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Abstract

CellProfiler has enabled the scientific research community to create flexible, modular image

analysis pipelines since its release in 2005. Here, we describe CellProfiler 3.0, a new ver-

sion of the software supporting both whole-volume and plane-wise analysis of three-dimen-

sional (3D) image stacks, increasingly common in biomedical research. CellProfiler’s

infrastructure is greatly improved, and we provide a protocol for cloud-based, large-scale

image processing. New plugins enable running pretrained deep learning models on images.

Designed by and for biologists, CellProfiler equips researchers with powerful computational

tools via a well-documented user interface, empowering biologists in all fields to create

quantitative, reproducible image analysis workflows.

Author summary

The “big-data revolution” has struck biology: it is now common for robots to prepare cell

samples and take thousands of microscopy images. Looking at the resulting images by eye

would be extremely tedious, not to mention subjective. Thus, many biologists find they

need software to analyze images easily and accurately. The third major release of our free

open-source software CellProfiler is designed to help biologists working with images,

whether a few or thousands. Researchers can download an online example workflow (that

is, a “pipeline”) or create their own from scratch. Pipelines are easy to save, reuse, and

share, helping improve scientific reproducibility. In this release, we’ve added the capability

to find and measure objects in three-dimensional (3D) images. We’ve also made changes

to CellProfiler’s underlying code to make it faster to run and easier to install, and we’ve

added the ability to process images in the cloud and using neural networks (deep learn-

ing). We’ve also added more explanations to CellProfiler’s settings to help new users get

started. We hope these changes will make CellProfiler an even better tool for current users

and will provide new users better ways to get started doing quantitative image analysis.
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Introduction

Bioimaging software ecosystem

Image analysis software is now used throughout biomedical research in order to reduce subjec-

tive bias and quantify subtle phenotypes when working with microscopy images. Automated

microscopes are further transforming modern research. Experiments testing chemical com-

pounds or genetic perturbations can reach a scale of many thousands of perturbations, and

multidimensional imaging (time-lapse and three-dimensional [3D]) also produces enormous

data sets that require automated analysis. In light of this data scale, computer algorithms must

deliver accurate identification of cells, subcompartments, or organisms and extract necessary

descriptive features (metrics) for each identified object.

Racing to keep up with the advancement of automated microscopy are several classes of biolo-

gist-focused image analysis software, such as companion packages bundled with imaging instru-

ments (e.g., MetaMorph—Molecular Devices, Elements—Nikon), stand-alone commercial image

processing tools (e.g., Imaris—Bitplane), and free open-source packages (e.g., ImageJ/Fiji, Cell-

Profiler, Icy, KNIME). Commercial software is often convenient to use, especially when bundled

with a microscope. Although cost and lack of flexibility may limit adoption, there is a focus on

usability, particularly for applications of interest to the pharmaceutical industry. Still, the proprie-

tary nature of the code in commercial software limits researchers from knowing how their data is

being analyzed or modifying the strategy of a given algorithm, if desired.

The open-source biological image analysis software ecosystem is thriving [1]. ImageJ [2]

was the first and is still the most widely used package for bioimage analysis; several other pack-

ages are based on its codebase (most notably, Fiji). ImageJ excels at the analysis of individual

images, with a user interface analogous to Adobe Photoshop. Its major strength is its commu-

nity of users and developers who contribute plugins, although an associated drawback is the

sheer number of plugins, with varying degrees of functional overlap, usability, and documenta-

tion. Multitasking toolboxes like KNIME [3] offer a more modular approach, which is better

suited to automated workflows. KNIME equips users with a wide breadth of powerful utility,

from performing image analysis to data analytics.

CellProfiler

CellProfiler, our open-source software for measuring and analyzing cell images, has been cited

more than 6,000 times, currently at a rate of more than 1,000 per year. The first version of Cell-

Profiler was introduced in 2005 and published in 2006 [4]. It is widely adopted worldwide,

enabling biologists without training in computer vision or programming to quantitatively mea-

sure phenotypes robustly from thousands of images. A second major version of CellProfiler,

rewritten in Python from its original MATLAB implementation, was published in 2011 [5] and

included methods for tracking cells in movies and measuring neurons, worms, and tissue sam-

ples. In 2015, a laboratory unaffiliated with our team rigorously compared 15 free software tools

for biological image analysis: CellProfiler was ranked first for both usability and functionality [6].

CellProfiler provides advanced algorithms for image analysis, organized as individual mod-

ules that can be placed in sequential order to form a pipeline. This pipeline is then used to

identify and measure cells or other biological objects and their morphological features. Cell-

Profiler’s modular design and carefully curated library of image processing and analysis mod-

ules benefits biologists in several ways:

Reproducibility at scale: CellProfiler is designed to produce high-content information for

each cell or other object of interest in each image and to apply the same objective analysis in

high-throughput, e.g., across thousands or millions of images.
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Flexible feature extraction: Individual modules measure standard morphological features

such as size, shape, intensity, and texture. Customized combinations of modules can extract

even more complex information. As such, CellProfiler is commonly used for morphological

profiling experiments such as Cell Painting [7,8], which is being adopted in pharmaceutical

companies to speed several steps in drug discovery [9].

Easy to learn: Each of the 70+ modules includes carefully crafted documentation, curated

by both imaging and biology experts, to make image processing more approachable and

understandable for the average scientist. Further, each individual setting is explained in practi-

cal terms to aid researchers in configuring it. The number of modules and settings is carefully

limited to avoid overwhelming users, while a plugin system allows the flexibility of a larger

array of contributed modules.

Community: CellProfiler has an active community of more than 3,000 people on its online

question and answer forum. With more than 15,000 posts, users provide feedback that fuels

improvements to CellProfiler, find pipelines related to their area of research, interact with

developers, get input on challenging problems, and improve image analysis skills and knowl-

edge by helping other users design solutions.

Results

In the CellProfiler 3.0 release, we introduced methods for analyzing 3D images, using deep

learning architectures and cloud computing resources, and other improvements to CellProfi-

ler’s usability and capabilities.

High-throughput 3D analysis

This new version of CellProfiler has support for analysis of 3D images in many of its modules

(S1 Fig). Although open-source software tuned to 3D problems exists (e.g., Vaa3D, BioIma-

geXD, Slicer) [10], it often emphasizes visualization and rendering; these new 3D capabilities

of CellProfiler meet the community’s demand for modular high-throughput 3D analysis. Cell-

Profiler 3.0 can apply image processing, segmentation, and feature extraction algorithms to

entire image volumes (volumetric analysis), in addition to the more typical iterative and sepa-

rate analysis of two-dimensional slices from a 3D volume (“plane-wise” analysis). Whole-vol-

ume algorithms consider 3D neighborhoods and incorporate information from surrounding

planes, yielding more accurate results, but require more available memory, particularly for

large files. CellProfiler’s volumetric algorithms can be configured to account for anisotropic

data (in which the distance between Z planes does not match the distance between pixels in

the X and Y dimensions). While we focused on adding 3D capability to most of our image pro-

cessing and feature extraction modules, we will continue increasing the number of CellProfiler

modules that support image volumes for situations in which it is not computationally

prohibitive.

We developed 3D pipelines to identify cells and subcompartments of cells for a number of

experimental situations and sample types across a number of laboratories. We identified nuclei

based on a DNA stain (Fig 1A) in 3D image stacks of human induced pluripotent stem cells

(hiPSCs). After processing by several CellProfiler modules (Fig 1C), the final results agree well

with manually annotated nuclei (Fig 1D). Results for a variety of images with a range of com-

plexity are shown in Fig 2, with more detailed views in S2–S5 Figs. We characterized CellProfi-

ler’s segmentation accuracy in two ways: in the first, we used real microscopy images (Fig 1A,

Fig 2A, Fig 2B) whose ground truth was manually annotated by an expert image analyst; such

images are realistic, but the manual annotation introduces some subjectivity. We therefore

also used synthetic images (Fig 2C, Fig 2D)[11,12], which, depending on the model used to
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Fig 1. Volumetric processing for 3D images of DNA-stained nuclei of hiPSCs using CellProfiler 3.0. Images are from the Allen Institute for Cell Science, Seattle,

and available from the Broad Bioimage Benchmark Collection (https://data.broadinstitute.org/bbbc/BBBC034/). (A) Original 3D image of nuclei monolayer prior to

analysis. (B) Evaluation of CellProfiler 3.0 performance in comparison to the MorphoLibJ plugin in Fiji software. Both were compared to manually annotated ground

truth using CellProfiler’s MeasureImageOverlap module. (C) Selected CellProfiler 3.0 image processing modules used for hiPSC nucleus segmentation. Figure labels:

RH (“RemoveHoles”), EorS Features (“EnhanceOrSuppressFeatures”). (D) Ground truth obtained by manual annotation of each Z-slice using GIMP software. (E)

Image processing done using Fiji’s MorphoLibJ plugin (macro code is presented in S1 Table). 3D, three-dimensional; hiPSC, human induced pluripotent stem cell.

https://doi.org/10.1371/journal.pbio.2005970.g001
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Fig 2. Examples of 3D image segmentation produced by CellProfiler 3.0, across two experimental systems and two sets of synthesized images. Three focal

planes shown for each. Raw images (left) and CellProfiler outputs (right) showing nuclei of mouse embryo blastocyst (A), mouse trophoblast stem cells (B), and

synthetic images of HL60 cell lines (C) and (D). More information about segmentation steps used for these images can be found in S2–S5 Figs. (E) Comparison

of the segmentation accuracy of CellProfiler 3.0 and Fiji’s plugin MorphoLibJ, based on the Rand index of the processed image and its ground truth (out of a

total of 1.0). Object accuracy comparisons of these same images may be found in S6 Fig and S3 File. 3D, three-dimensional; hiPSC, human induced pluripotent

stem cell.

https://doi.org/10.1371/journal.pbio.2005970.g002
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create them, may not perfectly represent real microscopy images but whose ground truth can

be unambiguously known.

To determine how well the segmented objects agreed with ground truth, CellProfiler’s

“MeasureImageOverlap” module was used to calculate the plane-wise Rand index [13], a per-

formance metric of accuracy (Fig 1B, Fig 2E). Rand index values showed good agreement

(0.919–0.976) between each tested image and its ground truth. The results produced by Cell-

Profiler 3.0 were comparable to results produced by the commonly used Fiji plugin Morpho-

LibJ (0.930–0.977) (Fig 1B, Fig 2E and S2–S5 Figs; the MorphoLibJ macro codes are provided

in S1 Table). We demonstrate several kinds of analysis, including analyses of cell count in a

time series that was synthetically generated [11,14](S5 Fig); identification and quantification of

children objects inside parent objects, such as speckles of transcripts within cells (Fig 3); and

measurement of various features of hiPSCs located at the center and the edge of the cell colony

(Fig 4).

All pipelines, annotated with notes to understand the function of each module, are provided

at https://github.com/carpenterlab/2018_mcquin_PLOSBio. All raw images, together with

ground truth annotations used to test CellProfiler 3.0 performance, are publicly available for

further community algorithm development in the Broad Bioimage Benchmark Collection

[15], as indicated in the legends for Fig 1 and S2–S5 Figs.

Support for deep learning

Convolutional neural networks (CNNs) are a type of deep learning model that transforms

input images into outputs specified by the problem type [16]. For instance, image classification

models transform images into categorical labels [17], while image segmentation models

transform images into segmentation masks [18]. CNNs are now widely used to solve many

computer vision tasks, given their ability to produce accurate outputs after learning from

examples. CellProfiler now can be configured to make use of cutting-edge CNNs to analyze

biomedical images. While CellProfiler does not yet incorporate user-friendly functionalities to

train neural networks, various models that have been already trained by researchers can be run

inside CellProfiler.

Running neural network models requires the installation of certain deep learning frame-

works that are distributed separately, such as TensorFlow or Caffe. TensorFlow [19] is an

open-source software library for machine learning that interfaces with Python and is compati-

ble with CellProfiler when installed from source on Linux, Mac, and more recently, Windows.

Caffe [20] is a deep learning framework designed for high-performance neural networks and

is primarily available for Linux systems. Some network models may need special graphics pro-

cessing units (GPUs) installed and configured in the system to run the computations effi-

ciently, but this is not always required. Fortunately, both TensorFlow and Caffe can easily

switch between running on GPUs and traditional central processing units (CPUs) just by

changing the corresponding configuration.

We created the CellProfiler 3.0 module ClassifyPixels-Unet to segment nuclei in images

stained with DNA labels (https://github.com/CellProfiler/CellProfiler-plugins). This plugin

implements a U-Net[18] model using TensorFlow and can be run on CPUs. We have also pro-

vided the network architecture with training routines in case users have their own annotated

images to learn a segmentation model for different images and objects of interest (https://

github.com/carpenterlab/unet4nuclei). The ClassifyPixels-Unet module classifies pixels into

one of three classes: background, nucleus interior, or nuclear boundary (S7 Fig). A pretrained

network for nuclei segmentation is available for download and is automatically loaded by the

plugin; a pipeline and image to run this are available as S4 File.
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Fig 3. Segmentation steps for the quantification of transcripts per cell within a 3D blastocyst. Images were

captured of a mouse embryo blastocyst cell membrane stained with WGA and FISH for GAPDH transcripts. (A)

Original 3D image of blastocyst cell membrane prior to analysis. (B) CellProfiler 3.0 image processing modules used

for membrane image processing. Figure labels: RH (“RemoveHoles”), Close (“Closing”), Erode (“Erosion”), Mask

(“MaskImage”), Math (“ImageMath”), EorS Features (“EnhanceOrSuppressFeatures”). (C) Nuclei after segmentation

by CellProfiler, as viewed in Fiji. (D) Segmentation of cells after setting nuclei as seeds by CellProfiler, as viewed in Fiji.

(E) Segmentation of GAPDH transcript foci using CellProfiler, as viewed in Fiji. (F) Examples of analysis that can be

done by CellProfiler: (top) cell volume relative nucleus volume, (middle) GAPDH transcript quantity in each cell using

CellProfiler’s “RelateObjects” module, (bottom) number of GAPDH transcripts in Z-plane (bin size = 2.5 μm). The

underlying measurements may be downloaded as S1 File. Images were provided by Javier Frias Aldeguer and Nicolas
Rivron from Hubrecht Institute, Netherlands, and are available from the Broad Bioimage Benchmark Collection (https://

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005970 July 3, 2018 7 / 17

https://data.broadinstitute.org/bbbc/BBBC032/
https://doi.org/10.1371/journal.pbio.2005970


We also created a CellProfiler 3.0 module, MeasureImageFocus, in collaboration with Goo-

gle Accelerated Science, who trained a model to detect focus in images [21]. The module dis-

plays a table with the predicted focus score and certainty for the whole image, as well as a

figure with the focus scores and corresponding certainties of individual 84 × 84 patches repre-

sented by color and opaqueness. It uses TensorFlow as its underlying deep learning frame-

work. Independently, Sadanandan and colleagues created a CellProfiler 2.2.0 module—

CellProfiler-Caffe bridge—that enables running a pretrained model for cell segmentation

within a CellProfiler pipeline [22].

Cloud computing

We created Distributed-CellProfiler (https://github.com/CellProfiler/Distributed-

CellProfiler), a script-based interface that allows running thousands of batches of images

through CellProfiler in parallel on Amazon Web Services (AWS; S8 Fig). While Distributed-

CellProfiler does require basic knowledge of AWS and interaction with the command line, it is

well documented and has been successfully run by biologists without formal computational

training. The script handles infrastructure creation and removal as well as creation and storage

of logs, allowing users without access to a local cluster computing environment to analyze

large data sets with only minimal time devoted to having to set up those resources. Sample

pipelines and configuration files are available as S5 File.

Improvements for CellProfiler 3.0

Plug-ins: CellProfiler-plugins is a new repository for the community to share and distribute

new CellProfiler modules (https://github.com/CellProfiler/CellProfiler-plugins).

Documentation: All of CellProfiler’s documentation was updated for content and readabil-

ity; detailed help is available for 100% of module configuration options (excluding plugins).

New image processing features: CellProfiler 3.0 introduces an extended suite of modules

for feature detection, feature extraction, filtering and noise reduction, image processing, image

segmentation, and mathematical morphology operations.

Infrastructure improvements: The project team reengineered major core components of

CellProfiler. CellProfiler’s codebase was trimmed down, in part because of better integration

with Python’s scientific community. We have adopted and contributed to the standard librar-

ies of the scientific Python community, including NumPy, SciPy, and scikit-image. CellProfi-

ler’s code is now 100% Python, which improves interoperability with the robust Python

scientific ecosystem and simplifies third-party contributions. As well, we upgraded support to

64-bit on Linux, MacOS, and Windows, and a continuous integration process ensures the soft-

ware is well tested on a variety of platforms.

We made substantial progress simplifying CellProfiler’s installation. In addition to our previ-

ously existing Mac and Windows builds, a Python wheel is now available from the Python Pack-

age Index, and a Docker image is now available from Docker Hub. In an effort to expand

CellProfiler’s flexibility, we made CellProfiler much simpler to compile on a variety of familiar

and unusual platforms by requiring fewer dependencies and only using ubiquitous build systems.

Educational resources: CellProfiler’s many examples and tutorials are now publicly avail-

able on GitHub (https://github.com/CellProfiler/examples and https://github.com/

CellProfiler/tutorials) and have been updated for compatibility with CellProfiler 3.0.

data.broadinstitute.org/bbbc/BBBC032/). 3D, three-dimensional; FISH, fluorescent in situ hybridization; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; WGA, wheat germ agglutinin.

https://doi.org/10.1371/journal.pbio.2005970.g003
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Speed: CellProfiler 3.0’s processing speed is faster than version 2.2 on the most common

types of pipelines; the degree of difference depends on the exact modules involved: CellProfiler

3.0 ran at a comparable or faster speed than CellProfiler 2.2 for 11 of 16 example pipelines

tested (S9 Fig). While the total amount of time needed to run the five pipelines shown in S9

Fig was comparable between CellProfiler and MorphoLibJ (482 versus 542 seconds), the rela-

tive speed was highly specific to the individual pipeline (S6 File), ranging from 2× faster in

CellProfiler to 6× faster in MorphoLibJ (S2 Table). In addition, CellProfiler can run multiple

images in parallel, depending on the individual’s number of threads, computing power, and

access to cloud computing resources, making it suited to large-scale experiments. As well, Cell-

Profiler’s modules enable more readily configurable complex analyses than MorphoLibJ, such

as associating cytoplasm regions (as in Fig 3), transcripts (as in Fig 3), and other entities to

nuclei and measuring a wide variety of morphological properties of each, including intensities,

shapes, textures, colocalization metrics, and neighborhood relationships (as in Fig 4).

Future directions

CellProfiler is mature software serving a large community and making an impact through its

thousands of users’ biological discoveries. It has been involved in the discovery of potential

life-saving drugs for infectious diseases, leukemia, and cerebral cavernous malformation [23–

27] and in clinical trials for hematological malignancies [28] and will continue to fuel basic

and applied research around the world.

CellProfiler can readily generate a large amount of morphological information for each bio-

logical entity that is measured. We see advancements in data mining, downstream and apart

from CellProfiler, as blossoming in the coming years. Already, 20 laboratories in the field of

morphological profiling have gathered for two annual meetings/hackathons (now called Cyto-

Data) [29], collaborated to outline best practices [30], and begun a community library (Cyto-

miner, https://github.com/cytomining/cytominer). In addition to our user-friendly tool for

classical machine learning based on measured features, CellProfiler Analyst [31], we have

begun creating Deepometry (http://github.com/broadinstitute/deepometry), a tool that

enables scientists without training in machine learning to perform single-cell phenotype classi-

fication using deep learning and other advanced downstream data analytics. Interoperability

of CellProfiler with popular notebook tools like Jupyter would allow seamless workflows

involving other complementary software tools.

Finally, deep learning has revolutionized computer vision and other fields in the past few

years [16,32], and bioimaging will be no exception. As noted, already some models trained for

specific tasks can be used via CellProfiler, and we expect that over time, more generalizable

models will be created that can accomplish useful tasks such as detecting common cellular

structures across diverse types of images and experimental setups, as in, for example, the 2018

Data Science Bowl challenge. Community-driven collections of images and ground truth, as

well as “model zoos,” will be instrumental for this. We have also begun creating libraries

(Keras-ResNet [https://github.com/broadinstitute/keras-resnet] and Keras-RCNN [https://

github.com/broadinstitute/keras-rcnn]) that will provide the foundation for interfaces that

allow biologists to annotate, train, and use deep learning models. We expect that over time,

Fig 4. Segmentation and analysis of 3D hiPSC images using CellProfiler 3.0. DNA channel showing nuclei (A), CellMaskDeepRed channel

showing membrane (B), and GFP channel showing beta-actin (C) at the center (left) and edge (right) of the hiPSC colony. (D) Various measurements

obtained from the samples are shown; note that cells touching the edge of each image are excluded from this analysis. The underlying measurements

may be downloaded as S2 File. Images are from the Allen Institute for Cell Science, Seattle, and are available from the Broad Bioimage Benchmark
Collection (https://data.broadinstitute.org/bbbc/BBBC034/). 3D, three-dimensional; GFP, green fluorescent protein; hiPSC, human induced pluripotent

stem cell.

https://doi.org/10.1371/journal.pbio.2005970.g004
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these models will reduce the amount of time biologists spend tuning classical image processing

algorithms to identify biological entities of interest in images.

Materials and methods

Blastocyst and trophoblast cell imaging

Images were kindly provided by Javier Frias Aldeguer and Nicolas Rivron of Hubrecht Insti-

tute for Developmental Biology and Stem Cell Research and Li Linfeng of MERLN Institute

for Technology-Inspired Regenerative Medicine. As per Rivron and colleagues [33], mouse

embryos (3.5 dpc) were fixed right after isolation from the mother’s uterus. Fixation was per-

formed using 4% PFA in RNAse-free PBS containing 1% acetic acid. ViewRNA ISH Cell Assay

kit (cat# QVC0001) was used for performing smFISH on the embryos. The protocol includes

steps of permeabilization and protease treatment as well as probes, preamplifier, amplifier, and

label hybridizations. Embryos were then mounted in Slowfade reagent (Thermofisher cat#

S36937) and directly imaged in a PerkinElmer Ultraview VoX spinning disk microscope in

confocal mode by using a 63×/1.40 NA oil immersion lens.

hiPSC culture, staining and imaging

Images were acquired by collaborators from the Allen Institute for Cell Science, Seattle, as per

Roberts and colleagues [34]. Briefly, wild-type C (WTC) hiPSCs were cultured in a feeder-free

system on tissue culture dishes or plates coated with GFR Matrigel (Corning) diluted 1:30 in

cold DMEM/F12 (Gibco). Undifferentiated cells were maintained with phenol red containing

mTeSR1 media (85850, STEMCELL Technologies) supplemented with 1% (v/v) penicillin-

streptomycin (P/S; Gibco). Cells were not allowed to reach confluency greater than 85% and

are passaged every 3–4 days by dissociation into single-cell suspension using StemPro Accu-

tase (Gibco). When in single-cell suspension, cells were counted using a Vi-CELL Series Cell

Viability Analyzer (Beckman Coulter). After passaging, cells were replated in mTeSR1 supple-

mented with 1% P/S and 10 μM ROCK inhibitor (Stemolecule Y-27632, Stemgent) for 24

hours. Media is replenished with fresh mTeSR1 media supplemented with 1% P/S daily. Cells

were maintained at 37˚C and 5% CO2. Cells were maintained with phenol red–free mTeSR1

media (05876, STEMCELL Technologies) 1 day prior to live cell imaging.

Three to four days after cells are plated and mature and healthy colonies are observed on

96- and 24-well imaging plates, the cells are stained with NucBlue Live ready probe reagent

(R37605, ThermoFisher) and CellMask Deep Red plasma membrane stain (C10046, Thermo-

Fisher) to visualize DNA and plasma membrane, respectively. The protocol is available online:

http://www.allencell.org/uploads/8/1/9/9/81996008/sop_for_cellmask-and-nucblue_v1.0_1.

pdf. Phenol red–free mTeSR1 is preequilibrated to 37˚C and 5% CO2. 1X NucBlue solution

made in preequilibrated phenol red–free mTeSR1 is spun for 60 minutes at 20,000 g. The 2X

and 10X working stocks of CellMask Deep Red lot #1730970 and #1813792, respectively, are

made in 1X NucBlue solution. All solutions are kept at 37˚C and 5% CO2 until used. The

100 μL and 400 μL of NucBlue solution are added per well of 96-well imaging plates and 24-well

imaging plates, respectively, and incubated at 37˚C and 5% CO2 for 20 minutes. An equal

amount of CellMask Deep Red working stock is added to the wells containing NucBlue solu-

tion. Final dye concentrations in the wells are 1X NucBlue and 1X and 5X CellMask Deep Red

lots #1730970 and #1813792, respectively. Cells are incubated at 37˚C and 5% CO2 for 10 min-

utes and gently washed with preequilibrated phenol red–free mTeSR1. Fields of view as shown

in Fig 4 that are acquired near the edge (and the center as a control) of hiPSC colonies receive

an additional photoprotective cocktail treatment which serves to minimize singlet oxygen and

free radical formation. The photoprotective cocktail is used at a working concentration of 0.3
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U/ml (1:100) OxyFluor as defined by the OxyFluor product insert, with the addition of 10 mM

sodium lactate and 1 mM ascorbic acid (OxyFluor OF-0005, Oxyrase).

As per Roberts and colleagues [34], cells were imaged on a Carl Zeiss spinning disk micro-

scope with a Carl Zeiss 20×/0.8 NA plan APOCHROMAT or 100×/1.25 W C-APOCHRO-

MAT Korr UV Vis IR objective, a CSU-X1 Yokogawa spinning disk head, and Hamamatsu

Orca Flash 4.0 camera. Microscopes were outfitted with a humidified environmental chamber

to maintain cells at 37˚C with 5% CO2 during imaging. Cells are imaged immediately follow-

ing the wash step and for up to 2.5 hours after dye addition on a Zeiss spinning disk micro-

scope at 100× with the following general settings: 405 nm at 0.28 mW, 200 ms exposure; 638

nm at 2.4 mW, 200 ms exposure; acquiring each channel at each z-step.

Generation of ground truth annotations

Experienced bioimage analysts drew outlines around nuclear boundaries on each slice of the

3D images and labeled background regions in a different color with GIMP (https://www.gimp.

org), an open-source drawing and annotation software. These annotated layers were then

exported from GIMP as an image. This outline image is converted to 3D objects via a CellPro-

filer pipeline (https://github.com/CellProfiler/tutorials/tree/master/Annotation), and an object

label matrix image is exported, in which each object’s voxels are assigned a unique integer

value. These label images are referenced as ground truth.

Supporting information

S1 Fig. Modules with support for 3D in CellProfiler. Overview of modules available in Cell-

Profiler 3.1.0 for 3D image analysis. 3D, three-dimensional.

(TIF)

S2 Fig. Segmentation steps for the analysis of mouse embryo blastocyst nuclei stained with

Hoechst. Images are available from the Broad Bioimage Benchmark Collection (https://data.

broadinstitute.org/bbbc/BBBC032/), as in Fig 2A of the main paper. (A) Original 3D image of

blastocyst nuclei prior to analysis. (B) Evaluation of CellProfiler 3.0 performance in compari-

son to the MorphoLibJ plugin in Fiji software. Both were compared to manually annotated

ground truth using CellProfiler’s MeasureImageOverlap module. (C) CellProfiler 3.0 image

processing modules used for blastocyst nuclei segmentation. (D) Ground truth obtained by

manual annotation of each Z-slice using GIMP software. (E) Image processing done using

Fiji’s MorphoLibJ plugin (macro code is presented in S1 Table). Images were obtained using
PerkinElmer Ultraview VoX spinning disk microscope with a 63× immersion objective (distance
between Z-slices = 0.5 μm) and provided by Javier Frias Aldeguer and Nicolas Rivron from
Hubrecht Institute, Netherlands. 3D, three-dimensional.

(JPG)

S3 Fig. Segmentation steps for the analysis of mouse trophoblast stem cell nuclei stained

with Hoechst. Images are available from the Broad Bioimage Benchmark Collection (https://

data.broadinstitute.org/bbbc/BBBC033/), as in Fig 2B of the main paper. (A) Original 3D stem

cell nuclei image prior to analysis. (B) Evaluation of CellProfiler 3.0 performance in compari-

son to the MorphoLibJ plugin in Fiji software. Both were compared to manually annotated

ground truth using CellProfiler’s MeasureImageOverlap module. (C) CellProfiler 3.0 image

processing modules used for stem cell nuclei. (D) Ground truth obtained by manual annota-

tion of each Z-slice using GIMP software. (E) Image processing done using Fiji’s MorphoLibJ

plugin (macro code is presented in S1 Table). Images were obtained using a PerkinElmer Ultra-
view VoX spinning disk microscope with a 63× oil immersion objective (distance between Z-
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slices = 0.5 μm) and provided by Javier Frias Aldeguer and Nicolas Rivron from Hubrecht Insti-
tute, Netherlands, and ground truth was annotated by Li Linfeng from MERLN Institute, Nether-
lands. 3D, three-dimensional.

(JPG)

S4 Fig. Segmentation steps for the analysis of synthetic images depicting HL60 cell line

nuclei. Images are available from the Broad Bioimage Benchmark Collection (https://data.

broadinstitute.org/bbbc/BBBC024/), as in Fig 2C of the main paper. Synthetic images with

75% clustering probability and low SNR were chosen for analysis. The data set was generated

using CytoPacq [12] set up to simulate a Zeiss Axiovert S100 microscope (objective Zeiss 63×/

1.40 Oil DIC) attached to confocal unit Atto CARV and CCD camera Micromax 1300-YHS.

(A) Original 3D image of HL60 nuclei prior to analysis. (B) Evaluation of CellProfiler 3.0 per-

formance in comparison to the MorphoLibJ plugin in Fiji software. Both were compared to

manually annotated ground truth using CellProfiler’s MeasureImageOverlap module. (C)

CellProfiler 3.0 image processing modules used for HL60 cell nucleus segmentation. (D) Com-

puter-generated ground truth. (E) Image processing done using Fiji’s MorphoLibJ plugin

(macro code is presented in S1 Table). 3D, three-dimensional; CCD, charge-coupled device;

SNR, signal-to-noise ratio.

(JPG)

S5 Fig. Segmentation steps for the analysis of synthetic images from the cell tracking chal-

lenge (http://www.celltrackingchallenge.net) depicting HL60 cell line nuclei. Images are

taken from the Broad Bioimage Benchmark Collection (https://data.broadinstitute.org/bbbc/

BBBC035/), as in Fig 2D of the main paper. (A) Original 3D image of HL60 nuclei prior to

analysis. (B) CellProfiler 3.0 image processing modules used for HL60 cell nucleus segmenta-

tion. (C) Watershed obtained using Fiji’s MorphoLibJ plugin (macro code is presented in S1

Table). (D) Computer-generated ground truth. (E) Number of identified nuclei in six 3D

images representing six different time points. (F) Evaluation of CellProfiler 3.0 performance

(average and standard deviation of six images) in comparison to Fiji’s MorphoLibJ plugin.

Both were compared to manually annotated ground truth using CellProfiler’s MeasureIma-

geOverlap module. The data set was created by Vladimir Ulman and David Svoboda (Masaryk
University, Czech Republic) using MitoGen, part of CytoPacq [12], to model a Zeiss Axiovert
S100 microscope attached to confocal unit Atto CARV with a Micromax 1300-YHS camera with
a Plan-Apochromat 40×/1.3 (oil) objective lens [11,14]. 3D, three-dimensional.

(JPG)

S6 Fig. Accuracy of nuclear segmentation using CellProfiler and MorphoLibJ. The fraction

of nuclei correctly identified relative to their ground truth was assessed for both CellProfiler

(solid line) and MorphoLibJ (dashed line) for the results shown in Fig 1 and S2–S5 Figs. A

nucleus was considered correctly segmented at a given threshold if the intersection of the vox-

els of the ground truth and segmented nuclear volumes was greater than the threshold times

the union of the voxels; small errors in segmentation are tolerated at lower thresholds but not

at higher thresholds. CellProfiler met or exceeded the fraction correctly identified for most

thresholds for 4 of 5 test images. Images and code needed to reproduce these results are avail-

able as S3 File.

(PNG)

S7 Fig. Segmentation of U2OS cells in images, using the deep learning based ClassifyPix-

els-Unet plugin. Image is available from the Broad Bioimage Benchmark Collection (https://

data.broadinstitute.org/bbbc/BBBC022/, filename XMtest_B12_s2_w19F7E0279-D087-4B5E-

9899-61971C29CB78.tif, see S4 File). The U-Net model was trained using 150 manually
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annotated DAPI images from the same collection. Implementation and training framework is

available at https://github.com/carpenterlab/unet4nuclei. (A) The prediction for the three clas-

ses (background, boundary, and nuclei) is calculated for each image. (B) Raw image and nuclei

segmentation using ClassifyPixels-Unet and IdentifyPrimaryObjects modules, with objects

touching the edge excluded. Pipeline and image available as S4 File.

(PNG)

S8 Fig. Distributed-CellProfiler enables processing thousands of images in parallel. A data

set of seventeen 384-well plates was processed using Distributed-CellProfiler on an AWS clus-

ter. Each plate comprised 3,456 five-channel images (2,160 × 2,160 pixels). A CellProfiler pipe-

line was run on each image to identify cells and then extract measurements per cell. In all,

12,415,665 cells were identified, and 2,191 measurements were made per cell. It would have

taken more than five months to analyze the data set using a single machine with 16 vCPUs.

Using a cluster of 195 such machines on AWS, this data set was processed in less than 21 hours

and cost $765 in total. The graph shows the number of pending images over the 21-hour

period of processing this data set. The configuration files used to process this data set are pro-

vided in S5 File). AWS, Amazon Web Services; vCPU, virtual central processing unit.

(PNG)

S9 Fig. Comparison of runtimes between CellProfiler 3.0 and CellProfiler 2.2. (Toward the

left: CellProfiler 3.0 is faster; toward the right: CellProfiler 2.2 is faster). We compared the per-

formance of example pipelines (available at https://github.com/CellProfiler/examples and

http://cellprofiler.org) for CellProfiler 2.2 and 3.0 on OS X 10.12.6 (2.8 GHz Intel Core i7 and

16 GB 1600 MHz DDR3.). The figure above shows the difference of mean runtimes between

CellProfiler 3.0 and 2.2 across 10 identical image sets. CellProfiler 3.0 demonstrates improved

or comparable performance to CellProfiler 2.2 in 11 of 16 example pipelines, and these repre-

sent the more commonly used applications.

(PNG)

S1 Table. Fiji macros used for each file. Macro code constructed in the MorphoLibJ plugin for

Fiji software that was used for analysis of 3D image examples presented in Fig 1 and S2–S5 Figs.

(XLSX)

S2 Table. Image segmentation speed comparison of CellProfiler and the MorphoLibJ 1.3.3

plugin in Fiji (ImageJ 1.51n) on x-64 PC (Dell 7280) Windows 10 Pro (2.8 GHz Intel Core

i7-7600U CPU and 16 GB 2133 MHz DDR4 SDRAM). Units of time are in seconds. One

image representing the 72-hour time point (72 hours) was used to compare CellProfiler 3.0

and Fiji presented in S5 Fig.

(XLSX)

S1 File. CellProfiler measurements of mouse blastocysts. Measurements of mouse blastocyst

cells and GAPDH transcript foci created by CellProfiler; these serve as the underlying data for

Fig 3F. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

(XLSX)

S2 File. CellProfiler measurements of hiPSCs. Per cell measurements of hiPSCs created by

CellProfiler; these serve as the underlying data for Fig 4D. hiPSC, human induced pluripotent

stem cell.

(XLSX)

S3 File. Code to asses per-object segmentation accuracy in CellProfiler and MorphoLibJ. A

file to reproduce the results presented in S6 Fig. This contains the ground truth images,
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CellProfiler-produced segmentations, and MorphoLibJ-produced segmentations, as well as a

Jupyter notebook that can be run from the directory once unzipped to replicate the code.

(ZIP)

S4 File. Example pipeline and nuclei image for deep learning in CellProfiler 3.0. Example

pipeline and image needed to run the ClassifyPixels-Unet module.

(ZIP)

S5 File. Example pipelines and configuration files needed to run CellProfiler on AWS.

These pipelines and files can be used to run Distributed-CellProfiler; they are specifically con-

figured to run the Cell Painting assay [7]. AWS, Amazon Web Services.

(ZIP)

S6 File. CellProfiler 3D module run times. CPU and wall-clock runtimes for individual Cell-

Profiler modules in the example pipelines; the summary of this data can be seen in S2 Table.

3D, three-dimensional; CPU, central processing unit

(XLSX)
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