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ungeneralizable results, and pay attention 
to the non-ML factors (such as partnerships 
and user interface design) that are necessary 
to move towards clinical impact. ❐
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Leveraging machine vision in cell-based 
diagnostics to do more with less
Highly quantitative, robust, single-cell analyses can help to unravel disease heterogeneity and lead to clinical 
insights, particularly for complex and chronic diseases. Advances in computer vision and machine learning can 
empower label-free cell-based diagnostics to capture subtle disease states.

Minh Doan and Anne E. Carpenter

Current diagnostic and monitoring 
assays are typically performed with 
reagents that label specific cellular 

and molecular hallmarks of illness (Fig. 1a). 
Each of these so-called biomarkers yields a 
single data point: the amount of the cellular 
constituent that has been targeted, and they 
often require decades of careful study to 
identify and validate. Furthermore, detecting 
biomarkers in the clinic typically requires 
specific reagents, special instrumentation 
and/or complex laboratory manipulations, 
which may adversely disturb the true states 
of the biological targets.

At the same time, the medical 
community recognizes that disease 
heterogeneity is a major challenge 
obscuring accurate diagnosis and 
effective treatment. Precision medicine, 
where relatively specific treatments are 
tailored to each patient based on their 
characteristics, requires new diagnostics 
that can classify patients by disease 
subtype and by response to a given 
treatment regime. This is particularly 
relevant for complex illnesses such as 
autoimmune diseases and cancers, and 
for chronic diseases that progress over 
time, such as diabetes and obesity. These 
illnesses show substantial patient-to-

patient variability in terms of symptoms, 
genetic underpinnings and progression. 
Thus, a major challenge facing medicine 
is to develop diagnostics that reveal this 
heterogeneity: a given therapeutic may 
only be effective when it ‘matches’ the 
right patient, or even the right subclone of 
cells within a given patient, and response 
must be monitored over time.

Fortunately, cell-based diagnostics 
are advancing in multiple respects. 
Historically, cytology was limited mainly 
to manual microscopic examination of 
a biopsy specimen prepared on a slide. 
However, a broader range of patient 
phenotypes can be detected now, including 
multiplexed histopathology, flow cytometry, 
biochemistry, genetics, proteomics, 
immunophenotyping and more. The 
prospect of obtaining a more comprehensive 
map of disease is on the horizon.

Here we focus on several particularly 
promising strategies for cell-based 
diagnostics that identify biomarkers based 
on particular elements of cell morphology 
rather than simply the amount of a 
particular target molecule of the cell. They 
offer single-cell resolution and fine-grained 
classification of samples and often can be 
performed label-free, preserving samples’ 

integrity and reducing the cost of reagents 
and instrumentation. Although not yet in 
widespread clinical use, we describe the 
advances in devices for capturing single-cell 
images and in machine learning that are 
likely to power a new generation of cell-
based diagnostics, including some that  
are label-free.

Practical single-cell imaging platforms
Among a wide variety of single-cell analysis 
assays that could be employed for cell-
based diagnostics, three platforms are most 
commonly used to detect subtle differences 
between individual cells using images.

Microscopy is the most common and 
convenient platform for imaging cells; 
digital cameras can capture high-resolution 
images of cells in multiple colorimetric 
and fluorescent channels, together with 
transmitted and phase contrast illumination. 
Over the centuries, many improvements in 
automation, illumination, photonics, optics, 
cameras and labelling techniques have been 
applied to enable image acquisition with 
increasing speed, resolution and specificity. 
Microscopy is already in widespread use for 
clinical cytology, where it allows microscopic 
examination of biopsy specimens and the 
inspection of the characteristic cell or tissue 
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hallmarks of disease. Screening cytology, 
such as Pap smears for abnormal cervical 
cells, enables life-saving early discovery of 
disease in the absence of clinical symptoms. 
As we will discuss, bringing machine 
learning to the analysis of microscopy/
histology images offers tremendous 
potential for cell diagnostics with a greater 
ability to discern among patient subtypes.

For cells in suspension, such as in blood 
samples, flow-based systems are more 
favourable. Although flow cytometers are 
routinely used for clinical diagnostics, 
particularly in hematological disorders, 
they collect only a single measurement per 
biomarker per cell: whole-cell fluorescence 
intensity, using one fluorescence-conjugated 
marker per colour channel. Imaging flow 
cytometry1 is a new generation of flow 
cytometers, combining the fast fluidic 
sampling of a flow-based system with 
the spatial resolution of microscopy. 
Equipped with optics and cameras, imaging 
flow cytometry captures fluorescent, 
brightfield and darkfield high-content 
spatial information in the form of images 

at a throughput of several hundreds to 
thousands of objects per second. Signals 
from unwanted events, such as debris, can 
be more easily detected and ignored than 
in conventional flow cytometry. Currently, 
few cell-based diagnostics are in clinical use 
that rely on imaging flow cytometry, but 
as we will discuss, this is likely to change: 
the spatial information (that is, images) 
that imaging flow cytometry brings may 
soon reduce or eliminate the need for the 
specific biomarkers that are required for 
conventional flow cytometry (Fig. 1a). The 
fact that each image captures a distinct 
single cell is also well-matched for deep 
learning algorithms, as we discuss below.

Microfluidic chips are an increasingly 
popular tool for bioimaging, compatible 
with both suspension and adherent cells. 
They are not yet used widely in clinical 
diagnostics, but are promising. Such chips 
are composed of channels smaller than 
one millimetre in at least one dimension, 
allowing small quantities of fluid to 
flow to stationary adherent cells and/or 
letting suspended cells to flow in liquids. 

This design can be highly modular and 
customizable, thus enabling parallelization 
and microcontrol of multiple functions in 
a single compact device, such as mixing, 
particle manipulation, imaging, tracking 
and other automated assays2. It can be used 
to study living cells together with their 
associated extracellular materials in the 
supernatant3,4, which is much less feasible by 
microscopy or flow cytometry.

trends in cell image analysis
A dramatic revolution in computer vision 
has suddenly made new technology available 
for image analysis that, when combined  
with the image-capturing devices just 
described, could yield a crop of novel  
cell diagnostics.

It is first helpful to understand existing 
approaches for analysing cell images for 
diagnostic purposes. Of course, the most 
widespread is the visual assessment of 
phenotypes by pathologists. This raises 
challenges: trained experts are expensive 
and cannot analyse enormous datasets 
efficiently, as in whole-slide scans of a 
tissue biopsy, for example. Furthermore, 
discrepancies among pathologists’ judgment 
are well-documented5, and it is possible that 
patterns exist in cell morphology that the 
human visual system is simply not equipped 
to perceive6.

Image analysis software can overcome 
many of these challenges. In classical image 
processing (Fig. 1c) a researcher designs 
algorithms to identify each cell, its borders 
and any relevant subcellular compartments 
(for example, nuclei or other organelles) in 
the images so that many different kinds of 
measurements of these identified regions of 
the image can then be taken. These so-called 
morphological features include pixel 
intensities, size, shapes, textures, correlations 
and relationships among neighbour cells and 
subcellular components; these can be used 
directly as a diagnostic feature. Features can 
also be combined to detect more complex 
phenotypes that manifest in multiple 
features simultaneously using machine 
learning, where the algorithm learns to 
classify a cell as having a phenotype based 
on a specific combination of values for  
these metrics.

Deep learning7, or deep neural networks 
(Fig. 1d), is a type of machine learning that 
has often proved to be more powerful than 
the carefully engineered image analysis 
workflows of the past. It takes the pixels of 
images as its input and multiple layers of the 
neural network examine and extract patterns 
in the presented pixels, while spanning a 
huge range of potential patterns beyond 
what humans might look for. With multiple 
layers (hence the name ‘deep’) and multiple 
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Fig. 1 | Valuable information is hidden in label-free images. High-throughput cell-based diagnostics 
allow samples to be analysed at single-cell resolution and across multiple channels. a, Conventional cell-
based diagnostics often rely on specific biomarkers to identify disease status. The readouts are mainly 
intensity signals of the labelled targets. For multiplexed assays that involve several biological targets, 
such intensity-based analysis typically requires manual pairwise comparisons for the relevant markers. 
b, Recent research9–11,13,14 indicates that label-free channels of images (such as brightfield and darkfield) 
can contain equivalent information, potentially replacing fluorescent markers. To accomplish this, 
however, it requires sophisticated extraction of information from images. c, In classical image processing 
pipelines, designed features (such as shape, intensity, texture) are helpful inputs for a machine classifier 
to learn the characteristic pattern of the phenotypes. However, feature engineering requires image 
analysis expertise and is limited in its maximum accuracy. d, In contrast, deep neural networks are 
generally more accurate and also more flexible: they identify features on their own by learning relevant 
patterns from a large number of examples (training dataset, not shown). One caveat is the loss of direct 
interpretability of the discovered features due to the hierarchy of abstract representation, as shown here 
on three hidden layers of a simple neural network.
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nodes in each layer, the system is trained 
with example images that are known to have 
a particular phenotype — for example, an 
infected blood cell or a leukemic cell. In 
training, the weights within the network are 
adjusted until the system produces the right 
answer for the known cases — each layer 
of the deep network amplifies collections 
of pixels that are important to reach the 
ultimate goal while suppressing irrelevant 
variations8. Once trained, the network (or 
model) is ready to predict the correct answer 
for new images. Because of its extreme 
flexibility, it has the potential to uncover 
subtle morphological clues that might be 
missed by a human viewer or a classical 
image processing workflow.

Deep learning-powered cytology
The greater power and flexibility of deep 
learning makes it more likely that subtle 
disease-related cell phenotypes can be 
detected in images, potentially in the 
absence of specific labels for a particular 
target biomarker. For instance, whereas 
few biologists would claim to be able to 
quantify DNA content or distinguish G1, 
S and G2 cell cycle stages from images of 
unstained cells, machine learning recently 
accomplished this task using images from 
an imaging flow cytometer9,10. The system 
was trained using the known DNA content 
and cell cycle stage (G1, S, G2, prophase, 
metaphase, anaphase and telophase) as 
labelled by fluorescent dyes, and it learned 

to predict these values using only brightfield 
and darkfield images of cells. This initial 
study used the classical approach (as in Fig. 
1c); a subsequent study used deep learning 
(Fig. 1d), in the form of convolutional neural 
networks, to achieve an even more accurate 
classification11. In another case, involving 
microscopy images of histopathology 
samples, a deep learning network was taught 
to predict tumour mutational status in non-
small cell lung cancer without any specific 
labelling reagents, a capability no human 
could claim12.

The scientific community has only just 
begun exploring the potential for deep 
learning to detect particular disease states 
and subtypes. One approach, in silico 
labelling, has been used in basic biology 
studies and might be fruitfully applied to 
create label-free cell diagnostics. Instead of 
a model being trained to detect a disease 
state or other phenotype for each cell, as 
we have just discussed, the model is trained 
to predict entire fluorescently stained 
images given only brightfield images. 
This has successfully worked for various 
cellular entities (nuclei, membranes, axons, 
dendrites), cell types and cell states (living 
and dead cells), and is feasible for both 
two-13 and three-dimensional images14. It 
seems likely to extend to the prediction of 
particular diagnostic biomarkers, such that 
the amount and morphology of stained 
cell components can be predicted and 
measured, label-free.

Although many applications of machine 
learning for biological images aim to classify 
each cell as having a particular disease-
related phenotype, for example cancer 
versus normal, sometimes more continuous 
metrics are needed. A trained deep learning 
network can extract cell features that 
contain sufficient information to order cells 
based on their morphological similarity, 
which in some cases corresponds to a 
physiologically meaningful chronological or 
developmental progression. This has so far 
been demonstrated for reconstructing the 
cell cycle without any a priori knowledge 
of the cell cycle being available to the 
algorithm11. Similar pseudotime analysis 
has been observed in deep mining of 
high-dimensional mass cytometric data to 
reconstruct the evolution of β-cell loss in 
type 1 diabetes progression15.

Physically unmixing cell heterogeneity
One of the most exciting prospects is to not 
just identify disease-related phenotypes, 
but to also be able to physically sort cells 
based on them. This could allow additional, 
perhaps molecular, analyses to be carried 
out on subsets of cells, which would allow 
stratifying patients based on integrating 
multiple diagnostic criteria. It could also 
allow propagation and even re-introduction 
of subsets of cells to the patient.

Detecting and physically isolating cells 
based on their morphological properties 
has recently been demonstrated in proof-
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Fig. 2 | ai-powered point-of-care diagnostics usher in the era of precision medicine. Diverse and plentiful information can be efficiently integrated by 
machine learning to assist clinical decisions. a, Incorporation of cell-based bioimaging data with several other types of readouts (omic datasets, patient 
demographic characteristics and clinical tests) can provide a large amount of information for each patient. For example, an AI-based system can navigate 
the large data space on its own and consolidate information from label-free identification of a hallmark disease-bearing cell phenotype (first layer), a gene 
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disjoint pieces of information and unravel the precise diagnosis. b, An envisioned portable point-of-care label-free cell diagnostic chip is shown, powered 
by microfluidics, integrated data, machine learning, cloud computing and smart devices. Pre-trained machine learning models allow feature extraction, data 
integration and inference to take place in real time on brightfield cell images and can be operated on handheld devices.
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of-principle experiments. For cells placed 
on a microscopic slide, an automated 
micromanipulation pipeline was recently 
developed in which image analysis and 
machine learning were used to guide 
laser capture microdissection, enabling 
a much higher object isolation and 
extraction throughput compared to manual 
operations16. In a higher-throughput 
approach, spatial information of cells 
flowing past a detector were converted into 
waveforms that can be directly analysed 
and classified by a support vector machine 
algorithm17. Using this method, the system 
was able to detect cells derived from  
human breast adenocarcinoma (MCF-7)  
within a mixture of peripheral blood 
mononuclear cells17. In another approach, 
two-dimensional images of single cells 
were directly analysed by deep learning to 
allow sorting microalgal and blood cells, 
where intracellular protein localization 
and cell–cell interaction of heterogeneous 
populations were detected and physically 
sorted18. When these instruments become 
widely available, morphology-activated 
label-free cell sorting of minimally 
perturbed living cells could enable pre-
stratifying a mixture of heterogeneous cells 
into more homogeneous subpopulations, 
allowing researchers to gain a higher level 
of purity and enrichment of readouts in 
downstream analysis. Ultimately, cells 
sorted by morphology in label-free fashion 
might be cultured and reintroduced into 
patients, as seen in adoptive cellular 
immunotherapy, where clinicians collect 
and use patients’ own immune cells to treat 
their cancer19.

intelligent label-free diagnostics
As we have seen, using advanced image 
analysis techniques such as deep learning 
can potentially extract more information 
out of unlabelled cell morphology. 
Reducing or eliminating the need for 
reagents, sample manipulation mechanics 
and energy sources can substantially 
improve the affordability, portability 
and efficiency of diagnostic tools20. 
Patient samples often need to be sent to 
a remote laboratory for testing, which 
increases costs and delays treatment. 
This is particularly problematic if time 
or resources are limiting, such as in 
developing countries, in areas of warfare, 
during infectious disease outbreaks and 
natural disasters, and on-board water-, air- 
and spacecraft. Going label-free can reduce 
the necessary reagents and instrumentation 
and thereby reduce laboratory expense, 
effort and error.

Moreover, eliminating labels leaves 
fluorescent channels available for other 

purposes and allows integrating other 
useful assays with sensitive chemistry, 
such as single-cell omics21,22 for 
diagnosing and monitoring diseases. 
Although individual methodologies such 
as bioimaging, single-cell genomics and 
proteomics already offer exquisite data 
for deconvoluting cell heterogeneity, it 
is rarely possible to link these data. A 
lab-on-a-chip that integrates cell-based 
imaging, sorting and molecular omic data 
thus presents an opportunity to connect 
cell-to-cell (for instance, a given cell’s 
image to its omic profile), or cluster-to-
cluster (for instance, a cell phenotype to 
its genotype signature) to help maximize 
the ability to detect phenotype (Fig. 2a). 
As a result, a pathological cell as well as 
its extracellular components (for example, 
exocytosed vesicles and materials) could 
be described by a vast set of descriptive 
parameters, aiding diagnosis, particularly 
for rare cells. This myriad of data is a rich 
resource for machine learning algorithms, 
and more broadly for artificial intelligence 
(AI), to unravel disease heterogeneity and 
enable precision medicine.

Although computationally demanding 
during training, once trained, an algorithm 
can perform inference (that is, classification 
or prediction of a phenotype) with 
much less workload. More accessible 
and more affordable parallelism, such as 
high-performance processors and cloud 
computing also continue to remove barriers 
in hardware limitations, enabling even 
faster readouts. For example, a pre-trained 
classifier could readily perform prediction 
or diagnosis on new unseen patient samples 
and return the results to a portable device 
via a cloud computing server (Fig. 2b), 
providing information to assist clinicians in 
decision making.

Label-free imaging may come in 
different forms. In addition to the devices 
described, many others exist. For instance, 
stimulated Raman scattering as a contrast 
mechanism has been successfully leveraged 
in label-free imaging different lipid subtypes 
in living brain and skin tissues23. The 
technique was later bundled into a portable 
platform to perform histopathology 
examination in fresh patient specimens 
taken during a neurological surgery24. In 
over a hundred intraoperative cases, the 
technique was proven useful in not only 
delivering fair contrast for brain tumour 
detection in unprocessed images, but also 
giving rise to virtual staining comparable 
to hematoxylin and eosin. This revealed 
essential diagnostic cellular and histologic 
architectures, permitting differentiation of 
non-lesional and lesional tissues, facilitating 
human interpretation as well as automated 

detection by machine vision. Label-free 
imaging could also be accomplished via 
an optofluidic time-stretch microscopy 
system, which has seen great progress 
in engineering and design to overcome 
the trade-off between sensitivity and 
speed25. Here, the cell’s spatial information 
is encoded in the spectrum of a time-
stretched laser pulse in sub-nanoseconds. 
The weak signals (low number of photons) 
received during such short capture time 
and the drop in power resulting from the 
time stretch are compensated by Raman 
amplification. This technique reveals 
biophysical attributes of the cells including 
protein concentration, optical loss, intensity 
and phase map of the cells and other 
morphological features without the need 
for any staining. Deep learning applications 
based on time-stretched imaging features 
were demonstrated in classifying hybridoma 
T-lymphocytes and colon cancer epithelial 
cells, as well as algal cells of different  
lipid contents26.

Limitations of machine learning
For machine learning, including  
deep learning, to be sufficiently  
reliable for clinical use, certain limitations 
need to be carefully addressed. First,  
there are many situations in which a 
machine learning model can give excellent 
accuracy in testing but perform poorly 
in the real world. Typically, this failure 
to generalize is due to overfitting, where 
the machine learning model gives great 
accuracy, but only for images very similar  
to those used in training and testing, such  
as from a single hospital, a single instrument 
or even from a certain experimental batch. 
This problem can be solved by gathering a 
wide variety of images that span the range  
of variation expected in clinical settings, 
and by ensuring that the classifier is trained 
on a set of those images that is completely 
distinct from those used for testing — 
for example, from different hospitals, 
instruments and technicians. The problem 
can be mitigated in a complementary 
way by interpreting how the machine is 
making diagnostic decisions for the images. 
Unfortunately, this is often challenging for 
machine learning techniques and is even 
more so for deep learning models, which 
yield a ‘black box’ solution whose decision-
making process is opaque to clinicians.  
This is a long-standing challenge27, but 
progress has been made in recent years28,29 
to devise methods to peek into the black box 
and be reassured that the decision-making  
is grounded in morphological features  
that are biologically sensible.

Second, it will be critical for clinicians 
to consider performance metrics of an 
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algorithm in the real-world context. Often 
in pathology detection and classification 
studies, machine performance is compared 
to that of physicians as if the goal is a 
replacement. In practice, it is preferable to 
consider outputs from cell diagnostics as 
guidance for the clinician’s final judgment 
rather than treating the machine learning 
model as a stand-alone diagnostic  
decision-maker, especially for diseases  
with a low prevalence.

Last but not least, there are certain 
inherent inequities in access to medical 
care and technical advances, such that not 
all demographics are equally represented 
in datasets. An imbalance of data entries 
(for example, across ethnicities, genders, 
socioeconomic status and so on) and the 
disproportionate use of computer-aided 
services may exacerbate biases, potentially 
leading to disastrous errors made by an 
algorithm30.

the future
Solving these issues will be difficult 
but rewarding. From bedside biopsy 
to rapid reports, image-based machine 
learning-powered tests will fuel a new 
age of precision medicine in multiple 
ways: (i) for patients, less centralized 
tests allow on-field screening, accelerate 
diagnoses and identification of epidemics, 
facilitate preventive care, reduce costs, 

and can be lifesaving if a hospital is not 
immediately available; (ii) for doctors, these 
information-rich screens deliver instant 
rationales for more rigorous diagnosis 
and treatment choices, and provide 
closer monitoring of disease progression, 
therapy response, patient susceptibility 
and individual drug tolerance; (iii) for 
researchers, collected data provide cellular 
and molecular evidence to characterize the 
role of specific biomarkers, uncover hidden 
biological pathways, perform large-scale 
disease modelling and pave ways for novel 
and more efficacious therapies; and (iv) for 
clinics, the ability to quickly stratify patients 
can help predict key outcomes and thus use 
resources more efficiently, including risk 
estimation, predicting relapse possibility, 
defining criteria for discharge/readmission, 
forecasting mortality/prognosis, and 
signalling potential shock/crisis episodes. 
As major pillars of bioengineering 
innovation, imaging and machine learning 
provide an excellent avenue to progressively 
transform modern healthcare. ❐
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Opportunities and challenges using artificial 
intelligence in ADME/Tox
At the recent Artificial Intelligence Applications in Biopharma Summit in Boston, USA, a panel of scientists from 
industry who work at the interface of machine learning and pharma discussed the diverging opinions on the past, 
present and future role of AI for ADME/Tox in drug discovery and development.

Barun Bhhatarai, W. Patrick Walters, Cornelis E. C. A. Hop, Guido Lanza and Sean Ekins

The term artificial intelligence (AI) can 
have several meanings. In this context, 
we will be referring specifically to 

applications of machine learning (ML) using 
various methods (Table 1) in drug discovery, 
and more specifically to the prediction 
of absorption, distribution, metabolism, 
excretion and toxicology (ADME/Tox) 
properties (Table 2).

We should differentiate this approach 
from other computational approaches that 

are widely used, such as physiologically 
based pharmacokinetic (PBPK) and 
pharmacokinetic pharmacodynamic/
quantitative systems pharmacology (PKPD/
QSP) modelling; however, if the decision-
making process is automated these could 
be applied in AI frameworks. In silico 
ADME/Tox models have made considerable 
progress over the past ~40 years (Table 3),  
and we are now squarely in the era of ML 
with many of the models serving their 

intended purpose in the industry and 
complementing experimental methods. The 
big question is whether the latest generation 
of computational tools such as deep neural 
networks (DNNs, also referred to as deep 
learning) will further improve the quality of 
the models and decision making in  
lead optimization.

A typical large pharma drug discovery 
team is generating data for between 20 and 
50 different assays including biochemical, 
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