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ABSTRACT

Neutrophil granulocytes belong to the first responders of the
innate immune system and are characterized by the capability
to migrate towards a site of bacterial infections or inflam-
mation. Several image-based in vitro assays exist to record
and quantify their movement using migration parameters
like speed, directionality or mean squared displacement. In
this work, we propose to add morphological parameters to
the analysis of time-lapse data. We analyzed a previously
published data set of neutrophil granulocytes and combined
morphological and migration profiles using the similarity
network fusion (SNF) algorithm. To assess the information
(gain) stored in the morphological, migration and combined
data, we propose to use the signal strength as an objective
measure. We conclude that morphological profiling can be
combined with classical migration parameters to improve the
readout of in vitro migration assays.

Index Terms— time-lapse, migration, morphology, chemo-
taxis, SNF

1. INTRODUCTION

As first-responders to bacterial infection and inflammation,
neutrophil granulocytes play an important role in the innate
immune system. Their main characteristic is the ability to
migrate towards a site of infection, mainly directed and con-
trolled by a process denoted as chemotaxis. To study this
specific migration pattern, several in vitro assays can mimic
chemotaxis using chemical gradients, or that use microfluidic
channels to induce a neutrophil movement in a controlled en-
vironment. In recent years, several image-based assays have
been developed to observe and characterize migration pat-
terns. These assays include a diverse set of technologies, such
as the highly specialized lab-on-chip based microfluidic de-
vices [1] that can capture and isolate neutrophils from a single
drop of blood [2]. Other very flexible assays have been pro-
posed to easily change several migration conditions like ma-
trices, chemoattractants or drug treatment [3]. Importantly, all
these different image and time-lapse based assays offer single
cell resolution for automated migration analysis.

Fig. 1. Neutrophil granulocytes are analyzed in an in vitro mi-
gration assay where chemotaxis is induced using the chemoat-
tractant Interleukin-8. The neutrophils show a directed mi-
gration towards the left channel side and are imaged using
brightfield microscopy (121 image per time series, 30 second
interval, pixel resolution 1.3µm, 10×magnification, 1.3MP
image size). The three cropped images illustrate the varying
morphology of the moving cells.

Automated and semi-automated segmentation methods
can be used to detect and track cells and neutrophils. For
example, researchers can select a representative neutrophil
that is used as a reference object in a pattern matching ap-
proach to find the position of all other neutrophils in the
image [2]. This approach results in good tracking accuracy
and allows quantifying the migration using parameters like
speed, directionality, mean squared error and forward migra-
tion index. While this approach results in a good description
of the migration profile, it fails to incorporate information
about changes in cellular morphology related to neutrophil
response. In this work we aim to investigate the value of
incorporating morphological information in the analysis of
migration data. We compute morphological features of in-
dividual cells in each frame of the time-lapse data, and then
create a morphological profile by aggregating these features



Fig. 2. The migration profiles of all experimental groups are shown as a sector analysis (360 degree histogram of the trajectories
distribution). Additionally, the speed distribution in each sector is color coded similar to a windrose plot. A directed migration
is represented by a dominant migration towards the chemoattractant Interleukin-8 on the left. The strongest effect of the
Prednisolone treatment can be observed in Fibronectin (FN) as opposed to a collagen-rich matrix (HEM).

through time for each trajectory. The ability of morphologi-
cal features to detect changes in phenotype of migrating cells
is compared with that of migration features alone. We also
present a method that combines cellular morphologies with
migration information, and show that they can complement
each other for improved analysis of migration experiments.

2. MATERIAL AND METHODS

2.1. Time-lapse data of neutrophil granulocytes

We analyzed 20 time-lapse movies that were acquired using
the simplified migration assay (SiMA) [3]. In this assay, an
Interleukin-8 gradient is used to induce a controlled migration
(chemotaxis). Of these 20 videos, 10 show a migration of the
neutrophils in Fibronectin (FN) and the other 10 show a mi-
gration in a collagen-rich matrix (HEM). In each set, 5 time-
lapse experiments were recorded with and without treatment
(Prednisolone)(summarized in Table 1, for details see [3]).
The chemotaxis gradient was allowed to stabilize in the first
10 minutes; the corresponding images were removed. Images
were cropped to remove the left and right border visible in the
field of view (see Fig. 1).

2.2. Segmentation and tracking

The analysed time-lapse data consists of brightfield images
with varying image contrast ( Fig. 1). To segment, detect, and
track the cells we used CellProfiler 3.0 [4]. The implemented
pipeline consists of illumination correction, image segmenta-
tion based on a morphological gradient, and cell tracking. For
tracking, the CellProfiler implementation of the LAP (linear
assignment problem)[5] algorithm is used and optimized fol-
lowing the scheme described in [6]. Segmentation errors re-
sult in broken trajectories with a short lifetime. To remove
these tracking artefacts, all trajectories with a lifetime shorter
than 10 minutes / 20 frames were removed from the analysis.
As an objective measure of quality, we used the VOT (valid
observation time) which is defined as the total length of all
analyzed trajectories divided by the total length of all tracks
(including removed tracks). Or in other words: the VOT rep-

resents the fraction of . Table 1 presents these measurements
for all experimental groups analyzed in this dataset.

2.3. Morphological Profiling

Cellular phenotypes are quantified in each frame of each
movie using morphological profiling [7]. For each cell, 49
features corresponding to shape and appearance are mea-
sured, and trajectory profiles are created by averaging each
feature across time. Finally, condition profiles are created by
summarizing trajectory profiles using mean and standard de-
viation, resulting in 98 measurements in total. To normalize
all data, the features are z-scored with respect to the control
condition, prior to computing trajectory profiles. To reduce
redundancy, we filter the features so that no two features
have a correlation greater than a specified threshold (here,
.95 Pearson). Finally, we remove features that have near-zero
variance. After all these steps, morphological profiles result
in vectors of 52 features for each trajectory. The profiling
pipeline and downstream analysis was implemented in R
version 3.4.1 using the cytominer package version 0.11.

2.4. Migration Profiling

Migration features are calculated based on the centroid posi-
tion of the tracked cells. For each tracjetory, a eight dimen-

1Methods for Image-Based Cell Profiling [R package cytominer ver-
sion 0.1.0]. [cited 2017 Oct 2]; Available from: https://CRAN.R-
project.org/package=cytominer

group matrix treatment videos tracks VOT
1 FN control 5 406 0.88
2 FN Prednisolone 5 536 0.85
3 HEM control 5 274 0.96
4 HEM Prednisolone 5 385 0.96

Table 1. The analyzed image series consists of four experi-
mental groups showing neutrophil migration under different
conditions. Each group consists of five measurements using
neutrophils of different patients. The tracking metric VOT [3]
indicates that the migration data in HEM is higher-quality.



Fig. 3. Structure of the affinity matrix. The submatrix for
each of the four experimental groups listed in Table 1 is shown
in gray and has size ni×ni, where ni is the number of trajec-
tories in a group. The lower, white six submatrices were used
to calculate the null distribution. The fraction strong for each
group is defined as the percentage of trajectories with signifi-
cantly increased values compared to this null distribution.

sional feature vector was calculated including directionality,
distance traveled, forward migration index (in direction x and
y), speed (speed, speed in x and in y direction) and the chemo-
tactic index as cos(α) where α is the angle of the trajectory.
Similarly to the morphological profiles, all migration feature
were z-scored with respect to the control condition.

2.5. Combining morphological and migration features

To combine morphological and migration data, we use the
similarity network fusion (SNF) algorithm [8]. SNF was de-
veloped to combine data sets with different characteristics,
such as scales or levels of noise. Intuitively, SNF creates a
graph by combining the evidence of connected data points in
each modality separately to produce more consistent neigh-
borhoods. First, a similarity network for each data type (in
our case migration or morphological profiles) is constructed
in form of an affinity matrixW . The matrixW is of size n×n
and each entry W (i, j) is the affinity between two data points
xi, xj . Using the euclidean distance, W (i, j) is calculated as

Wi,j ' exp
(
‖xi − xj‖2

σεi,j

)
(1)

where σ is a hyperparameter that can be chosen and εi,j is a
normalization factor. To finally fuse both data sets, the two
affinity matrices are iteratively fused resulting in one similar-
ity network, that is represented as a new affinity matrix.

2.6. Signal strength of a profile

The goal of our experiment is to identify conditions where mi-
gration and morphology patterns change. If one condition has

a large number of similar cell trajectories that are not com-
monly seen in other experimental groups, we can conclude
that the effect of that condition is significant. We propose
to quantify this effect using a statistical test that compares
the similarity of trajectories of the same condition against the
similarity of trajectories drawn from different random condi-
tions.

To quantify the strength of the phenotype induced in a
given condition, we measure how often two trajectory pro-
files from the condition are more similar than expected at ran-
dom. We thus build a null distribution comprising the similar-
ity between pairs of trajectories between different conditions
(white submatrices in Fig. 3). A threshold θ is calculated as
the 95th quantile of this distribution. The phenotype strength
is defined for each condition as the fraction of trajectory pairs
(i, j) of the same group that satisfy W (i, j) > θ (each exper-
imental group is shown as a gray submatrix in Fig. 3).

3. RESULTS AND DISCUSSION

We calculated two affinity matrices Wmo and Wmi for the
morphological features and the migration features respec-
tively. The values for the neighbourhood K and σ were
found experimentally using grid search to identify the pair
with better signal strength (for the control / FN condition).
Based on this, we selected K = 26 and σ = 0.4. These
values were used to create affinity matrices for morphology,
migration data and the combination of both. Two meth-
ods were used to combine the morphology and migration
data. First, we used the mean affinity value Wmi+mo =
1

2
(Wmi + Wmo) as a baseline of the potential improve-

ment of both sources of information. Then, the two matrices
were fused using the SNF algorithm and a combined matrix
WSNF was generated. The signal strength of all representa-
tions (Wmi,Wmo,Wmi+mo,WSNF ) was calculated for each
of the four experimental groups.

3.1. Control group vs. Prednisolone treatment

We find that both profiles, the morphological and migration
features, show a stronger phenotype signal in the control
group compared to the Prednisolone treated neutrophils. This
result is in line with earlier observation that Prednisolone
weakens and partly reverses chemotaxis (compare Fig. 2).

3.2. Migration medium Fibronectin vs. HEM

Next, we compared the migration in FN against HEM.
The previous analysis revealed a lowered mean speed of
0.04µm/s in HEM compared to 0.13µm/s for neutrophils
migrating in FN. However, we found a slightly improved sig-
nal of the migration features measured in HEM. Surprisingly,
the migration medium does not have a big influence on the
phenotype strength. This shows that the strength of migration



profiles is not correlated to the mean speed of the tracked
objects.

3.3. Combining profiles

We used two methods for combining profiles to compare the
gain of information and test the hypothesis that morphology
complements migration data. We find that the signal strength
of the signal of Wmi+mo is better for most but not all con-
ditions compared to the best corresponding Wmi or Wmo,
showing that combining modalities is not a trivial problem
(Table 2). In contrast, the signal of WSNF results in an im-
proved value in all conditions (up to 2.6× ), suggesting that
SNF is a good strategy to combine morphology and migration
data.

Matrix Treatment Wmo Wmi Wmi+mo WSNF

FN control 7.8% 9.5% 9.4% 10.6 %
FN Predn. 7.4% 6.9% 7.9% 17.9%

HEM control 9.7% 10.6% 12.2% 15.8%
HEM Predn. 7.4% 7.3% 9.3% 16.1%

Table 2. For each of the four experimental groups the signal
strength is calculated using four different profiles (morphol-
ogy Wmo , migration Wmi, average combination Wmi+mo

and SNF combination WSNF ). Numbers are the fraction of
cell trajectory pairs that have a similarity significantly larger
than the null distribution. Larger is better.

3.4. Conclusion

The framework we developed extends the traditional ap-
proach of analyzing time-lapse tracking data by adding mor-
phological features to migration features. To measure the
information in the data modalities, we propose the use of
a statistical test to estimate the signal strength of experi-
mental groups, which indicates how reliably different each
condition is from control. Using this estimation, we found
that combining morphological and migration features using
SNF improves the overall signal, suggesting that they can
complement each other to improve the downstream analysis
of tracking data. Signal strength can also be used to find
the optimal parameters of the SNF algorithm. Using this
framework, we compared the migration of neutrophils in two
different matrices: Fibronectin and HEM, a complex, col-
lagen rich matrix. Compared to Fibronectin, the migration
in HEM shows a better signal for all three analyzed profiles
(morphological, migration and combined). We therefore con-
clude that complex matrices such as HEM are better suited
for studying neutrophil granulocytes behaviour.
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