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Abstract

We study the problem of learning representations for sin-
gle cells in microscopy images to discover biological rela-
tionships between their experimental conditions. Many new
applications in drug discovery and functional genomics re-
quire capturing the morphology of individual cells as com-
prehensively as possible. Deep convolutional neural net-
works (CNNs) can learn powerful visual representations,
but require ground truth for training; this is rarely available
in biomedical profiling experiments. While we do not know
which experimental treatments produce cells that look alike,
we do know that cells exposed to the same experimental
treatment should generally look similar. Thus, we explore
training CNNs using a weakly supervised approach that
uses this information for feature learning. In addition, the
training stage is regularized to control for unwanted varia-
tions using mixup or RNNs. We conduct experiments on two
different datasets; the proposed approach yields single-cell
embeddings that are more accurate than the widely adopted
classical features, and are competitive with previously pro-
posed transfer learning approaches.

1. Introduction
Steady progress in automated microscopy makes it pos-

sible to study cell biology at a large scale. Experiments that
were done using a single pipette before can now be repli-
cated thousands of times using robots, targeting different
experimental conditions to understand the effect of chemi-
cal compounds or the function of genes [22]. Key to the pro-
cess is the automatic analysis of microscopy images, which
quantifies the effect of treatments and reports relevant bio-
logical changes observed at the single-cell level. An effec-
tive computer vision system can have tremendous impact in
the future of health care, including more efficient drug dis-
covery cycles, and the design of personalized genetic treat-
ments [3].

The automated analysis of microscopy images has been

increasingly adopted by the pharmaceutical industry and
thousands of biological laboratories around the world.
However, the predominant approach is based on classical
image processing to extract low-level features of cells. This
presents two main challenges: 1) low-level features are sus-
ceptible to various types of noise and artifacts commonly
present in biological experiments, being potentially biased
by undesired effects and thus confounding the conclusions
of a study. 2) It is unlikely that these features can detect
all relevant biological properties captured by automated mi-
croscopes. With a large number of experimental conditions,
the differences in cell morphology may become very sub-
tle, and a potentially effective treatment for a disease may
be missed if the vision system lacks sensitivity.

Learning representations of cells using deep neural net-
works may improve the quality and sensitivity of the sig-
nal measured in biological experiments. Learning represen-
tations is at the core of recent breakthroughs in computer
vision [19, 26, 14], with two aspects contributing to these
advances: 1) the availability of carefully annotated image
databases [30, 20], and 2) the design of novel neural net-
work architectures [15, 33]. In image-based profiling ex-
periments, while we build on top of state-of-the-art archi-
tectures to design a solution, we face the challenge of hav-
ing large image collections with very few or no ground truth
annotations at all.

To overcome this challenge, we propose to train deep
convolutional neural networks (CNNs) based on a weakly
supervised approach that leverages the structure of biologi-
cal experiments. Specifically, we use replicates of the same
treatment condition as labels for learning a classification
network, assuming that they ought to yield cells with sim-
ilar features. Then, we discard the classifier and keep the
learned features to investigate treatment similarities in a
downstream analysis. This task is analogous to training a
CNN for face recognition among a large number of peo-
ple, and then using the learned representation to statistically
identify family members in the population.

Given the high learning capacity of CNNs [36], weak la-
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bels may pose the risk of fitting experimental noise, which
can bias or corrupt similarity measurements. To illustrate
the problem, the feature vectors of two people might be
more similar because they tend to appear in outdoor scenes
more often, instead of scoring high similarity because of
their facial traits. To prevent this, we evaluate two simple
regularization techniques to try to control the variation of
known sources of noise during the training stage.

We conduct extensive experiments with the proposed
regularization strategies for training CNNs using weak la-
bels, and evaluate the quality of the resulting features in
downstream statistical analysis tasks. Our experiments
were conducted on two different datasets comprising about
half a million cells each, and imaged with different fluores-
cence techniques. The networks learned with the proposed
strategies generate feature embeddings that better capture
variations in cell state, as needed for downstream analysis
of cell populations. The results show that our approach is
an effective strategy for extracting more information from
single cells than baseline approaches, yielding competitive
results in a chemical screen benchmark, and improving per-
formance in a more challenging genetic screen.

The contributions of this work are:

• A weakly supervised framework to train CNNs for
learning representations of single cells in large scale
biological experiments.

• The evaluation of two regularization strategies to con-
trol the learning capacity of CNNs in a weakly su-
pervised setting. The choice of these regularizers is
based on the need to control unwanted variations from
batches and artifacts.

• An experimental evaluation on two datasets: a publicly
available chemical screen to predict the mechanism of
drugs; and a new collection of genetic perturbations
with cancer associated mutations. We release the new
data together with code to reproduce and extend our
research.

2. Related Work
Weakly supervised learning is actively investigated in

the vision community, given the large amounts of unlabeled
data in the web. The approach has been evaluated for learn-
ing representations from Internet scale image collections
[6, 17, 13] as well as for the analysis of biomedical im-
ages [35, 16]. These techniques usually deal with multi-tag
noisy annotations, and adapt the loss function and training
procedure to improve performance with more data. In our
work, we also have noisy labels, but focus on regularization
to control the variation of known sources of noise.

Given the structure of biomedical problems, various
strategies have been suggested as potential solutions to the
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Figure 1: Structure of an image collection in high-
throughput experiments. Compounds are applied to cells
in batches and multiple replicates. Phenotypes in replicates
are expected to be consistent. Note the presence of nuisance
variation due to batches, microscope artifacts, or other sys-
tematic effects. The ground truth, when available, is given
as known associations between compounds. The example
illustrates treatments with compounds, but this could in-
stead be genetic perturbations.

lack of labels, including transfer learning and data augmen-
tation. An example of transfer learning is a method for di-
agnosing skin cancer, which reached expert-level classifi-
cation performance using a CNN pretrained on ImageNet
and finetuned to the specialized domain [8]. Another prob-
lem relying mostly on strong data augmentation is medical
image segmentation, which was shown to work well with
relatively few annotations [28].

Deep CNNs have been applied to various microscopy
imaging problems to create classification models. Exam-
ples include protein localization in single cells [18] and hit
selection from entire fields of view [9]. However, these
are based on a supervised learning approach that requires
labeled examples, and thus are limited to the detection of
known phenotypes. By contrast, we aim to analyze popula-
tions of cells to explore the effects of unknown compounds
or rare genetic mutations.

Recent research by Ando et al. [23] and Pawlowski et
al. [25] achieved excellent results on our problem domain
by transferring features from CNNs trained for generic ob-
ject classification. Goldsborough et al. [10] used genera-
tive adversarial networks for learning features directly from
images of cells, also bringing the ability to synthesize new
images to explain variations in phenotypes. Our work is the
first study to systematically train convolutional neural net-
works for single cells in a weakly supervised way.
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3. Morphological Profiling
The structure of an image collection in morphological

profiling experiments is usually organized hierarchically, in
batches, replicates and wells (Fig. 1). The compounds,
also referred to as treatments or perturbations in this paper,
are applied to cell populations, and microscopy imaging is
used to observe morphological variations. Acquired images
often display variations caused by factors other than the
treatment itself, such as batch variations, position effects,
and imaging artifacts. These factors bias the measurements
taken by low-level features and are the main challenge for
learning reliable representations.

The main goal of morphological profiling is to reveal re-
lationships among treatments. For instance, suppose a com-
pound is being evaluated as a potential therapeutic drug and
we want to understand how it affects cellular state. Depend-
ing on the morphological variations that the compound pro-
duces in cells, we may identify that it is toxic because it
consistently looks similar to previously known toxic com-
pounds. Alternatively, its morphological variations may be
more correlated with the desired response for a particular
disease, making it an excellent candidate for further studies.
Profiling experiments may involve thousands of treatments
in parallel, the majority of them with unknown response,
which the experiment aims to quantify. Ground truth is usu-
ally provided as high level associations between treatments,
and is very sparse (Fig. 1).

The main steps of the morphological profiling workflow
include 1) image acquisition, 2) segmentation, 3) feature ex-
traction, 4) population profiling, and 5) downstream analy-
sis (Fig. 2). The workflow transforms images into quan-
titative profiles that describe aggregated statistics of cell
populations. These profiles are compared using similar-
ity measures to identify relationships. Further detail of the
data analysis strategies involved in morphological profiling
projects can be found in [2].

We focus on optimizing the features obtained in step 3
and adopt the best practices for all other steps. In particular,
for image segmentation (step 2) we use the Otsu’s thresh-
olding method in the DNA channel of the acquired image
to identify single cells, which are then cropped in fixed size
windows in our learning technique. We also apply the illu-
mination correction approach proposed by Singh et al. [32]
to all image channels to improve homogeneity of the field
of view.

To construct the profile of one compound, we use the
mean feature vector of the population of cells treated with
that compound (step 4). We also apply the typical variation
normalization (TVN) proposed by Ando et al. [23], using
as reference distribution cells from negative control popu-
lations. The downstream statistical analysis (step 5) varies
depending on the biological question. Although the discus-
sion above has focused on treating cells with compounds

1. Raw images

2. Segmented images

3. Single-cell feature matrices 

4. Population profiles of treatments

5. Downstream statistical analysis 

Are treatments 
significantly different / 

effective? 

Figure 2: The morphological profiling workflow transforms
images into quantitative measurements of cell populations.
Aggregated profiles describe statistics of how one treatment
altered the morphology of a population of cells. The end
goal of profiling is to uncover relationships between treat-
ments. Obtaining matrices of single-cell features in step 3
is the focus of this paper.

(e.g. [21]), they may instead be treated with reagents that
modify genes or gene products (e.g. [27]).

4. Learning Single-Cell Embeddings
We propose learning single-cell embeddings in a frame-

work composed of two objectives: the main goal and the
auxiliary task. The main goal of a morphological profil-
ing experiment is to uncover the associations between treat-
ments (step 5 in Fig. 2). These associations can be orga-
nized in categories or mechanistic classes as depicted in
Figure 1. We define the auxiliary task as the process of
training CNNs to recognize treatments from single cell im-
ages. The CNNs are expected to learn features that can be
used in step 3 of the morphological profiling workflow.

4.1. Weakly Supervised Setting

Consider a collection of n cells Xi = {xk} ∀ k ∈
{1, . . . , n}, treated with compound Yi ∈ Y . Features can
be extracted from each cell using a mapping φθ(xk) ∈ Rm,
and aggregate them using, for instance, the mean of single
cell embeddings:

µ(Xi) =
1

n

n∑
k=1

φθ(xk) ∈ Rm

We call µ(Xi) the mean profile of compound Yi [21].
Two compounds, Yi and Yj , have an unknown relationship
Zi,j that can be approximately measured as the similarity
between their mean profiles:

Zi,j = ρ (µ(Xi), µ(Xj))
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Figure 3: RNN-based regularization. The CNN is used as a
feature extractor to inform the GRU about image contents.
The GRU tracks common features in the sequence of cells
to predict the correct treatment label. Cells in the sequence
share the same label, have randomized order, and are sam-
pled from different batches and replicates.

Only a few of all possible relationships Z between com-
pounds (or genes) are known in biology. The problem is like
identifying family members using pictures of individuals. A
treatment Yi encodes the identity of an individual, and the
collection of cells Xi corresponds to pictures of their faces
taken in different situations. Relationships such as ”two in-
dividuals belonging to the same family” are represented by
the unknown variables Zi,j . Our goal is to discover the true
relationships Z using only X and Y .

We parameterize the function φθ(·) using a convolutional
neural network, whose parameters can be estimated in a
data-driven manner. This CNN is trained as a multiclass
classification function that takes a single cell as input and
produces a categorical output. The network is trained to
predict Y as target labels, and then the output layer is re-
moved to compute single cell embeddings.

Notice that our main goal is to uncover treatment rela-
tions Zi,j instead of predicting labels Y , because we always
know which compounds the cells were treated with. There-
fore, predicting Y as an output is the auxiliary task, which
we use to recovering the latent structure of morphological
phenotypes in a distributed representation.

The major advantage of this approach is that it is feasible
for any image-based experiment, regardless of what treat-
ments are tested or which controls are available, and does
not require knowledge of the associations between treat-
ments. We expect the CNN to learn features that encode
the high-level associations between treatments without ex-
plicitly giving it this information.

4.2. Noisy labels

Besides being weak labels, treatment labels are also
noisy because there is no guarantee that they accurately de-
scribe the morphology of single cells. This is similar to

so
ftm

ax

CNN

Figure 4: mixup regularization. Two cells are sampled at
random from different batches and replicates, and can have
different labels too. The two images are blended in a single
image using a convex combination. The output is set to
predict the weights of the combination.

other weakly supervised approaches that use free text at-
tached to web images to train CNNs [6, 17].

Treatment labels are noisy for several reasons: 1) indi-
vidual cells are known to not react uniformly to a treatment
[12], thus generating subpopulations that may or may not
be meaningful. 2) Some treatments may have no effect at
all, either because they are genuinely neutral treatments or
because the treatment failed for technical reasons. In either
case, forcing a CNN to find differences where there are none
may result in overfitting. 3) Sometimes different treatments
yield the same cell phenotypes, forcing a CNN to find dif-
ferences between them may, again, result in overfitting to
undesired variation.

The number of replicates and single cells may be larger
for some treatments than others, presenting a class imbal-
ance during training. For this reason, we do not sample im-
ages, but instead sample class labels uniformly at random.
From each sampled label we then select a random image to
create training batches, following the practice in [17].

4.3. Baseline CNN

We first focus on training a baseline CNN with the best
potential configuration to evaluate the contribution of the
proposed regularization strategies. We began by evaluating
several architectures including the VGG [31] and ResNet
models with 18, 50 and 101 layers [15] on the auxiliary
classification task. We observed similar performance in all
models, and decided to choose the ResNet18 for all our ex-
periments. This model has the least number of parameters
(11.3M), helping us to limit the learning capacity as well as
offering the best runtime speed.

Pixel statistics in fluorescence images are very differ-
ent from those in RGB images, and we investigated sev-
eral ways to normalize these values for optimal learning.
The mean intensity of fluorescence images tends to be low
and the distribution has a long tail, varying from channel
to channel. Importantly, intensity values are believed to en-
code biologically relevant signal, so they are usually pre-
served intact or normalized to a common point of reference.
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(a) Effect of regularization in the genetic screen (b) Effect of regularization in the chemical screen

Figure 5: Regularization increases from left to right on the x axis, with the first parameter indicating no regularization
(baseline CNN). The validation accuracy in the auxiliary task (dashed lines) tends to decrease as regularization increases.
The accuracy of the main goal (solid lines) tends to improve with more regularization. a) Results in the genetic screen: both
regularization techniques improve performance in the main goal, and mixup shows better gains. b) Results in the chemical
screen: mixup improves slightly in the main goal, while rnn-based regularization decreases performance.

In our experiments, to our surprise, we found that preserv-
ing pixel intensities is not the best choice for CNN training.
We found that rescaling pixels locally relative to the maxi-
mum intensity of each cropped cell provides the best perfor-
mance. Finally, we added several data augmentation strate-
gies, including horizontal flips, image translations, and rota-
tions, which helped reduce the gap in performance between
training and validation images.

4.4. RNN-based regularization

In a weakly supervised experiment, Zhuang et al. [38]
noted that the association between a random image and its
noisy label collected from the web is very likely to be in-
correct. They suggested that looking at images in groups
can reduce the probability of wrong associations, because a
group of images that share the same label may have higher
chance to have at least one correct example. They proposed
to train CNNs that ignore irrelevant features in a group us-
ing a multiplicative gate.

We implement this concept in our work using a sim-
ple RNN architecture, specifically, using a Gated Recurrent
Unit (GRU) [7] as a generic attention mechanism to track
features in a group of images. The group is analyzed by the
GRU as a sequence of cells in a factory line. Our recurrent
architecture is many-to-one, meaning that the GRU collects
information from multiple cells in a group to produce a sin-
gle output for all. The GRU demands the CNN to extract
relevant features from each cell for solving the classifica-
tion problem (Fig. 3).

We take advantage of the sequential capabilities of a
GRU in order to adapt the training process for controlling
unwanted factors of variation. Our problem is not naturally

sequential, allowing us to shuffle known sources of noise in
a single group. First, we sample cells that share the same
label in different batches and replicates. This reduces the
probability of observing a group with the same technical ar-
tifact or type of noise. Second, we randomize the order of
groups to prevent the GRU from learning irrelevant order-
dependent patterns [34].

Importantly, the GRU trained in our models is never used
for feature extraction. We leverage the ability of the recur-
rent network to regularize training using multiple examples
at once, but after the optimization is over, we discard the
RNN and only use the CNN for feature extraction. We note
that similar strategies are also successfully used for train-
ing other complex systems, such as Generative Adversarial
Networks (GANs) [11], in which an auxiliary discriminator
network is used to train a generator.

4.5. Convex combinations of samples

We evaluate a regularization technique called mixup [37]
given its ability to improve performance in classification
problems that have corrupted labels, a common problem in
our domain. The main idea is to artificially generate new
samples by merging two data points randomly drawn from
the dataset, and mixing both using a convex combination
(Fig. 4). This technique has been theoretically motivated
as an alternative objective function that does not minimize
the empirical risk, but instead the empirical vicinal risk, or
the distribution of inputs and outputs in the vicinity of the
samples.

We implement mixup by combining the images of two
cells in a single one, weighting their pixels with a convex
combination using a random parameter α drawn from a beta
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distribution. Their labels are also combined with the same
weights, generating output vectors that are no longer one-
hot-encoded. The approach is more effective when the two
sampled cells come from different replicates or batches.

mixup has been shown to improve performance in clas-
sification problems that have corrupted labels. In profiling
datasets, both weak labels as well as input images can be
corrupted. Even if the association of weak labels is correct,
we face the challenge of dealing with batch effects and ex-
perimental artifacts that do not have biological meaning, but
make cells look similar or different when they are not. In
that sense, the images can be corrupted as well, and there-
fore mixup may help reduce the noise and highlight the right
morphological features.

Implementation details

We create RNN models that take sequences with 3, 5 or 8
cells as input, using a GRU with 256 units. During vali-
dation, we feed sequences composed of a single cell repli-
cated multiple times to the GRU to compare performance
with the baseline. We implemented the convolutional net-
works used in this work in the keras-resnet1 package,
and the rest of the evaluated methods are implemented in
DeepProfiler2 using TensorFlow.

5. Experiments and Results
We present experiments on two different datasets: a

study of gene mutations in lung cancer, and a publicly avail-
able benchmark of the effect of chemical compounds. Note
that our experiments involve two objectives: 1) auxiliary
task: training the CNN with weak labels using images of
single cells. 2) main goal: analysis of population-averaged
profiles to discover relationships among treatments.

5.1. Lung Cancer Mutations Study

Identifying the impact of mutations in cancer related
genes is an ongoing research effort. In this paper, we use
a collection of microscopy images that were generated to
study the impact of lung cancer mutations. The imaging
technique is known as Cell Painting, in which six fluores-
cent dyes are added to cells to reveal as much internal struc-
ture of the cell as possible in a single assay [1]. These are
5-channel images that can capture around 250 cells.

In this study, 65,000 images were captured, spanning
about 500 gene mutations, involving more than 10 million
single cells. We selected a subset of 26 variants (genes and
mutations) with known impact for this work, with about
0.5 million cells. We select 10 of these variants for train-
ing CNNs, and evaluate their performance in the auxiliary

1https://github.com/broadinstitute/keras-resnet
2https://github.com/jccaicedo/DeepProfiler

Model Replicate Acc. Gene Acc.
ImageNet Pretrained 42.8% 58.2%
CellProfiler Features 56.3% 69.7%
Baseline CNN 55.3% 69.2%
Recurrent Model (t=5) 58.2% 71.6%
Mixup (α = 0.2) 59.6% 78.4%

Table 1: Performance of feature extraction strategies on the
population-based analysis. Replicate Accuracy measures
how often a mutation profile matches a replicate of the same
mutation in the feature space. Gene Accuracy indicates if
one mutation matches a neighbor of the same gene family.

task using a holdout set of single cells. After a network is
trained, we use it to create population-averaged profiles for
the main goal using all 26 variants (10 for training, 16 for
testing).

The main goal of this experiment is to group variants
corresponding to the same gene –regardless of mutation–
together (gene accuracy), and an additional goal is to group
replicates of previously unseen variants together (replicate
accuracy). To this end, we use the CNN to extract features
for single cells using layer conv4a (see Fig. 7) and aggre-
gate them to the population level. Then, we analyze how
often the nearest neighbors correspond to the same muta-
tion and same gene.

Performance is improved significantly using mixup reg-
ularization, and only slightly using the RNN-based regu-
larization technique (Fig 5a). The accuracy obtained with
a baseline CNN in the auxiliary task, which is classifying
single cells into 10 variants, is 70.7%. Regularization tends
to decrease single-cell classification accuracy, but improves
performance in the main goal. Gene accuracy of the 26 mu-
tations can be improved from 69.2% to 71.6% using RNN
regularization, and up to 78.3% using mixup.

Our best CNN model yields higher replicate and gene ac-
curacies than baseline methods, indicating that it can extract
more discriminative features than previous methods (Table
1). We compare the performance to features computed by
CellProfiler, our widely adopted software solution to ana-
lyze microscopy images [5], as well as features extracted
by an Inception model pretrained on ImageNet as used in
[25]. Figure 6 illustrates the embeddings obtained with an
RNN regularized model. Notice how the classes are more
clearly separated than with previous strategies, especially
considering that data points are single cells.

5.2. Mechanism of Action of Compounds

The second application that we evaluate is the
mechanism-of-action classification of drugs using a pub-
licly available benchmark known as BBBC021v1 [4]. The
cells in this image collection have been treated with chem-
ical compounds of known (and strong) activity. For this
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Figure 6: tSNE visualization of single-cell feature embeddings produced by three methods for a holdout set of the 10 training
mutations. Top-left is based on classical features (with 300 dimensions). The bottom-left uses features extracted by an
Inception network pretrained on ImageNet [29] (with 7,630 dimensions). The center plot shows the embeddings learned by
our ResNet18 model supervised with the proposed recurrent network (256 dimensions). The colors in the plot correspond to
the names of the genes used to trained the network in the auxiliary task.

Figure 7: NSC classification accuracy obtained with
population-averaged features extracted from different lay-
ers. This evaluation was done with a baseline CNN on the
BBBC021 dataset. Intermediate layers offer better perfor-
mance, while top layers specialize in solving the auxiliary
task. The TVN transform [23] consistently improves per-
formance.

reason, the relationships between compounds can be veri-
fied because drugs that are in the same mechanistic class are

likely to induce similar (and detectable) responses in cells.
Images in this experiment have three channels (DNA,

Actin and Tubulin), and there are a total of 35 compounds
applied to cells at different concentrations. In total, 103
treatments are evaluated in this experiment, which is a sub-
set of BBBC021v1 introduced in [21]. We choose to opti-
mize the network to recognize these 103 treatments as the
auxiliary task. In this set of experiments, we also use a
ResNet18 architecture, and we assume that we have access
to the full collection of batches and compounds for learn-
ing the representations of cells. This is often a valid as-
sumption, considering that current practices optimize and
normalize classical features using the samples of the same
screen. We split the data in training and validation replicates
to monitor performance in the auxiliary task.

After training the network in the auxiliary task, we create
embeddings for cells in all treatments, and aggregate pop-
ulations at the treatment level to evaluate accuracy in the
main task. For this evaluation, we follow the same protocol
reported in [21], which leaves one compound out to infer the
class given all the others. In this way, the experiment sim-
ulates how often a new compound could be connected with
the right group when its class is unknown. This evaluation is
called not-same-compound (NSC) matching. We also adopt
the evaluation metric proposed by Ando et al. [23] to eval-
uate the robustness of algorithms to batch effects and arti-
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Strategy Method Work NSC NSCB Drop Dim. Speed (cells/sec)
Classical features Factor Analysis [21] 94 77 -17 20 0.15

Illumination Correction [32] 90 85 -15 450 0.15
Transfer Learning ImageNet pretrained network [25] 91 n/a n/a 4608 10

Product similarity network [23] 96 95 -1 196 n/a
Unsupervised feature learning Autoencoders [24] 49 n/a n/a n/a n/a

Generative Adversarial Networks [10] 72 n/a n/a n/a n/a
Fully Supervised CNNs [9] 93 n/a n/a n/a n/a

Ours - Baseline CNN 97 86 -11 256 100
Weakly Supervised Ours - Recurrent Model 93 82 -11 256 100

Ours - Mixup 95 89 -9 256 100

Table 2: Classification accuracy on the BBBC021 chemical benchmark data set, presented alongside results of prior work.
Not-Same-Compound (NSC) does not allow a match to the same compound. Not-Same-Compound-or-Batch (NSCB) does
not allow a match to the same compound or any compound in the same batch. Drop is the difference between NSCB and
NSC, ideally no drop in performance should be observed. Dim. refers to the dimensionality of embeddings in each layer, and
Speed indicates the speed of calculating the features including Input/Output time.

facts. The simulation in this case leaves one full compound
out of the analysis as well as a full experimental batch. This
evaluation is called not-same-compound-and-batch (NSCB)
matching, and has been shown to be more reliable.

We first note that the layer selected for creating cell em-
beddings is an important choice to make. Interestingly, the
network disentangles the morphological structure of MOAs
in an intermediate layer, before recombining these features
to improve single-cell classification of treatments. Thus,
layers closer to the top classification output generate fea-
tures that seem to be less useful for population based anal-
ysis (Fig. 7). This evaluation was done using a baseline
network without special regularization.

Applying mixup regularization improves performance in
the main goal, while the RNN-based procedure tends to de-
crease performance (Fig. 5b). A baseline CNN can cor-
rectly classify single cells into one of the 103 treatments
with 64.1% accuracy (auxiliary task), and obtains 86.9%
accuracy in the main goal as measured using the NSCB pro-
cedure. We report the effect of regularization using NSCB
because we expect these techniques to help reduce the im-
pact of batch effects. From 86.9% mixup improves perfor-
mance to 89.1% while RNNs decreases to 82.6%.

When compared to previous reports, we obtain the best
NSC result using a baseline CNN, and the second best
NSCB using a CNN regularized with mixup (Table 2). Pre-
vious strategies include classic features, transfer learning,
unsupervised, and fully supervised learning. Our work is
the first evaluating a weakly supervised algorithm. The
transfer learning strategy using TVN proposed by Ando et
al. [23] still holds the best combined result of NSC and
NSCB. The difference between NSC and NSCB observed
in our weakly supervised approach indicates that it is still
affected by experimental artifacts and nuisance variations
to some degree, despite regularization.

Our embeddings are compact and very fast to compute
with respect to transfer learning and classical features. This
is in part due to GPU acceleration, and also because the only
preprocessing step required to compute embeddings is crop-
ping cells into a fixed-size window. These speeds can pos-
itively impact the cost of morphological profiling projects,
requiring less computation to achieve better accuracy.

6. Conclusions
We described a weakly supervised learning approach for

learning representations of single cells in morphological
profiling experiments. A salient attribute of large scale mi-
croscopy experiments in biology is that while there is no
scalable approach to annotating individual cells, there is
well-structured information that can be used to effectively
train modern CNN architectures using an auxiliary task.
Our results indicate that learning representations directly
from cells improves performance in the main goal.

The proposed methods are especially useful for studies
with thousands of treatments and millions of images, in
which classical features may start to saturate their discrimi-
nation ability. More research is needed to train and evaluate
networks at larger scales, monitoring quality metrics that re-
veal performance in the absence of ground truth. The design
of strategies that reduce the impact of batch effects is also
an interesting future research direction, specially if these are
informed by the structure of biological experiments.
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