unfortunately, the next step - understanding the function of each

gene and the mechanism of each allele in the disease - typically remains non-systematic and labor-

intensive. Most commonly, researchers painstakingly design, develop, and apply a disease-specific

or biological process-specific assay.

Over 30% of genes in the human genome are of unknown function (Leonetti et al., 2016) and

even annotated genes have additional functions yet to be uncovered. Furthermore, even when a

gene’s normal functions are known, methods are lacking to predict the functional impact of the mil-

lions of genetic variants found in patients. These gaps must be filled in order to convert the promise

of human genome sequence data into clinical treatments.

Therefore, there is a widespread need for systematic approaches to functionally annotate genes

and variants therein, regardless of the biological process or disease of interest. One general

approach depends on guilt-by-association, linking unannotated genes to annotated ones based on

properties such as protein-protein interaction data, sequence similarity, or, most convincingly, func-

tional similarity (Shehu et al., 2016). In the latter category are profiling techniques, where dozens to

hundreds of measurements are made for each gene perturbation and the resulting profile is com-

pared against profiles for annotated genes. Various data sources can be used for profiling; gene

expression is one that can be performed in relatively high-throughput and it has been proven useful
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in predicting gene function (Lamb et al., 2006). In fact, high-throughput mRNA profiles were

recently used to cluster alleles found in lung adenocarcinoma based on their functional impact, a

precursor to therapeutic strategy for variants of previously unknown significance (Berger et al.,

2016).

Images are a less mature data source for profiling but show tremendous promise. Morphological

profiling data is complementary to transcriptional profiling data (Wawer et al., 2014) and is less

expensive. Morphological profiling has succeeded across several applications, including grouping

small-molecule perturbations based on their mechanism of action (Caicedo et al., 2016; Bougen-

Zhukov et al., 2017), and grouping genes based on morphological profiles derived from cells per-

turbed by RNA interference (RNAi) (Mukherji et al., 2006; Boutros and Ahringer, 2008;

Fuchs et al., 2010; Pau et al., 2013). One limitation of RNAi for morphological profiling is that the

number of measurements must be limited or else the resulting profiles are dominated by off-target

effects, especially seed effects (Singh et al., 2015). Some computational solutions have shown some

promise in overcoming this problem for gene expression profiling (Schmich et al., 2015), but their

utility is unproven for image-based profiling, and regardless RNAi does not permit analysis of gene

variants, only knockdown. Modification of genes via CRISPR will require new libraries of reagents

and is as yet untested in morphological profiling.

In the proof-of-concept work presented here, we tested morphological profiling using overex-

pression in human cells as a general approach to annotate gene and allele function. We profiled a

reference series of well-known genes, and a small number of variants thereof, by Cell Painting. In

eLife digest Many human diseases are caused by particular changes, called mutations, in

patients’ DNA. A genome is the complete DNA set of an organism, which contains all the

information to build the body and keep it working. This information is stored as a code made up of

four chemicals called bases. Humans have about 30,000 genes built from DNA, which contain

specific sequences of bases. Genome sequencing can determine the exact order of these bases, and

has revealed a long list of mutations in genes that could cause particular diseases. However, over

30% of genes in the human body do not have a known role. Genes can serve multiple roles, some of

which are not yet discovered, and even when a gene’s purpose is known, the impact of each

particular mutation in a given gene is largely uncatalogued. Therefore, new methods need to be

developed to identify the biological roles of both normal and abnormal gene sequences.

For hundreds of years, biologists have used microscopy to study how living cells work. Rohban

et al. have now asked whether modern software that extracts data from microscopy images could

create a fingerprint-like profile of a cell that would reflect how its genes affect its role and

appearance. While some genes do not necessarily carry a code with instructions of what a cell

should look like, they can indirectly modify the structure of the cell. The resulting changes in the

shape of the cell can then be captured in images. The idea was that two cells with matching profiles

would indicate that their combinations of genes had matching biological roles too.

Rohban et al. tested their approach with human cells grown in the laboratory. In each sample of

cells, they ‘turned on’ one of a few hundred relatively well-known human genes, some of which were

known to have similar roles. The cells were then stained via a technique called ‘Cell Painting’ to

reveal eight specific components of each cell, including its DNA and its surface membrane. The

stained cells were imaged under a microscope and the resulting microscopy images analyzed to

create a profile of each type of cell. Rohban et al. confirmed that turning on genes known to

perform similar biological roles lead to similar-looking cells. The analysis also revealed a previously

unknown interaction between two major pathways in the cell that control how cancer starts and

develops.

In the future, this approach could predict the biological roles of less-understood genes by

looking for profiles that match those of well-known genes. Applying this strategy to every human

gene, and mutations in genes that are linked to diseases, could help to answer many mysteries

about how genes build the human body and keep it working.

DOI: 10.7554/eLife.24060.002
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particular, we wondered whether the information content of this strategy would outweigh potential

limitations (e.g., due to cellular context or expression level). We found that the approach successfully

clustered genes and alleles based on functional similarity, revealed specific morphological changes

even when present in only a subpopulation of heterogeneous cells, and uncovered novel functional

connections between important biological pathways.

Results

Morphological profiles from Cell Painting of expression constructs are
sensitive and reproducible
To profile each exogenously expressed gene (or allele therein), we used our previously developed

image-based profiling assay, called Cell Painting (Gustafsdottir et al., 2013; Bray et al., 2016). This

microscopy-based assay consists of six stains imaged in five channels and revealing eight cellular

components: DNA, mitochondria, endoplasmic reticulum, Golgi, cytoplasmic RNA, nucleoli, actin,

and plasma membrane (Figure 1A). In five replicates in 384-well plate format, we infected U-2 OS

cells (human bone osteosarcoma cells), chosen for their flat morphology and previous validation in

the assay, with an arrayed ‘reference’ expression library of 323 open reading frame (ORF) constructs

of partially characterized functions (Supplementary file 1A), a subset of which have been previously

described (Kim et al., 2016). Of these, we prioritized analysis of the 220 constructs that were most

Figure 1. Morphological profiling by Cell Painting. (A) Example Cell Painting images from each of the five channels for a negative control sample (no

gene introduced). (B) From left to right: Cell and nucleus outlines found by segmentation in CellProfiler; raw profiles (2769 dimensional) containing

median and median absolute deviation of each of 1384 measurements over all the cells in a sample, plus cell count; processed profiles which are made

less redundant by feature selection and Principal Component Analysis; dendrogram constructed based on the processed profiles (see Figure 3).

Replicates are merged to produce a profile for each gene which is then compared against others in the experiment to look for similarities and

differences.

DOI: 10.7554/eLife.24060.003
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closely representative of the annotated full length transcripts (see Materials and methods). Morpho-

logical profiles were extracted using CellProfiler for image processing, yielding 1384 morphological

features per cell, and Python/R scripts for data processing, including feature selection and

dimensionality reduction (Figure 1B, and see Materials and methods). This computational pipeline

yielded a 158-dimensional profile for each of 5 replicates for each gene or allele tested.

Not all genes are likely to impact cellular morphology given the limitation of our

experiment; using a single cell line at a single time point under a single set of conditions and stained

with six fluorescent labels. We therefore first asked what fraction of these ORFs impacted morphol-

ogy. Surprisingly, we found that 50% (110/220) of these ORF constructs induced reproducible mor-

phological profiles distinct from negative control profiles (Figure 2A, and see

Materials and methods). Next, we ruled out the possibility that position artifacts may have artificially

inflated this result by taking an alternative pessimistic null distribution which takes well position into

account (Figure 2—figure supplement 1). Therefore, we conclude that a single ‘generic’ morpho-

logical profiling assay can detect signal from a substantial proportion of genes in our reference set.

We next turned to testing whether those signals are biologically meaningful and can lead to novel,

unbiased discoveries about gene function.

Morphological profiling is robust, showing expected relationships
Given that technical replicates produce similar morphological profiles, we next evaluated whether

similarities between profiles induced by different constructs are meaningful. We began with the sim-

plest case: for a subset of genes in the experiment, a ‘wild-type’ sequence (see

Figure 2. Morphological profiles are sensitive and reproducible, and show expected relationships. (A) 50% of the gene overexpression constructs

produced a detectable phenotype by image-based profiling.Constructs yielding a reproducible phenotype ought to have a median correlation among

replicates that is higher than the 95th percentile of correlations seen for pairs of different constructs; this is true for 51% (112 out of 220) of the

constructs (as shown). Additionally, we removed two constructs that passed that filter but whose profiles were highly similar to negative control profiles

(not shown), leaving 110 constructs (50%) for further analysis. (B) Of wild-type ORF pairs that both yielded a distinguishable phenotype, 96% showed

significant correlation to each other. Correlations between the 23 pairs of constructs that are clones of the same gene (although with potential

sequence variation or possibly different isoforms) were almost always much higher than correlations between pairs of constructs related to different

genes. The threshold, shown as the dashed line, is set to 95th percentile of profile correlation for pairs of different genes. Profile correlation of these 23

pairs lie above the threshold. (C) Genes in pathways thought to regulate morphology were more likely to yield detectable phenotypes vs. the

remainder of genes in the experiment. The same cutoff as in (A) is used to identify percentage of genes with a detectable phenotype. This percentage

is 87% for the genes hypothesized to change morphology, while it is 48% for the other genes.

DOI: 10.7554/eLife.24060.004

The following figure supplements are available for figure 2:

Figure supplement 1. Position artifacts do not contribute to the hit rate seen in the experiment.

DOI: 10.7554/eLife.24060.005

Figure supplement 2. Strength of morphological phenotypes, according to annotated pathway.

DOI: 10.7554/eLife.24060.006
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Materials and methods for important definitions) was captured in more than one ORF construct (23

pairs). These pairs either correspond to different physical cloning events and preparations but with

highly similar full-length sequence (as defined in Methods; category a: nine pairs), or a substantive

difference in their nucleotide sequence, for example, isoforms (category b: 14 pairs). We found that,

as expected, the phenotypes of over-expressed wild-type ORFs of the same gene were more similar

to each other, on average, than to randomly selected genes. Of the 23 pairs for which both wild-

type ORFs yielded a phenotype distinguishable from negative controls, 22 (~96%) of the pairs’ pro-

files were correlated more than expected by chance (Figure 2B, the one pair not meeting that

threshold was in category b), confirming that different constructs with biological similarity indeed

produce similar morphological profiles.

This result also confirms that the sequence differences seen in separately cloned wild-type con-

structs do not generally have a major functional impact, but we caution that any individual construct

of interest may have an impactful mutation; thus the raw sequence data should be examined and

testing alternate constructs for a gene may be recommended. Note that if, for example, only 50% of

wild-type pairs showed high profile correlation, it would remain ambiguous whether it was caused

by poor assay quality or by constructs’ sequence mismatches. But in this particular case the men-

tioned near perfect consistency rules out either of the two possibilities. We also note that the 23

pairs analyzed here are located in different well locations on each plate; this result therefore also

rules out widespread artifacts, such as plate position effects or metadata errors.

We suspected that the small number of engineered constitutively activating alleles for certain

genes would, on average, yield a stronger phenotype than their wild-type counterparts. We indeed

found that correlations between replicates of the constitutively activating allele were typically higher

than correlations between replicates of the wild-type version of a gene (Supplementary file 1B;

p-value=0.012, one-sided paired t-test).

We hypothesized that genes in pathways known to affect cellular morphology (RAC1, KRAS,

CDC42, RHOA, PAK1, and genes related to the Hippo pathway) would be more likely to yield a mor-

phological phenotype distinguishable from negative controls than other genes in the analysis.

Indeed, we found this to be true (Fisher’s test p-value=3.7 � 10�3) (Figure 2C). Reassured by this

validation, we were curious which pathways would be most and least likely to yield detectable mor-

phological phenotypes, recognizing that ‘pathways’ are neither separate nor well-defined entities.

We found genes manually annotated as being in the Hippo, Hedgehog, cytoskeletal reorganization,

and Mitogen-activated protein kinases (MAPK) pathways were more likely to result in a phenotype,

whereas genes annotated as belonging to the JAK/STAT, hypoxia, and BMP pathways were among

the least likely to yield a phenotype under the conditions tested (Figure 2—figure supplement 2

and Supplementary file 1C). Nevertheless, the majority of pathways could be interrogated by mor-

phological profiling.

Morphological signature similarity captures known gene-gene
relationships
Given the caveats and limitations of overexpressing genes (see Discussion), we next tested whether

image-based profiling of expression constructs could capture relationships among genes known to

be functionally related. Because a reliable and complete map of all gene-gene connections is not

available, we evaluated the accuracy of our results via two approaches.

First, we compared our data to protein-protein interaction data from BioGRID (Stark et al.,

2006). This is imperfect ground truth for judging our predictions because two proteins might physi-

cally interact without producing the same morphological phenotype when overexpressed, and genes

in the same pathway might regulate the same phenotype without any physical interaction. Neverthe-

less, we expect that the corresponding proteins of gene pairs with highest profile similarity are more

likely than average to physically interact. Indeed, looking at wild-type versions of genes showing a

detectable phenotype (the 73 genes represented in the 110 constructs), the ratio of verified gene

connections among the top 5% correlated gene pairs (9%, 13 verified out of 143 possible combina-

tions) is significantly higher than that of other gene pairs (5%, 128 verified out of 2485 possible; Fish-

er’s test p-value=0.04; Supplementary file 1D).

Second, we manually annotated each gene for the pathway with which it is associated. This

approach is based on expert opinion and thus imperfect knowledge of all genes’ function; further-

more many pathways interrelate, and genes in the same pathway are not expected to have identical
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Figure 3. Morphological relationships among overexpressed genes/alleles, determined by Cell Painting. Correlations between pairs of genes/alleles

were calculated and displayed in a correlation matrix (bottom left inset, full resolution is available as Figure 3—figure supplement 1). Only the 110

genes/alleles with a detectable morphological phenotype were included. The rows and columns are ordered based on a hierarchical clustering

algorithm such that each blue submatrix on the diagonal shows a cluster of genes resulting in similar phenotypes. The correlations were then used to

create a dendrogram (main panel) where the radius of the subtree containing a cluster shows the strength of correlation. The 25 clusters containing at

least two constructs are printed on the dendrogram in arbitrary colored fonts, while gene names colored gray and marked by asterisks are those that

do not correlate as strongly with their nearest neighbors (i.e., they are singletons or fall below the threshold used to cut the dendrogram for clustering).

Each colored arc corresponds to a cell subpopulation as noted in the legend. Line thickness indicates the strength of enrichment of the subpopulation

in the cluster samples compared to the negative control. Solid vs. dashed lines indicate the over- vs. under-representation of the corresponding

subpopulation in a cluster, respectively. Note that the number next to each cluster in the dendrogram is referenced in the main text and corresponds

to the numbered supplemental data file for each cluster.

DOI: 10.7554/eLife.24060.007

The following figure supplements are available for figure 3:

Figure supplement 1. Correlation among the 110 genes/alleles with a detectable morphological phenotype.

DOI: 10.7554/eLife.24060.008

Figure 3 continued on next page
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phenotypes given that their functions are rarely identical (most notably, overexpression of some may

activate while others suppress a biological pathway or process). Nonetheless, we expect pairs of

genes whose morphological profiles correlate highly to be more likely than average to be annotated

in the same pathway vs. different pathways. Using the same 73 genes as in the previous analysis, the

ratio of gene connections with the same-pathway annotation in the top 5% most-correlated gene

pairs was 20% (29 pairs out of 143), significantly higher than the ratio for the remaining pairs (6%,

139 pairs out of 2485; Fisher’s test p-value = 7:53� 10
�9; Supplementary file 1E).

An initial morphological map of gene function
Having quantitatively established that morphological profiling is sensitive, robust, and captures

known gene-gene relationships, we explored these relationships in a correlation matrix (Figure 3

bottom left and Figure 3—figure supplement 1). The overall structure, with multiple groupings

along the diagonal, is consistent with the fact that the 110 constructs (73 unique genes) that showed

a phenotype had been annotated as representing 19 different pathways. That is, we did not see

large, homogeneous clusters, as would be expected if morphological profiling was sensitive to per-

turbation but not highly specific. This rules out uniform toxicity induced by a large number of genes,

for example. Neither did we see only signal along the diagonal, which would have indicated no

strong similarity between any gene pairs.

We next created a dendrogram (Figure 3) and defined 25 clusters (see Materials and methods

and Figure 3—figure supplement 2) to explore the similarities among genes. Pairs of wild-type

ORFs almost always clustered adjacently, consistent with our quantitative analysis described above

(Figure 2B). After retaining only one copy of replicate ORFs, we found that the majority of clusters

(19 out of the 22 clusters containing more than one gene) were enriched for one or more Gene

Ontology terms (Supplementary file 1F), indicating shared biological functions within each cluster.

Using this dendrogram, we began by interrogating three clusters that conformed well to prior

biological knowledge. First, we analyzed Cluster 20, containing the two canonical Hippo pathway

members YAP1 and WWTR1 (more detail in Supplementary file 2 [PDFs A2–A20 and B2–B20 ] , and

in a later section of the text). Both are known to encode core transcriptional effectors of the Hippo

pathway (Johnson and Halder, 2014), and a negative regulator of these proteins, STK3 (also known

as MST2), is the strongest anti-correlating gene for the cluster (Supplementary file 2 [PDF A20],

panel c1).

Second, we noted Cluster 21 is comprised of the two phosphatidylinositol 3-kinase signaling/Akt

(PI3K) regulating genes, PIK3R1 and PTEN, both frequently mutated across 12 cancer types in The

Cancer Genome Atlas (TCGA) (Kandoth et al., 2013). These results are consistent with previous

observations that certain isoforms of PIK3R1 reduce levels of activated Akt, a dominant negative

effect (Abell et al., 2005). AKT3 is in a cluster anti-correlated to the Cluster 21 ((Supplementary file

2 [PDF A21, panel b1]).

Third, we examined three clusters (19, 6 and 3) that included many MAPK-related genes. Cluster

19 is the largest example of a tight cluster of genes already known to be associated; it includes four

activators in the RAS-RAF-MEK-ERK cascade: KRAS, RAF1 (CRAF), BRAF, and MOS. Notably, two

constitutively active alleles of these genes, BRAFV600E (Davies et al., 2002) and RAF1L613V

(Wu et al., 2011), form a separate cluster (Cluster 6) adjacent to their wild-type counterparts. Fur-

thermore, the constitutively active RAS alleles HRASG12V and KRASG12V (McCoy et al., 1984) are in

the next-closest cluster (Cluster 3), which also contains MAP2K4 and MAP2K3 (known to be acti-

vated by Ras [Shin et al., 2005]), as well as CDKN1A (Jalili et al., 2012). By contrast, MAPKs that

are known to be unrelated to the RAS-RAF-MEK-ERK cascade, such as MAPK14 in Cluster 5, are far

away in the dendrogram.

Figure 3 continued

Figure supplement 2. Smoothed stability score across different cutoffs, in order to choose a threshold for cutting the dendrogram to form clusters.

DOI: 10.7554/eLife.24060.009

Figure supplement 3. Common cell subpopulations seen across more than one cluster.

DOI: 10.7554/eLife.24060.010
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Overall, these results support the notion that connections between genes can be efficiently dis-

covered using our approach.

Visualization approaches to assist interpretation of morphological
signatures
We hypothesized that the specific morphologic features that segregated each of the clusters would

provide insight into gene function. Examining images (Supplementary file 2 [PDF -19A, panel 3]) or

rank-ordered lists of features that distinguish individual profiles or clusters (Supplementary file 1G)

Figure 4. Visualizations used to interpret morphology of Cluster 19 (for other clusters, see Supplementary file 2 [PDFs 1A–25A]). (A) Feature Grid.

RNA and AGP (actin, Golgi, plasma membrane) intensity contribute most to distinguishing the genes in Cluster 19 (KRAS, RAF1, BRAF, and MOS). Dark

blue colors indicate higher median z-score of the relevant measurements for genes in the cluster relative to negative controls. As ‘RadialDistribution’

features do not exist for the DNA channel, it is colored in black. (B) Feature Map. The feature names showing the greatest difference between the

cluster and negative controls are shown, based on largest absolute value of z-scores (full resolution version is available in Cluster 19A PDF). They are

mapped in 2D space such that features that are highly correlated with each other across all genes’ profiles are placed close together and thus can be

interpreted together. Blue/red colored names indicate positive/negative sign of the z-score (i.e., blue indicates that the cluster shows higher values

than controls). According to this map, the average intensity of AGP, RNA and Mito shows high variation for cells within samples in Cluster 19 (e.g., large

mad_Cytoplasm_Intensity_MeanIntensity_AGP, where the prefix ‘mad’ refers to median absolute deviation, a robust form of standard deviation). (C)

Sample images of a subpopulation of cells enriched and de-enriched for all genes in Cluster 19. Cells with asymmetric organelle distribution are highly

over-represented for genes in the cluster, and cells with more even distribution of organelles are less abundant. Note that the exemplar cells are shown

at the center of the patches. This explains the duplications observed in some patches. Scale bars are 39.36 �m long. Pixel intensities are multiplied by

five for display.

DOI: 10.7554/eLife.24060.011
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is tedious and lacks sensitivity for all but the most obvious of phenotypes, confirming that quantita-

tive morphological profiling is more sensitive than the human visual system.

We therefore devised several strategies to enhance biological interpretability from these experi-

ments and applied these in combination. First, we grouped features into meta-features based on

their type of measurement, i.e., shape, texture, intensity, etc., and the cell constituents to which they

are related, to create a Feature Grid (Figure 4A). Second, we performed unsupervised grouping of

features by mapping the top 20 most-distinguishing features for each cluster onto a plane, creating

a Feature Map (Figure 4B), in which highly correlated features are mapped nearby each other (see

‘Feature Interpretation’ in Methods for an explanation of individual feature names). In certain cases,

these visualizations revealed the nature of the morphological phenotype (e.g., nuclear shape abnor-

malities Supplementary file 2 [PDF 7A]), but for others these approaches did not suffice to yield an

obvious phenotypic conclusion (e.g., for Cluster 19, Figure 4A and B).

Third, we hypothesized that leveraging the single-cell resolution of image-based profiling might

be highly sensitive in enhancing interpretation, particularly for cases where only a subset of cells is

distinctive from negative controls. To test this, for each given cluster of genes together with negative

controls we identified 20 subpopulations using k-means clustering on single cell data. We calculated

the abundance of cells in each of the 20 subpopulations to determine which are over/under-repre-

sented relative to controls for the given cluster (corresponding images are shown;

Supplementary file 2 [PDFs 1B–25B]). For example, the MAPK pathway activators in Cluster 19

show increased prevalence of a subpopulation of cells with strongly asymmetric ER, mitochondria,

and Golgi staining, indicating a cell polarization phenotype (Figure 4C, and Supplementary file

Figure 5. Data and visualizations supporting the morphological map for each cluster. For all 25 clusters, there are two corresponding Supplemental

PDF files. Left: Supplementary file 2 (type A PDFs, e.g., ‘1A.pdf’) provide an overview of data about the cluster. Panel a1 lists the genes/alleles in the

cluster as well as expert annotations regarding related pathways and the cell count (as a z-score) for each gene/allele. Panel b1 contains the average

correlation of the cluster to other clusters, indicating uniqueness of the cluster’s morphological phenotype. Panel c1 lists the top five negatively

correlated gene/alleles to the cluster. Panel a2 shows the Feature Grid summarizing categories of morphological features distinguishing the cluster

from the negative control. Panel b2 shows the Feature Map displaying the names of the top 20 morphological features distinguishing the cluster from

the negative control, positioned based on similarity. Explanations for feature names can be found in the Methods section. Panel c2 shows a correlation

matrix for just those genes/alleles in the cluster. Panel 3 contains sample images of fields of view of cells expressing each gene/allele in the cluster,

along with images of the control for comparison. Right: Supplementary file 2 (type B PDFs) contain multiple plots aiming to illustrate the phenotype

based on single-cell data, including cell subpopulation enrichment/suppression in the cluster. First, a histogram of single-cell DNA content is shown for

all cells from all genes/allele treatments in the cluster, indicating the overall cell cycle distribution. Next, bar plots show (for the cluster overall and for

each gene in the cluster) which of 20 subpopulations of cells are enriched and suppressed relative to negative controls. Finally, each subsequent page

of the PDF is devoted to the subpopulations whose representation differs from negative controls in a statistically significant way, whether enriched or

suppressed (subpopulations which are very small in both the cluster and negative control samples are omitted). For each subpopulation, a bar plot

shows the top 10 most-distinguishing feature names (versus negative control cells). Then, sample images are shown of individual representative cells

from each subpopulation.

DOI: 10.7554/eLife.24060.012
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2 [PDF 19B], Categories one and two), for which there is evidence in the literature (Samaj et al.,

2004; Elsum et al., 2013; Godde et al., 2014). This phenotype was not captured by manual inspec-

tion nor the first two approaches (e.g., Supplementary file 2 [PDF 19A, panels a2 and b2]).

Encouraged by this, we supplemented the morphological map by compiling these and other visu-

alizations into PDF files for each cluster, summarized in Figure 5 and provided in full as

Supplementary file 2. We also noticed that certain subpopulations were similar across several clus-

ters (Figure 3—figure supplement 3 shows sample cell images of each such subpopulation); we

annotated their enrichment/de-enrichment on the dendrogram (Figure 3).

Using these visualizations, we began by interrogating three adjacent and correlating clusters

(Clusters 4, 7, and 11) contain wild-type and mutant alleles of CDC42, a gene encoding a Rho family

GTPase with diverse roles in cell polarity, morphology, and migration (Melendez et al., 2011; Mar-

tin, 2015). Cluster 4 contains the constitutively active mutant CDC42 Q61L (Nobes and Hall, 1999)

as well as MAP3K2 and MAP3K9. The highly similar Cluster 7 contains the dominant negative alleles

CDC42 T17N (Nobes and Hall, 1999) and RAC1 T17N (Zhang et al., 1995), a related RAS super-

family member. That activating and inhibiting alleles would yield similar phenotypes when overex-

pressed is not surprising for CDC42 (Melendez et al., 2011). Cluster 7 also contains isoforms and

alleles of AKT: specifically, AKT3 and the constitutively active E17K alleles of both AKT1 and AKT3

(Kim et al., 2008; Davies et al., 2008). Akt is known to be essential for certain Cdc42-regulated

functions (Higuchi et al., 2001) and vice versa (Stengel and Zheng, 2012). Finally, the nearby Clus-

ter 11 (which is discussed in more detail later) contains the wild-type form of CDC42 as well as

TRAF2, a canonical NF-kB activator; these two are known to interact and share functions in actin

remodeling (Marivin et al., 2014). We also note that anti-correlating genes to these clusters (gener-

ally in Clusters 13 and 21) are consistent with existing knowledge, including (a) AKT family member

AKT1S1 (a Proline rich AKT substrate, PRAS40 (Kovacina et al., 2003; Wiza et al., 2014),

Supplementary file 2 [PDF 7A, panels b1 and c1]) (b) CDK2 (a known target of Akt [Maddika et al.,

2008]), (c) PIK3R1 and PTEN in Cluster 21, described previously, which have known interactions with

AKT (Cheung and Mills, 2016; Hemmings and Restuccia, 2015). Thus, all of these connections

have previously been identified.

Subpopulation visualization revealed that Clusters 4, 7, and 11 are enriched in cells that are huge

and binucleate (Figure 3, example images shown in Supplementary file 2 [PDF 4B]). Genes in all

three clusters also show irregularities in DNA content, namely, an enrichment in cells with sub-2N

DNA content, a decrease in cells with 2N DNA content, and, for most genes, a decrease in cells with

S phase and 4N DNA content, indicating a significant amount of DNA fragmentation and thus apo-

ptosis (DNA histograms in Supplementary file 2 [PDFs 4B, 7B, and 11B]). These phenotypes are

consistent with these genes’ known role in the cell cycle and cell polarity (Chircop, 2014).

As a second test case, we examined Cluster 8, which contains PRKACA (the catalytic subunit a of

protein kinase A, PKA) and two of its known substrates: GLI1 (a transcription factor mediating

Hedgehog signaling)(Asaoka, 2012), and RHOAQ63L (a Ras homolog gene family member)

(Lang et al., 1996; Rolli-Derkinderen et al., 2005). The highly similar Cluster 10 contains the wild-

type RHOA, as well as ELK1 which is also linked to the Rho GTPase family and PKA

(Bachmann et al., 2013; Murai and Treisman, 2002).

We investigated the morphological changes causing these genes to cluster. RhoA is a known reg-

ulator of cell morphology and cell rounding is a known related phenotype (Oishi et al., 2012). We

found that indeed all members of Clusters 8 and 10 significantly induce cell rounding

(Supplementary file 1H). Although cell count is lower for genes Clusters 8 and 10, the degree varies

greatly (from z-score �0.67 to �3.02, Supplementary file 2 [PDFs 8A and 10A , panel a1]), ruling

out that simple sparseness of cells explains their high similarity in the assay. As well, the overall DNA

content distribution of the cell populations appears relatively normal (Supplementary file

2 [PDFs 8B and 10B]). Subpopulation extraction provides a satisfying biological explanation for

these clusters’ distinctive phenotype: the increased roundness and strong variation in intensity levels

(per the Feature Grid) across the population stems from an increased proportion of telophase, ana-

phase, and apoptotic cells (Figure 3 and Supplementary file 2 [PDFs 8B and 10B]).

We therefore conclude that the morphological map can link related genes to each other and that

the morphological data can provide insight into their functions, particularly with the help of subpop-

ulation visualization.
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An unexpected relationship between the Hippo pathway and
regulators of NF-kB signaling (Clusters 11, 20, and 22)
We wondered whether novel relationships might emerge from our unbiased classification of gene

and allele function based on morphologic profiling. We noticed that the known regulator of NF-kB

signaling, TRAF2 (in Cluster 11, together with CDC42) (Grech et al., 2004; Tada et al., 2001), yields

a signature strongly anti-correlated to YAP1/WWTR1 (Cluster 20), which encode the transcriptional

effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (Transcriptional co-activator

with a PDZ-domain). The Hippo pathway and NF-kB signaling are critical regulators of cell survival

and differentiation, and dysregulation of these pathways is implicated in a number of cancers (Vare-

las, 2014; Hoesel and Schmid, 2013; Tornatore et al., 2012), but we found no evidence in the liter-

ature (in particular through BioGRID) of physical interaction between the proteins encoded by

Cluster 11 genes and Cluster 20 genes. Confirming our approach, a functional connection between

CDC42 (Cluster 11) and YAP1 (Cluster 20) has been identified: deletion of CDC42 phenocopies the

loss of YAP1 in kidney-specific conditional knockouts in mice (Reginensi et al., 2013). Still, the NF-k

B pathway (and in particular the Cluster 11 member TRAF2), has not been closely tied to YAP and

TAZ in human cells (see Discussion).

We first wanted to characterize Clusters 11 and 20 to confirm that relationships within each clus-

ter are supported in the literature. Indeed we found evidence for most of the within-cluster connec-

tions. CDC42 and TRAF2 (Cluster 11) physically interact and share functions in actin remodeling

(Marivin et al., 2014). As described in a prior section YAP/TAZ (Cluster 20) are known to share func-

tional similarities in the Hippo pathway, being regulated by, and also regulating, cytoskeletal dynam-

ics. Consistent with these known functions, we found that a core effector of the Hippo pathway

which functions to restrict YAP/TAZ nuclear activity, STK3 (which encodes the Mst2 kinase)

(Meng et al., 2016), has a morphological signature strongly anti-correlated to YAP1/WWTR1

(Supplementary file 2 [PDF 20A, panel c1]). We note that although STK3 and TRAF2 are both mod-

erately anti-correlated with YAP/TAZ (Cluster 20), STK3 and TRAF2 are not themselves highly corre-

lated, indicating each has a different subset of phenotypes that anti-correlate to YAP/TAZ. We also

note that two clones that express another regulator of YAP activity, STK11, form Cluster 22 which

falls nearby YAP1/WWTR1; a connection between STK11 and YAP has been identified (albeit with

opposite directionality, identified via knockdown of STK11 [Mohseni et al., 2014]). Further, YAP1 is

among the highest anti-correlating genes to REL (data not shown; REL is a singleton in the dendro-

gram and thus not in a cluster), whose protein product, c-Rel, has a known connection to TRAF2

(Jin et al., 2015). These results reaffirm that the Cell Painting-based morphological signatures are a

useful reporter of biologically meaningful connections among genes in these pathways.

Given the striking inverse correlation between YAP1/WWTR1 and TRAF2, we sought to confirm a

negative regulatory relationship between the Hippo and NF-kB pathways by multiple orthogonal

methods.

First, we explored the observed inverse morphological impact using the Cell Painting data. The

morphological impact of genes in Cluster 11 and 20 is quite strong (median replicate correlation is

at the 74th and 81st percentile, and average within-group correlations are 0.66 and 0.73). Subpopu-

lation analysis showed that Cluster 20 (YAP1, WWTR1) is enriched for cells that are slightly large,

slightly elongated, and have disjoint, bright mitochondria patterns, whereas Cluster 11 (TRAF2,

CDC42) is de-enriched for those subpopulations and instead enriched for binucleate cells, very large

cells, and small cells with asymmetric organelles (Figures 3, 6A and B).

Second, given that YAP/TAZ are transcriptional regulators, we analyzed gene expression data.

Using the same constructs as in our Cell Painting experiment, we found an anti-correlated relation-

ship at the mRNA level, consistent with the anti-correlation we had seen in morphological space. To

do this, we used Gene Set Enrichment Analysis (Subramanian et al., 2005) and publicly available

data, which includes data from four to nine different cell lines at one to four time points (https://

clue.io). Time point refers to the duration of treating the cells with over-expression constructs until

the time gene expression readouts are made. This analysis revealed that the NF-kB pathway is the

pathway most enriched among genes whose overexpression results in down-regulation of known

YAP1 targets, CTGF, CYR61, and BIRC5 (Zhao et al., 2008) (Benjamini and Hochberg (BH) adjusted

p-value = 2 � 10
�8 in Supplementary file 1I, and Figure 6C), with TRAF2 being among the genes

contributing to this enrichment (Supplementary file 1I). We also saw enrichment of NF-kB pathway
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Figure 6. Morphological and transcriptional cross-talk between the Hippo pathway and regulators of NF-kB signaling. (A). The TRAF2/CDC42 cluster

(Cluster 11) is enriched for bi-nucleate cells, small cells with asymmetric organelles, and huge cells. Note that exemplar images shown are not

labeled as to the actual gene they are associated with. Rather they are only supposed to provide a visual insight of the cell morphologies which are

enriched in the gene cluster. (B) The YAP1/WWTR1 cluster (Cluster 20) is enriched for cells with bright disjoint mitochondria patterns, slightly large cells,

and slightly elongated cells. Scale bars are 39.36 �m long. Pixel intensities are multiplied by five for display. (C) Gene Set Enrichment Analysis (GSEA)

reveals that gene overexpression leading to down-regulation of YAP1 targets (CTGF, CYR61, and BIRC5) are enriched for regulators of the NF-kB

pathway (Enrichment Score p-value = 8:19� 10
�5). The horizontal axis gives the index of ORFs sorted based on the average amount of down-regulation

of the YAP1 targets. Each blue hash mark on this axis indicates an NF-kB pathway member. The running enrichment score, which can range from �1 to

1, is plotted on the vertical axis and quantifies the accumulation of NF-kB pathways members on the sorted list of ORFs. (D) TRAF2 and REL suppress

YAP and TAZ transcriptional activity. REL and TRAF2 suppress the ability of wild-type (D1) YAP and (D2) TAZ to drive the expression of a TEAD-

regulated luciferase reporter. Activity of nuclear active mutants of (D3) YAP (5SA) and (D4) TAZ (4SA) are similarly suppressed. Luciferase reporter

activity was measured in HEK293T cells co-transfected with expression constructs as indicated and a TEAD luciferase reporter was used to measure

YAP-directed transcription. (* p-value<0.05, ** p-value=0.001, *** p-value<0.0001).

Figure 6 continued on next page
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members when testing a data-driven set of targets of YAP1/TAZ (Figure 6—figure supplement 1,

see Materials and methods). In the inverse analysis, genes that alter the levels of TRAF2/REL com-

mon targets are weakly enriched in Hippo pathway members (Figure 6—figure supplement 2, see

Materials and methods). This is consistent with the hypothesis that NF-kB members can downregu-

late YAP/TAZ targets but not strongly vice versa.

Finally, we more directly confirmed negative crosstalk between NF-kB effectors and YAP/TAZ

using a synthetic TEAD luciferase reporter that is YAP/TAZ responsive (Dupont et al., 2011). Impor-

tantly, these confirmatory experiments used different cellular contexts and perturbation constructs

versus the original Cell Painting data. Co-expression of the NF-kB pathway effectors TRAF2 or

C-REL with YAP or TAZ led to significantly lower reporter activity than expression of YAP or TAZ

alone (Figure 6D1 and D2). Intriguingly, mutants of YAP or TAZ that are insensitive to negative reg-

ulation by the Hippo pathway (YAP-5SA and TAZ-4SA; [Zhao et al., 2008]) remained sensitive to

suppression of transcriptional activity by TRAF2 and C-REL, indicating that the negative relationship

we identified may be independent of canonical upstream Hippo pathway signals (Figure 6D3 and

D4).

Discussion
We conclude that connections among genes can be profitably analyzed using morphological profil-

ing of overexpressed genes via the Cell Painting assay. In a single inexpensive experiment, we were

able to rediscover a remarkable number of known biological connections among the genes tested.

Further, we found that morphological data from the Cell Painting assay, together with novel subpop-

ulation visualization methods, can be used to flesh out the functionality of particular genes and/or

clusters of interest.

By adopting a two-pronged approach, merging this Cell Painting morphological analysis with

transcriptional data, we were able to identify an unexpected relationship in human cells between

two major signaling pathways, Hippo and NF-kB, both under intense study recently for their involve-

ment in cancer. Through validation of these clustered genes, we have identified that YAP/TAZ-

directed transcription is negatively regulated by NF-kB pathway effectors and our data suggests a

novel regulatory mechanism that is independent of upstream Hippo kinases.

To date, there has been little evidence of the intersection between these important signaling

pathways. Recent work examining osteoclast-osteoblast differentiation has suggested that Hippo

pathway kinases, such as Mst2, may affect the NF-kB pathway through phosphorylation of IkB pro-

teins, thereby promoting nuclear translocation of NF-kB transcription factors (Lee et al., 2015). TAZ

was found to be a direct target of NF-kB transcription factors and its expression is regulated via NF-

kB signaling (Cho et al., 2010). Our work, however, supports a possible additional mode of interac-

tion, whereby regulators of NF-kB signaling directly regulate the function of Yap and Taz as tran-

scriptional co-factors. Recent work has demonstrated, in Drosophila, that NF-kB activation via Toll

receptor signaling negatively regulates the transcriptional activity of Yorkie, the homolog of YAP/

TAZ, through activation of canonical hippo pathway kinases (Liu et al., 2016). The work described

here identifies, for the first time in a mammalian system, that a negative regulatory relationship

exists between NF-kB activation and YAP/TAZ transcriptional function. Furthermore, we have identi-

fied that this regulation of YAP/TAZ occurs in a manner that is independent of Hippo pathway-

Figure 6 continued

DOI: 10.7554/eLife.24060.013

The following figure supplements are available for figure 6:

Figure supplement 1. Gene Set Enrichment Analysis (GSEA) reveals that overexpression constructs sorted based on their similarity to YAP1/WWTR1

overexpression (in terms of impact on particular mRNA targets), are enriched for regulators of the NF-kB pathway (Enrichment Score p-value=0.0019).

DOI: 10.7554/eLife.24060.014

Figure supplement 2. Gene Set Enrichment Analysis (GSEA) reveals that overexpression constructs sorted based on their similarity to TRAF2/REL

overexpression (in terms of impact on particular mRNA targets), are weakly enriched for regulators of the Hippo pathway (Enrichment Score

p-value=0.024).

DOI: 10.7554/eLife.24060.015
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mediated phosphorylation events on YAP/TAZ, suggesting a more direct relationship between NF-k

B and YAP/TAZ signaling.

In this work, we tested quantitatively and explored qualitatively the connections among genes

revealed by morphological profiling. Our underlying hypothesis was that functionally similar genes

would generally yield morphologically similar cells when overexpressed, and indeed we found this to

be the case. Still, some discussion of this point is warranted. Most commonly, gene overexpression

will result in activation of the corresponding pathway via amplification of the endogenous gene’s

function. However, it is important to note that the profiling strategy to discover functional relation-

ships does not assume or require this. For example, overexpression could also disrupt a protein

complex, producing a trans-dominant negative effect that results in precisely the opposite pheno-

typic effect (Veitia, 2007). In still other cases, overexpression of a particular gene may not affect any

of the normal functions of the gene (producing a false negative signal), or trigger a stress response

(yielding a confounded profile), or produce a complicated response, due to feedback loops. Further,

artifactual phenotypes could be seen, e.g., if overexpression yields a non-physiological interaction

among proteins or toxic aggregates. Nevertheless, despite these caveats and complications, our

results indicate that valuable information could be gleaned from the similarity and dissimilarity of the

morphological perturbations induced by gene overexpression. Using overexpression avoids the

complications of RNAi off-target effects (often due to seed effects), which were far more prevalent

(impacting 90% of constructs in our recent study [Singh et al., 2015]).

In addition to functionally annotating genes, as demonstrated here, one particularly appealing

application enables personalized medicine: it should be feasible to use morphological profiling to

predict the functional impact of various disease alleles, particularly rare variants of unknown signifi-

cance. This has recently been successful using mRNA profiles (Berger et al., 2016). Thus, an even

more exciting prospect would be to combine mRNA profiles with morphological profiles to better

predict groups of alleles of similar mechanism, and ultimately to predict effective therapeutics for

each group of corresponding patients.

We make all raw images, extracted cellular features, calculated profiles, and interpretive visualiza-

tions publicly available, providing an initial morphological map for several major signaling pathways,

including several unexplored connections among genes for further study (see Supplementary file

2). Expanding this map to full genome scale could prove an enormously fruitful resource.

Materials and methods

cDNA constructs used for expression
The Reference Set of human cDNA clones utilized here has been previously described (Kim et al.,

2016); ~90% of these constructs induce expression of the intended gene greater than two standard

deviations above the control mean. Briefly, wild-type ORF constructs were obtained as Entry clones

from the human ORFeome library version 8.1 (http://horfdb.dfci.harvard.edu) with additional tem-

plates generously provided by collaborating laboratories, and cloned into the pDONR223 Gateway

Entry vector. In addition, here, to maximize coverage of cellular pathways, we included additional

clones with minimal sequence deviations from the intended templates. Sanger sequencing of Entry

clones verified the intended transcripts and, if applicable, the intended mutation. Entry constructs

and associated sequencing data will be publicly available via www.addgene.org and may also be

available via members of the ORFeome Collaboration (http://www.orfeomecollaboration.org/),

including the Dana-Farber/Harvard Cancer Center (DF/HCC) DNA Resource Core DNA Repository

(http://www.dfhcc.harvard.edu/core-facilities/dna- resource/) and the DNASU Plasmid Repository at

ASU Biodesign Institute (http://dnasu.asu.edu/DNASU/Home.jsp). Clone requests must include the

unique clone identifier numbers provided in the last column of Supplementary file 1A (e.g.

ccsbBroadEn_12345 as an example for a specific entry clone and ccsbBroad304_12345 as an exam-

ple for a specific expression clone). ORFs were transferred to the pLX304 lentiviral expression vector

(Yang et al., 2011) by LR (attL x attR) recombination.

For simplicity, throughout this paper ‘wild-type’ refers to ORFs found in the original collection

without a particular known mutation intentionally engineered. Due to natural human variation, and

occasional cloning artifacts, there are often non-identical matches of such constructs to reference

sequence; these differences are fully documented for each construct and sequence data will be
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publicly available through AddGene, in addition to the sequencing data for the original Entry clones

for the genome-scale library (Yang et al., 2011).

Cell lines
U-2 OS cells (human bone osteosarcoma cells), RRID:CVCL_0042, were obtained from ATCC and

propagated in the William Hahn lab; they were not additionally authenticated prior to this experi-

ment. The cell line tested negative for mycoplasma prior to this experiment. HEK293T cells, RRID:

CVCL_0063, were obtained from ATCC. The cell line was validated by STR profiling (Genetica DNA

Laboratories) and was negative for mycoplasma as measured by MycoAlert Mycoplasma Detection

Kit (Lonza, Walkersville, MD).

Lentiviral transduction for morphological profiling
We followed our previously described protocol (Kim et al., 2016; Berger et al., 2016) except for

durations of some steps. Briefly, cells were plated in 384-well plates and transduced with lentiviral

particles carrying ORF constructs the next day. Viral particles were removed 18–24 hr post-infection

and cells cultured for 48 hr until staining and imaging (72 hr total post-transduction). The experiment

was conducted in five replicates, each in a different plate. The number of replicates being five was

decided based on prior experiments (Bray et al., 2016).

Cell staining and imaging
The Cell Painting assay followed our previously published protocol (Bray et al., 2016). Briefly, eight

different cell components and organelles were stained with fluorescent dyes: nucleus (Hoechst

33342), endoplasmic reticulum (concanavalin A/AlexaFluor488 conjugate), nucleoli and cytoplasmic

RNA (SYTO14 green fluorescent nucleic acid stain), Golgi apparatus and plasma membrane (wheat

germ agglutinin/AlexaFluor594 conjugate, WGA), F-actin (phalloidin/AlexaFluor594 conjugate) and

mitochondria (MitoTracker Deep Red). WGA and MitoTracker were added to living cells, with the

remaining stains carried out after cell fixation with 3.2% formaldehyde. Images from five fluorescent

channels were captured at 20x magnification on an ImageXpress Micro epifluorescent microscope

(Molecular Devices): DAPI (387/447 nm), GFP (472/520 nm), Cy3 (531/593 nm), Texas Red (562/624

nm), Cy5 (628/692 nm). Nine sites per well were acquired, with laser based autofocus using the

DAPI channel at the first site of each well.

Image processing and feature extraction
The workflow for image processing and cellular feature extraction has been described elsewhere

(Bray et al., 2016), but we describe it briefly here. CellProfiler (Carpenter et al., 2006) software ver-

sion 2.1.0 was used to correct the image channels for uneven illumination, and identify, segment,

and measure the cells. An image quality workflow (Bray et al., 2012) was applied to exclude satu-

rated and/or out-of focus wells; six wells containing blurry images were excluded, retaining 1914

plate/well combinations in the experiment. Cellular morphological, intensity, textural and adjacency

statistics were then measured for the cell, nuclei and cytoplasmic sub-compartments. The 1402 cellu-

lar features thus extracted were normalized as follows: For each feature, the median and median

absolute deviation were calculated across all untreated cells within a plate; feature values for all the

cells in the plate were then normalized by subtracting the median and dividing by the median abso-

lute deviation (MAD) times 1.4826 (Chung et al., 2008). Features having MAD = 0 in any plate were

excluded, retaining 1384 features in all. The image data along with the extracted morphological fea-

tures at the per-cell level were made publicly available in the Image Data Repository under DOI 10.

17867/10000105.

Profiling and data preprocessing
The code repository for the profiling and all the subsequent analysis is publicly available at https://

github.com/carpenterlab/2017_rohban_elife (Carpenter, 2017) (with a copy archived at https://

github.com/elifesciences-publications/2016_rohban_submitted). We will next explain details of each

analysis step implemented in the code. Single cell measurements in each well and plate position are

summarized into the profiles by taking their median and median absolute deviation (abbreviated as

‘MAD’ or ‘mad’ in some tables) over all the cells. Although this method does not explicitly capture
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population heterogeneity, no alternate method has yet been proven more effective (Ljosa et al.,

2013). We also include the cell count in a sample as an additional feature. This results in a vector of

2769 elements describing the summarized morphology of cells in a sample. We then use the median

polishing algorithm after obtaining the summarized profiles, to remove and correct for any plate

position artifacts. For each feature, the algorithm de-trends the rows, i.e. by subtracting the row

median from the corresponding feature of each profile in that particular row. Next, it de-trends the

columns in a similar way using column medians. The row and column de-trending is repeated until

convergence is reached in all the features. For the rest of the analysis we considered only the con-

structs which have more than 99% sequence identity to both the intended protein and gene tran-

script, to avoid testing uncharacterized mutations/truncations.

Not all of the morphological features contain useful reproducible information. We first filter out

features for which their replicate correlation across all samples (except the negative controls) is less

than 0.30, retaining 2200 features. Subsequently, a feature selection method is used (Fischer et al.,

2015). Briefly, starting with features (measurements) that we identify as essential, a new feature that

contributes the most information with respect to those that have been chosen, is added to the set.

The contribution of each feature to the already-selected features is measured by the replicate corre-

lation of the residue when the feature is regressed on the already selected features. This is repeated

until the incremental information added drops below a threshold. The original method proposed in

(Fischer et al., 2015) overfits in its regression step when the original data is very high dimensional.

As a remedy, in the regression step we only use features that have a Pearson correlation of more

than 0.50 with the selected features thus far. This prevents overfitting of regression when the

dimensionality of selected features grows. We stop feature selection when the maximum replicate

correlation of residue is less than 0.30.

The feature selection method greatly removes redundancy, but because of the non-optimal

‘greedy’ strategy, some redundancy remains. Principal component analysis is then applied to keep

99% of variance in data, resulting in 158 principal components being selected.

Feature interpretation
The features measured using CellProfiler follow a standard naming convention. Each feature name is

made up of several tokens separated by underscores, in the following order:

. Prefix which could be either empty or ‘mad’. This means that the feature is calculated either
by taking median (no prefix) or median absolute deviation (‘mad’ prefix) of the relevant mea-
surement over all the cells in a sample.

. Cellular compartment in which the measurement related to the feature is made, i.e., ‘Cells’,
‘Cytoplasm’, or ‘Nuclei’. Note that features labeled ‘Nuclei’ are based on segmentation of
nuclei using Hoechst staining, ‘Cells’ are based on segmentation of the cell edges using the
RNA channel, and ‘Cytoplasm’ is the subtraction of the aforementioned compartments.

. Measurement type, which can be either ‘Intensity’, ‘Texture’, ‘RadialDistribution’, ‘AreaShape’,
‘Correlation_Correlation’, ‘Granularity’, and ‘Neighbors’. Note that ‘Correlation_Correlation’
measures, within a cellular compartment, the correlation between gray level intensities of cor-
responding pixel pairs across two channels (specified in the next tokens in the feature name).
Note also that the relative positioning of a cell is measured in the ‘Neighbors’ category.

. Name(s) of channels in which the measurement is made, if appropriate (omitted for AreaShape
and Neighbors).

. Feature name. The precise measurement name appears at the end. A description of each met-
ric can be found in the CellProfiler manual (http://cellprofiler.org/manuals/current/)

Identifying ORF constructs that are distinguishable from negative
controls
Our method to identify which genes produce a discernable profile involves first normalizing each

profile to the negative controls, such that a treatment’s median replicate correlation becomes a sur-

rogate for phenotype strength. In the case that a treatment does not show a phenotype different

from the negative control, its replicates would center around the origin in the feature space. This

would consequently decrease the median replicate correlation. On the other hand, a phenotype

which is consistently observed in the replicates and is significantly different from the controls results

Rohban et al. eLife 2017;6:e24060. DOI: 10.7554/eLife.24060 16 of 23

Tools and resources Computational and Systems Biology

http://cellprofiler.org/manuals/current/
http://dx.doi.org/10.7554/eLife.24060


in the replicates to concentrate in a region far from the origin in the feature space, and hence a high

median replicate correlation value.

The cutoff for ‘discernible’ is set based on the top fifth percentile of a null distribution. The null

distribution is defined based on the correlations between non-replicates (that is, different constructs)

in the experiment. Treatments whose replicate correlations are greater than the 95th percentile of

the null distribution are considered as ‘hits’ that have a morphological phenotype that is highly

reproducible (Figure 2A).

At this point, for strong treatments, all profiles of the replicates are collapsed by taking the aver-

age of individual features. 110 out of the 112 selected ORFs were significantly different from the

untreated profiles in the feature space. That is, their average Euclidean distances to the untreated

profiles were higher than 95th percentile of untreated profile distances to themselves. This shows

these two alternative notions of phenotype strength–replicate reproducibility and distance to nega-

tive control–are consistent. We restrict all the remaining analyses to the 110 ORFs.

Comparison of morphological connections between genes to protein-
protein interaction data and pathway annotations
In this analysis, mutant alleles were removed and we considered only one wild-type allele for each

gene with a detectable phenotype, retaining 73 genes. We calculated a threshold to identify signifi-

cantly correlated gene pairs. We picked the threshold to minimize the probability of error in classify-

ing wild-type clone pairs versus different-gene pairs. To do so, we found the value at which the

probability density functions of the two groups intersect; this value (here, 0.43) can be proved to

have the desired property (Duda et al., 2012). This approach results in about 5% of the gene pairs

being categorized as highly correlated. We next formed a two by two contingency table, where the

rows correspond to two groups of gene pairs, determined by whether they have high profile correla-

tion or not. Similarly, the columns also correspond to two groups of gene pairs, determined by

whether the corresponding proteins have been reported to interact in BioGRID (or alternatively have

been annotated to be in the same pathway; Supplementary file 1C and 1D). This table was then

used to perform a one-tailed Fisher’s exact test.

Creation of a dendrogram relating genes to each other, and
agglomerative clustering by cutting the dendrogram
A dendrogram was created based on the Pearson correlation distance and average linkage, using

the hclust function in R (Figure 3).

Gene clusters were formed by cutting the dendrogram at a fixed correlation level, 0.522, which

was chosen using a stability-based measure. The measure is defined as follows: the local clustering

stability is measured for a range of candidate cutoffs, from 0.43 (used earlier to test consistency to

protein interaction data) to 0.70. The point with highest stability was chosen (Figure 3—figure sup-

plement 2), and the stability measure was defined as the proportion of treatments whose clusters

do not change if the cutoff is slightly changed by a small amount, � ¼ :002.

Subpopulation extraction
In order to extract cell categories (subpopulations) and subpopulation enrichment laid over the den-

drogram in Figure 3, we applied k-means clustering on the normalized single cell data for each

gene cluster and the control. Data normalization was carried out on a plate-wise basis by z-scoring

each feature using the control samples as reference. In order to avoid curse of dimensionality, we

restricted the dataset to the features obtained from the feature selection step mentioned earlier.

We set k = 20 to be the number of subpopulations. The algorithm was run for at most 5000 itera-

tions. Each cell was assigned to the subpopulation for which it has the shortest Euclidean distance to

its center. Then, the number of cells belonging to each cell subpopulation was counted and the pro-

portion in each subpopulation for genes in the cluster was compared against that of the control. If

the change in proportion of a cell category was consistent across the genes in the cluster, the cell

category is shown in the Supplementary file 2 (type B PDFs). To quantify this consistency, we used

the inverse coefficient of variation of the change in a category proportion. If this quantity exceeded

one, we called the change consistent and included the corresponding cell category in the PDFs.
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Images of cells which have highest similarity to the category center in the feature space are then

used to interpret and give name to each cell category (Figure 3—figure supplement 3)

Identifying targets of a gene using a data-driven approach
For this purpose, we used a replicate of the original experiment but with L1000 gene-expression

readouts, which is provided in the supplemental data; i.e. cell line, time point, and ORF constructs

are the same. This data is different from the data used in creating GSEA plots, which entails multiple

cell lines and time points. The mRNA levels are all normalized with respect to the negative control.

For each replicate of the overexpression construct, we sort the expression levels of landmark genes

and take the list of top and bottom 50 landmark genes. Then, to find targets of the gene related to

the construct, we find the landmark genes among this list which has shown up at least in p% of repli-

cates/clones of the gene. In particular, we set p to 33% for YAP1, 50% for WWTR1, TRAF2, and REL.

Then, we simply take the intersection of predicted targets of YAP1 and WWTR1 (and similarly

TRAF2 and REL, separately) to get their common targets. These targets are then used to produce

Figure 6—figure supplements 1–2.

Gene set enrichment analysis
In order to produce Figure 6C, we specified the three known targets of YAP/WWTR1 (CYR61,

CTGF, and BIRC5) and queried for ORFs resulting in down-regulation of these genes. This scores

each ORF (out of the 430 in the dataset) based on the observed change in mRNA level of the speci-

fied YAP/WWTR1 targets, across between four to nine different cell lines and between one to four

time points. For each ORF, we then sought the summarized score which takes the mean of 4 largest

scores across time point/cell line combinations. Finally, the ORFs were sorted based on the summa-

rized score, and top 30 ORFs were tested for enrichment in different pathways (Supplementary file

1I). We used the ‘clusterProfiler’ package in R and the KEGG pathway enrichment analysis imple-

mented in it for creating the GSEA plot (Yu et al., 2012).

Luciferase reporter assay
Wild-type and mutant sequences of WWTR1 (TAZ) (4SA: S66A, S89A, S117A, and S311A) and YAP1

(5SA: S61A, S109A, S127A, S164A, and S397A) were previously generated and cloned into the

pCMV5 backbone; these constructs are distinct from those used in the original Cell Painting data

set. TRAF2 and REL were cloned from the original constructs (using Broad ID# ccsbBroadEn_01710

and ID# ccsbBroadEn_11094, respectively), into pCMV5 expression vectors. These were sequenced

and confirmed to BLAST against the appropriate Broad clone ID. The empty pCMV5 backbone was

used as the control condition. The Tead luciferase reporter construct, 8xGTIIC-luciferase was a gift

from Stefano Piccolo (Addgene plasmid # 34615).

HEK293T cells, RRID:CVCL_0063, were transfected using Turbofect (ThermoFisher Scientific)

according to manufacturer’s protocol. All cells were co-transfected with a b-galactosidase reporter

plasmid (pCMV-LacZ from Clontech) as a transfection control. Cells were lysed 48 hr following trans-

fection. Lysates were mixed with firefly luciferase (Promega) according to the manufacturer’s proto-

col and luminescence was measured using a luminometer (BioTek). Lysates were mixed with

o-nitrophenyl-b-D-galactoside (ONPG) and b-galactosidase expression was determined spectropho-

tometrically by measurement of absorbance at 405 nm following ONPG cleavage. All luciferase read-

ings were normalized to b-galactosidase expression for the sample. Statistical analysis was

conducted using a two tailed unpaired Student’s t test. The data shown in Figure 6D are from tripli-

cate samples within a single experiment and is representative of replicate experiments.
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A, Winckler W, et al. 2014. Toward performance-diverse small-molecule libraries for cell-based phenotypic
screening using multiplexed high-dimensional profiling. PNAS 111:10911–10916. doi: 10.1073/pnas.
1410933111, PMID: 25024206

Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, Mueller H, Nascimento EB,
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