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Abstract

Neuronal synapses transmit electrochemical signals between cells through the coordinated
action of presynaptic vesicles, ion channels, scaffolding and adapter proteins, and mem-
brane receptors. In situ structural characterization of numerous synaptic proteins simulta-
neously through multiplexed imaging facilitates a bottom-up approach to synapse
classification and phenotypic description. Objective automation of efficient and reliable syn-
apse detection within these datasets is essential for the high-throughput investigation of
synaptic features. Convolutional neural networks can solve this generalized problem of syn-
apse detection, however, these architectures require large numbers of training examples to
optimize their thousands of parameters. We propose DoGNet, a neural network architecture
that closes the gap between classical computer vision blob detectors, such as Difference of
Gaussians (DoG) filters, and modern convolutional networks. DoGNet is optimized to ana-
lyze highly multiplexed microscopy data. Its small number of training parameters allows
DoGNet to be trained with few examples, which facilitates its application to new datasets
without overfitting. We evaluate the method on multiplexed fluorescence imaging data from
both primary mouse neuronal cultures and mouse cortex tissue slices. We show that DoG-
Net outperforms convolutional networks with a low-to-moderate number of training exam-
ples, and DoGNet is efficiently transferred between datasets collected from separate
research groups. DoGNet synapse localizations can then be used to guide the segmenta-
tion of individual synaptic protein locations and spatial extents, revealing their spatial organi-
zation and relative abundances within individual synapses. The source code is publicly
available: https://github.com/kulikovv/dognet.

Author summary

Multiplexed fluorescence imaging of synaptic proteins facilitates high throughput investi-
gations in neuroscience and drug discovery. Currently, there are several approaches to
synapse detection using computational image processing. Unsupervised techniques rely
on the a priori knowledge of synapse properties, such as size, intensity, and co-localization
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labeled data, and are sensitive to signal/noise ratios. As an alternative, here we propose
DoGNet, a neural architecture that closes the gap between classical computer vision blob
detectors, such as Difference of Gaussians (DoG) filters, and modern convolutional net-
works. This approach leverages the strengths of each approach, including automatic tun-
ing of detection parameters, prior knowledge of the synaptic signal shape, and requiring
only several training examples. Overall, DoGNet is a new tool for blob detection from
multiplexed fluorescence images consisting of several up to dozens of fluorescence chan-
nels that requires minimal supervision due to its few input parameters. It offers the ability
to capture complex dependencies between synaptic signals in distinct imaging planes, act-
ing as a trainable frequency filter.

Introduction

Neuronal synapses are the fundamental sites of electrochemical signal transmission within the
brain that underlie learning and memory. The protein compositions within both presynaptic
and postsynaptic synaptic densities crucially determine the stability and transmission sensitiv-
ity of individual synapses [1, 2]. The analysis of synapse protein abundances, localizations, and
morphologies offers better understanding of neuronal function, as well as ultimately psychiat-
ric and neurological diseases [3, 4]. However, the high spatial density and structural complex-
ity of synapses both in vitro and in vivo requires new computational tools for the objective and
efficient identification and structural profiling of diverse populations of synapses.

Fluorescence microscopy (FM) combines molecular discrimination with high-throughput,
low-cost image acquisition of large fields of view of neuronal synapses within intact specimens
using modern confocal imaging instruments. Immunostaining techniques [5, 6] can be used
to identify synapses as puncta within fluorescence microscopy images to distinguish distinct
types of synapses based on molecular composition. However, phenotypic classification of indi-
vidual synapses in FM images is challenging because of the morphological complexities of vari-
able structural features of synapses, including synaptic boutons, presynaptic vesicles, and
synaptic clefts, which cannot be resolved using conventional light microscopy.

Manual synapse detection and classification quickly becomes intractable for even moder-
ately sized datasets, thus necessitating automated processing. In recent years, deep convolu-
tional neural networks (ConvNets) have become state-of-the-art tools for image classification
[7] and segmentation [8], and have been extended to electron microscopy images of neuronal
synapses [9, 10]. ConvNets, however, requires thousands of learnable parameters and therefore
requires a large amount of training data to avoid overfitting. Furthermore, even when suffi-
cient training data is available, ConvNets may fail to generalize to new experimental conditions
that result in modified image properties. Both of these factors complicate the use of ConvNets
for synapse detection in fluorescence microscopy images, often rendering traditional blob
detection techniques such as [11] preferable.

In this work, we introduce a new neural network architecture for synapse detection in mul-
tiplexed immunofluorescence images. Compared with ConvNets, the new architecture
achieves a considerable reduction in the number of learnable parameters by replacing the
generic filters of ConvNets with Difference of Gaussians (DoG) filters [12].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007012 May 13,2019 2/20


https://doi.org/10.1371/journal.pcbi.1007012

©-PLOS | Sotoer o Doae

Input large scale image Input image Intermediate maps

Ire Lo

[
2
=
=

o

>

[

Q

o
O}

o
(@]

Learned DoG filters

‘ 1x1 convolution

‘ DoGNet

Large scale synapse detection

Probability map

f Post-processing

Fig 1. Single layer DoGNet inference pipeline. Synaptic protein channels from the PRISM [6] dataset are used as input images. Each channel of the
input images are convolved with a number of the Difference of Gaussian filters. This processing is performed using the sigmoid function convolved
with (or multipled by) the per-pixel weighted sum of intermediate maps. The DoGNet is trained to predict the probability map for each pixel as
belonging to a synapse. Synapses locations and parameters of their proteins (such as average intensities and shapes) are extracted by fitting Gaussians to
the intensities of individual proteins in the vicinities of the local maxima of the resulting probability map. The scalebar on the large scale image equals
25 pum (5 ym in the cropped region).

https://doi.org/10.1371/journal.pcbi.1007012.9001

This replacement is motivated by the fact that in FM images, typical mammalian synapses
are close in size to the diffraction limit of light. Consequently, individual synapses are resolved
as blobs due to the convolution of the microscope point spread function with the underlying
fluorescence labels, and approximately Gaussian [13, 14]. DoG filters are known to be good
blob detectors and have few parameters. The DoGNet architecture uses multiple trainable
Do filters applied to multiple input channels and, potentially, in a hierarchical way (Deep
DoGNets). The parameters of the DoG filters inside DoGNets are trained in an end-to-end
fashion together with other network layers. We use linear weights layer to combine the
response maps of different DoG filters together into a probabilistic map.

We post-process this probability map in order to estimate the centers of synapses and
describe their properties. For each synapse, the output of our system gives the location and the
shape of the punctum for each protein marker, with desired confidence level. The complete
image processing pipeline is shown Fig 1.

We have validated the performance of this new architecture by comparing several varia-
tions of DoGNets to popular types of ConvNet architectures including U-Nets [8] and Fully
Convolutional Networks [15] for the task of synapse detection. The comparison is performed
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on four different datasets including a synthetic dataset, an annotated real dataset from previous
work [16, 17], and another human annotated dataset acquired with PRISM multiplexed imag-
ing [6]. Apart from outperforming ConvNet architectures, the DoGNet approach achieves
accuracy comparable to inter-human agreement on the dataset from [6]. Finally, we have
shown that a DoGNet trained on one correlated Array Tomography and Electron Microscopy
dataset can be successfully applied to an Array Tomography (AT) dataset without associated
Electron Microscopy images, which may facilitate accurate synapse detection in large datasets
where correlated EM data are not available.

Overall, the system is based on the DoGNet detector and a post-processing pipeline that
reveals synaptic structure consistent with known synaptic protein localization, and provides a
wealth of data for further downstream phenotypic analysis, thereby achieving successful auto-
mation of synapse detection in neuronal FM images. Notably, the DoGNet architecture is not
specific to such images, and can be applied to other microscopy modalities where objects of
interest show a punctate spatial patterning, or where, more generally, a certain image analysis
task may be performed via learnable blob detection such as single molecule segmentation in
super-resolution microscopy and single particle tracking [18], detection of clusters or endo-
somes in immunofluorescence images [19], and detection of puncta in fluorescence in situ
hybridization (FISH) datasets [20, 21].

Related work

Automation of synapse detection and large-scale investigation of neuronal organization has
seen considerable progress in recent years. Most work has been dedicated to the segmentation
of electron microscopy datasets, with modern high-throughput pipelines for automated seg-
mentation and morphological reconstruction of synapses [8-10, 22, 23]. Much of this progress
may be credited to deep convolutional networks. Segmentation accuracy of these approaches
can be increased by making deeper networks [24], adding dilated/ a-trous convolution [25] or
using hourglass architectures [8, 26] that include downscaling/upscaling parts with so-called
skip connections. ConvNets typically outperform random forest and other classical machine
learning approaches that are dependent on hand-crafted features such as those proposed in
[27, 28]. At the same time, while it is possible to reduce the number of training examples
needed by splitting the segmentation pipeline into several smaller pipelines [10], the challenge
of reducnig the number of training parameters without sacrificing segmentation accuracy
remains.

Within the context of neuronal immunofluorescence images, synapses are typically defined
by the colocalization of pre- and postsynaptic proteins within puncta that have sizes on the
order of the diffraction limit of 250 nm. One fully automated method using priors, which
quantifies synaptic elements and complete synapses based on pre- and postsynaptic labeling
plus a dendritic or cell surface marker, was previously proposed and applied successfully [29].
Alternatively, a machine learning approach to synapse detection was proposed in [30, 31],
where a support vector machine (SVM) was used to estimate the confidence of a pixel being a
synapse, depending on a small number of neighboring pixels. Synapse positions were then
computed from these confidence values by evaluating local confidence profiles and comparing
them with a minimum confidence value. Finally, in [32], a probabilistic approach to synapse
detection on AT volumes was proposed. The principal idea of this approach was to estimate
the probability of a pixel being a punctum within each tissue slice, and then calculating the
joint distribution of presynapic and postsynapic proteins between neighbouring slices. Our
work was mainly inspired by works [32] and [11], that produced the state-of-the-art results in
synapse detection on fluorescence images.
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More conventional machine vision techniques have also been applied for synapse detection
[6, 11, 12]. These methods aim at detecting regions that differ in brightness compared with
neighboring regions. The most common approach for this task is convolution with a Laplacian
filter [12]. The Laplacian filter can be computed as the limiting case of the difference between
two Gaussian smoothed images. Since convolution with a Gaussian kernel is a linear opera-
tion, convolution with the difference of two Gaussian kernels can be used instead of seeking
the difference between smooth images. The usage of Difference of Gaussians for synapse detec-
tion was proposed in [11] with manually defined filter parameters. Here, we introduce a new
DoGNet architecture that integrates the use of simple DoG filters for blob detection with
machine, deep learning, thereby combining the strengths of the preceding published
approaches [8, 11, 32]. Our approach offers the ability to capture complex dependencies
between synaptic signals in distinct imaging planes, acting as a trainable frequency filter.

Materials and methods

Our synapse puncta detection procedure consists of two steps: an application of the pre-
trained DoGNet architecture to imaging planes of the source image and a post-processing of
its output. In a nutshell, DoGNet is a standard convolutional neural network with convolution
kernels reparametrized using the Difference-of-Gaussians (DoG) as shown in Fig 2. The DoG-
Net architecture applies a small number of DoG filters to each protein channel and then com-
bines the outputs of the filtering operations. We train that network end-to-end using the
backpropagation algorithm [33]. Accordingly, we describe the operation of our procedure by
first discussing the properties of trainable DoG filters. We then discuss single layer and deep
versions of the DoGNet architecture, and the training processes for both. Finally, we present
in detail the post-processing procedure.

DoG Layer Weighted sum  Sigmoid  Probability map
(a) Shallow DoGNet architecture

0.2 0.06 0.10
0.1 0.04 0.05
0.0 0.02 0.00
-0.1 0.00 -0.05
-0.2 -0.02 -0.10

(c) DoG Anisotropic (d) DoG3P

Fig 2. (a) The architecture of shallow DoGNet. The input image channels (for example synapsin, vGlut, and PSD95) are each processed by five
trainable DoG filters. The weighted sum (with trainable weights) combines the resulting 15 DoG layer output maps into a single map. The sigmoid
function converts the latter map into a pixel probability map. (b,c,d) The variations of the Difference of Gaussians that we use in each DoG layer. (b) An
isotropic Difference of Gaussians. (c) An anisotropic difference of Gaussians. Each Gaussian is described by a pair of variance values and a rotation
angle. (d) A 3D Isotropic Difference of Gaussians. Surfaces show filter values along z slices.

https://doi.org/10.1371/journal.pchi.1007012.g002
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Difference-of-Gaussians filters

In classical computer vision, the DoG filter is perhaps the most popular operation for blob
detection. As follows from its name, DoG filtering corresponds to applying two Gaussian fil-
ters to the same real-valued image and then subtracting the results. As the difference between
two different low-pass filtered images, the DoG is actually a band-pass filter, which removes
high frequency components representing noise as well as some low frequency components
representing the background variation of the image. The frequency components in the pre-
served band are assumed to be associated with the edges and blobs that are of interest. DoG fil-
ters are often regarded as approximations to Laplacian-of-Gaussian filters that require more
operations to compute.

Depending on the parameterization of the underlying Gaussian filters, DoG filters may
vary in their complexity. For example, in the most common case, one considers the difference
of two isotropic Gaussian probability distribution functions as the filter kernel:

2 2 2 2

DoG Isotropic[w,, w,, d,, 0,](x, y) = wexp (_x 2_;)/ ) — W,exp (_x 2—;;/ ) (1)
This version of the DoG filter depends on four parameters, namely the amplitude coefficients
wy and w,, as well as the bandwidth parameters 07 and o,. The shape of the resulting function
is depicted in Fig 2(b). The amplitudes w; and w, can be replaced by normalizing coefficients
1/2m0, and 1/2m0; respectively, reducing the number of trainable parameters to just two.

The four- and the two-parameter DoG filters described above are suitable for detecting iso-
tropic blobs. For anisotropic blob detection, pairs of anisotropic Gaussians with zero means
and shared orientations may be more suitable. In this case, we parameterize an anisotropic

zero-mean Gaussian as:

G (x,y) = wexp(—ax® — 2bxy — cy*) (2)

W,0x,0y,00

where for an orientation angle o € [0; ) the coefficients a, b, ¢ are defined as:

cos?o  sin’w

a= 202 + 202 G)
x y

sin20  sin 2«

b=~ 402 * 402 )
x y
_sin’o cos’o
€= 202 * 202 ©)
x y

The anisotropic DoG filter is then defined as:

DoG Ansotropic[w,, w,, a, ., 0, , 0, ., 0, ,,](x,y) =

- ©)

W1,01 2,01 0 W2,09 5,092, y,0

We refer to the DoG filter (6) as the Anisotropic or seven-parameter DoG filter based on the
number of associated parameters. The five-parameter DoG filter can be obtained by fixing the
constants w; and w; to be normalizing, i.e. w; = 1/2m, /G, G, . An example of anisotropic Dif-
ference of Gaussians is depicted in Fig 2(c). The usage of anisotropic difference of Gaussians
allows detecting different kinds of elongated blobs with only three additional trainable param-
eters per filter (compared to the two- or four-parameter versions).
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Opverall, DoG filters provide a simple way to parameterize blob-detecting linear filters using
a small number of parameters. They can also be extended to three-dimensional blob detection
in a straightforward manner. Since in three dimensions generic linear filters come with an
even larger number of parameters, the use of DoG parameterization is even better justified.
Here, one natural choice would be to use differences of Gaussian filters that are isotropic
within axial slices and use a different variance (bandwidth) along the axial dimensions:

Gw,aﬁaz (x7 Y, Z) =w exp(— - _) (7)

DOG 3D[W17 w27 617 62’ Jl,z’ 0—232] = Gwl,o‘l,al‘z - GW(_)‘(TQ,O'Z.Z (8)
Generally, as axial resolution in 3D fluorescence microscopy is typically lower, o; , is also taken
to be larger than o;. The filter (8) provides a six-parameter parameterization of a family of 3D
blob detection filters (one of which is visualized in Fig 2(d)), whereas a generic 3D filter takes
O(d’) parameters, where d is the spatial window size.

“Shallow” DoGNet

The shallow (single layer) Difference of Gaussians network (DoGNet) is a neural network built
around DoG filters Fig 2(a). It takes as an input a multiplexed fluorescence image, applies mul-
tiple DoG filters (1),(6) or (8) to each of the input channels. Subsequently, DoGNet combines
the obtained maps linearly (which in deep learning terminology corresponds to applying 1 x 1
convolution). The latter step obtains a single map of the same spatial resolution as the input
image. Finally, a sigmoid non-linearity is applied to convert the applied maps into probability
maps.

More formally, we define a single-layer DoGNet as

Y(X;0 =A{y,B,(}) = S(X® DoGy) ®7 + (), (9)

where X denotes the input multiplexed image, ® is the 2D convolution operation, and the vec-
tor B denotes the parameters of all DoG filters. Assuming that the input contains N channels,
and each channel is filtered with M DoG filters, the application of all DoG results in M x N
maps. Those maps are then combined into K maps using a pixel-wise linear operation (which
can be treated as a convolution with 1 x 1 filters). The tensor corresponding to such linear
combination and containing K x M x N values is denoted y.

To each of the obtained K maps, the bias value { is added, and finally all obtained values
are passed through the element-wise sigmoid non-linearity S(x) = 1/(1 + exp(—x)). Overall, 0
in (9) denotes all learnable parameters of the DoGNet.

In the case of the single-layer DoGNet, the output has a single map (i.e. K = 1). Except for
the last sigmoid operation, the single-layer DoGNet contains only linear operations and can be
regarded as a special parameterization of the linear filtering operator that maps the input M
maps to several output maps, usually two maps.

Deep DoGNet
The deep DoGNet architecture is obtained simply by stacking multiple DoGNet layers (9):
O(X;0=10,...0,}) =¥Y(¥Y(... ¥YX0,)...;0,,):0,), (10)

where T is the number of stacked single layers DoGNets, and 6, denotes the learnable parame-
ters of the t-th layer. The final number of maps Ky is once again set to one, so that the whole
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network outputs a single probability map. However, the numbers of layers K that are output
by the intermediate DoGNet layers would typically be greater than one. In our experiments
the number of sequential layers T was set to three.

Flement-wise multiplication

Inspired by an idea from [32], instead of producing a single probability map, our network
delivers two independent maps and using the element-wise product of those maps we get the
final map. We have implemented this approach as a separate layer and that does not require
any trainable parameters. In the case of synapses, this step allows reducing the effect of dis-
placement between pre- and postsynaptic punctae by learning probability maps independently
for pre and postsynaptic signals. Given several probability maps (for pre- and postsynaptic
punctae) the element-wise products will act as a logical operator “AND,” highlighting the
intersection between those maps, where the synaptic cleft is located. In our research we use ele-
ment-wise multiplication not only for DoGNets but for baselines as well, they all benefit from
this layers.

DoGNet initialization

We have found that appropriate parameter initialization is key to obtaining reproducible
results with our approach. Popular neural networks have a redundant number of parameters
and are initialized by sampling their values from a Gaussian distribution. This initialization is
not suitable for DoGNets because of the relatively small number of parameters. Instead, we use
a strategy from object detection frameworks [34]. This approach consists of initialization with
a range of reasonable states (priors). An optimization procedure selects the best priors and
tunes their parameters. In DoGNet we use Laplacian of Gaussians with different sizes that are
sampled from a regular grid as priors. Specifically, we obtain the Gaussian variance (sigma) by
splitting the line segment [0.5, 2] into equal parts. The number of parts depends on the number
of DoGs reserved for each image plane (in our experiments that number was set to five). We
set the difference-variance in the Laplacian of Gaussians to 0.01. For example, if we set the
number of DoGs for a channel to 3, the sigmas will be 0.5, 1.25, and 2, respectively.

Training DoGNets

We train the described architecture by minimizing the softdice loss (11) proposed in [35]
between the predicted probability map W(X; 6) and a ground truth mask Y,:

> Y, W(X;0)
SYEX 0+ YY)

Here, sums are taken over individual pixels, and in the ground-truth map Y, all pixels belong-
ing to synapses are marked with ones, while the background pixels are marked with zeros. In
the experiments we found that on the imbalanced data typical for synapse detection problems,
this loss performs better than standard binary cross entropy.

In order to optimize this loss function, partial derivatives with respect to DoGNet parame-
ters dL/d0 must be obtained, which may be accomplished via backpropagation [33]. The back-
propagation process computes the partial derivatives with respect to the filter parameters
at each of the spatial positions within the spatial support of the filter (which we limit to 15 pix-
els). The partial derivatives with respect to the DoGNet parameters are then obtained by differ-
entiating formulas (1),(6) or (8) at each spatial location and multiplying by the respective
derivatives.

L(X,Y,)=1-2 (11)
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The ground truth mask Y, as well as the input images X for the training process are
obtained using a combination of manual annotation and artificial augmentation. The synapse
detection in FM images is a challenging and arguably ambiguous task even for human experts.
Furthermore, even a small, 100 x 100 pixel region of an image might contain more than 80
synapses. In practice it is impossible to annotate the borders of each synapse accurately, there-
fore the experts were asked to mark the centroid of synapses only, corresponding to the synap-
tic cleft, after which all pixels within a radius of 0.8um were assigned to the corresponding
synapse. We trained DoGNets for 5000 epochs. Each epoch is a set of ten randomly cropped
subsamples 64 x 64 from the annotated training dataset. Because DoGNets have few parame-
ters, we found that the training processes converged rapidly typically requiring only several
minutes on an NVidia Titan-X GPU for the datasets described below. Once trained, inference
can be performed on a CPU as well as on a GPU using the implementations of Gaussian filter-
ing that may be optimized for a particular computing architecture. Our implementation uses
the PyTorch deep learning framework [36], which allows for concise code and benefits from
automatic differentiation routines.

Post-processing

Because both shallow and deep versions of DoGNet produce probability maps rather than lists
of synapse locations and parameters, these probability maps need to be postprocessed in order
to identify synapse locations and properties. Toward this end, first, we reject points with low
confidence by truncating the probability maps using a threshold of 7 of 0.5. In order to extract
synapse locations from the probability map produced by the DoGNet, we need to find local
maxima. In standard fashion, we greedily pick local maxima in the probability map, traversing
them in the order of decreasing probability values while suppressing all maxima within a cut-
off radius R = 1.6um from previously identified maxima (so called non-maxima suppression)
[37]. The output of this procedure is the x and y locations of synaptic puncta.

The next step is to describe each detected punctum with a vector containing the informa-
tion about the detected synapse. To obtain a descriptor for a synapse, we select a small window
of the same radius R = 1.6um around its location, fit Gaussian distributions to each of the
input channels, and for each protein marker we store the average intensity, the displacement
of the Gaussian mean with respect to the window center, the Gaussian orientation, and its
asymmetry. Evaluating the quality of such a descriptor is left for future work.

Results
Datasets

The proposed method and a set of baselines were evaluated on four independent datasets for
which synapses were annotated manually: [Collman15] dataset of conjugate array tomography
(cAT) images [16], [Weiler14] dataset of array tomography (AT) images [17], [PRISM] dataset
of multiplexed confocal microscopy images [6], and a synthetic dataset that we generate here.
Each published experimental dataset was obtained using fluorescence imaging based on com-
mercially available antibodies, with synapsin, vGlut, and PSD-95 markers common to the data-
sets. At the end of section, we additionally perform comparisons using synthetic dataset with
excitatory and inhibitory synapse sub-types.

Compared methods

In each of our trials we compared several DoGNet configurations with several baseline meth-
ods including reduced version of the fully convolutional network (FCN) [15], and an encoder-
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decoder network with skip connections (U-net) [8]. An exhaustive comparison between differ-
ent deep architectures is a nearly impossible task, mostly because of an infinite number of pos-
sible configurations. Nevertheless, we have done our best to tune the parameters of the
baseline methods. The best-performing variants of the baseline architectures (FCN, Unet)
were used in the experiments and are described in detail in the supplementary material. To
make our evaluation more direct, we have designed the competitive networks to have the same
receptive field (FOV) (arbitrarily chosen to 15 pixels). We have also evaluated two manually-
tuned methods, namely the probabilistic synapse detection method [32] and the image pro-
cessing pipeline proposed in [38]. Detailed technical background on these architectures are
described in supplementary materials.

The DoGNet architecture has two major options: Shallow and Deep, with the Shallow
option corresponding to a single layer and the Deep option corresponding to number of
sequential layers. The second word in our notation Isotropic or Anisotropic indicates the num-
ber of degrees of freedom in the DoG parameterization, e.g. Isotropic denotes four-degree
DoG (1). The number of DoG filters for each channel was arbitrary set to five. We also evalu-
ated a simple ablation denoted as Direct that takes the Shallow Isotropic DoGNet architecture
and replaces DoG-parameterized filters with 15 x 15 unconstrained filters (thus using Direct
parameterization)(see Supplementary Information).

Error metrics

The quality of synapse detection was estimated using the standard metrics: precision, recall,
and F1-score, with the output of each method consisting of the set of points denoting synapse
coordinates. True positives were estimated as the number of paired points between annotation
and detection provided the distance between them was less than half of the mean synapse
radius (p = 0.6um). To avoid multiple detections of synapses (false positives), we require that
each detected point can be matched at most once. Detections and annotations without pairs
were considered to be false positives and false negatives, respectively. The precision measure
was then computed as the ratio of true positives to all positives, and the recall measure as the
ratio of true positives to all synapses contained in the annotation. The F1-score combines the
precision and recall in one criterion by taking the double product of recall and precision
divided over their sum. For evaluation purposes, we also added the AUC criterion correspond-
ing to the area under the ROC curve obtained by varying the confidence threshold 7. This cri-
terion is stable to the threshold choice and depends on the quality of the probability map
produced by a method. For different thresholds, we estimated the conjunctions between prob-
ability map and ground truth binary segmentation pixel-wise.

For quantitative comparison, we have also used the absolute difference in counting (|DiCl|).
This metric merely computes the difference between the number of synapses detected using a
method and the ground truth. This measure does not answer the question of how well a syn-
apse was localized but still gives additional insight into quantitative results.

Since the training procedure is a probabilistic process depending on initialization and data
sampling, we estimate each value as the mean of five independent runs.

Results on PRISM dataset

To verify our method on PRISM data [6], we performed manual dense annotation of several
image regions of a dataset of FM images obtained using this technique. The manual annotation
was performed by two experts using synapsin, vGlut, Bassoon and PSD-95 channels. Each
expert annotated three regions. The total set was made of six regions and split into training,
validation (392 synaptic locations) and testing subsets (173 synaptic locations). Each subset
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Table 1. Comparison of several variations of DoGNets and several baselines on PRISM dataset.
Method # params F1 Score Precision Recall AUC |DiC|
ConvNets
Direct 3392 0.74 0.66 0.84 0.85 17.67
FCN 3002 0.75 0.73 0.77 0.84 7.44
Unet 622 0.80 0.78 0.83 0.88 10.44
DoGNets
Shallow Isotropic 62 0.78 0.72 0.87 0.91 15.22
Shallow Anisotropic 107 0.83 0.81 0.86 0.91 4.89
Deep Isotropic 140 0.81 0.81 0.82 0.89 9.78
Deep Anisotropic 230 0.80 0.81 0.80 0.83 7.89
Manually tuned methods
Nieland 2014 [38] - 0.78 0.72 0.84 0.82 1.
Simhal 2017 [32] - 0.50 0.45 0.58 0.68 21.

https://doi.org/10.1371/journal.pcbi.1007012.t001

consisted of two regions annotated by different experts, with test regions overlapped in order
to estimate inter-expert agreement. For synapse annotation, we developed a graphical user
interface. This software allows selecting image channels and regions. As we solve the task of
semantic segmentation during the training, we need a densely annotated image region. We
mark each synapse with a point approximately at the synaptic cleft.

Evaluation against baselines is presented in Table 1. Due to circular puncta shape and the
relatively small displacement of markers, the optimal method was Shallow Anisotropic with
only 107 trainable parameters. This configuration also performed considerably better than the
Direct Ablation approach, highlighting the advantage of using DoG parameterization in place
of direct parameterization of the filters.

We performed several analyses in order to evaluate agreement between three independent
human experts as well as between the experts and our method (Table 2). Importantly, the pro-
posed network agreed with the Experts similarly to the agreement between the Experts
themselves.

Results on Collman15 dataset

In this dataset, the alignment of electron microscopy (EM) and array tomography (AT) images
provides the ground truth for synapse detection using fluorescence markers. Using high
resolution EM data synaptic clefts and pre- versus post- synaptic sites can be identified unam-
biguously, which was used as validation for the synapse detections from fluorescence data (Fig
3(a)). The dataset contains 27 slices of 6310 x 4520 pixels each, with a resolution of

2.23 x 2.23 x 70 nm, and contains annotation with pixel-level segmentation of synaptic clefts.

Table 2. Agreement between DoGNet and three independent human experts on the task of synapse detection on
the PRISM dataset.

Trial F1 Score Precision Recall
Shallow Isotropic vs Expert 1 0.83 0.83 0.84
Shallow Isotropic vs Expert 2 0.87 0.91 0.83
Shallow Isotropic vs Expert 3 0.86 0.90 0.83
Expert 1 vs Expert 2 0.82 0.86 0.78
Expert 3 vs Expert 2 0.81 0.81 0.8
Expert 3 vs Expert 1 0.77 0.79 0.8

https://doi.org/10.1371/journal.pcbi.1007012.t002
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(a) Collman15 dataset (b) PRISM17 dataset (c) Weiler14 dataset

Fig 3. Results of DoGNet synapse detection on distinct datasets. Yellow arrows denote synapse orientation from presynaptic to postsynaptic sides.
(a) The Collman15 dataset is a mixture of EM and FM images (EM is shown in grayscale, the red, green, and blue channels show the intensity of
synapsin, vGlut, and PSD95 respectively). (b) The PRISM dataset. False color scheme has red channel corresponding to synapsin, blue to PSD95, and
green to the cytoskeletal marker MAP2, which indicates how synapses are distributed along microtubules. (c) The Weiler14 dataset. The red, green, and
blue channels show the intensity of synapsin, vGlut, and PSD95, respectively.

https://doi.org/10.1371/journal.pcbi.1007012.9003

In order to fit our training procedure, we have used only synaptic cleft centroid coordinates.
The EM resolution is much greater, so AT data were interpolated to be aligned with EM data.
Provided we utilize solely AT data, its original resolution of 0.1um per pixel can be recovered
without losing any information. The first five slices were used as the train dataset, whereas the
remainder (slices 6-27) served as the test dataset.

Results of our evaluation (Table 3) show that shallow DoGNets exhibit highest performance
in terms of the F1-measure. The receptive field 15 x 15 pixels followed by inter-channel ele-
ment-wise multiplication allow capturing highly displaced markers puncta combinations.
Displacements in marker punctae occur because synapses are 3D objects with random orienta-
tions. Therefore, the presynaptic and postsynaptic signals in the image plane produce dis-
placed peaks up to a half of a micron. The closest-performing ConvNet architecture was U-net

Table 3. Comparison of several variations of DoGNets and several baselines on the [Collman15] dataset. The ‘Shallow3D’ network uses the 3D version of DoGNet,
while other variants operate on 2D slices independently. Optimal performance was obtained using Shallow DoGNets.

Method params
ConvNets

Direct 3392
FCN 3002
Unet 622
DoGNets

Shallow Isotropic 62
Shallow Anisotropic 107
Shallow3D 61
Deep Isotropic 140
Deep Anisotropic 230
Manually tuned methods

Nieland 2014 [38] -
Simhal 2017 [32] -

https://doi.org/10.1371/journal.pcbi.1007012.t003

F1 Score Precision Recall AUC |DiC|
0.69 0.79 0.62 0.88 11.19
0.71 0.72 0.70 0.79 4.12
0.73 0.73 0.73 0.91 4.26
0.75 0.74 0.76 0.90 4.25
0.75 0.75 0.76 0.88 4.26
0.68 0.62 0.77 0.65 9.13
0.73 0.77 0.71 0.97 4.99
0.71 0.77 0.33 0.87 7.72
0.37 0.49 0.32 0.63 16.5
0.65 0.52 0.89 0.74 -
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with 622 trainable parameters; increasing the number of its parameters led to overfitting and
therefore lower performance on the test dataset examined here.

The AT stains include markers specific for excitatory (vGlut, PSD95) and inhibitory
(GABAergic, gephyrin) synapses. In our experiments, the use of inhibitory markers did not
improve the detection scores. Moreover, the precision of all trainable methods was consider-
ably lower using only inhibitory markers (synapsin, GABA, gephyrin).

Results on Weiler dataset

The Weiler dataset [17] consists of 12 different neural tissue samples. Each sample was stained
with a number of distinct antibodies including synapsin vGlut, and PSD-95. For each stain, 70
aligned slices were acquired using array tomography (AT). Each slice was a 3164 x 1971 pixel
image with spatial resolution of 0.2um per-pixel. This dataset does not have any published
annotation.

We investigated the ability of DoGNets to generalize across distinct datasets by applying
networks trained on the well-annotated [Collman15] dataset, which was annotated using serial
electron microscopy data, to the previously unlabeled AT dataset [Weiler14] [17]. Generally,
the staining of [17] is similar to the Collman15 dataset [16]. Thus, we first performed a coarse
alignment by resizing [Collman15] images and applying linear transforms to the intensities of
each channel so that the magnification factors, means, and standard deviations of the intensity
distributions were matched. The architectures trained on [Collman15] were then evaluated on
[Weiler14].

Qualitative examples of this cross-dataset transfer are shown in Fig 3. For quantitative vali-
dation we generated manual annotations of two randomly selected regions of the [Weiler14]
dataset using the same software that we have used for [PRISM] annotation. We observed that
the levels of agreement between the results of the DoGNet Shallow Anisotropic trained on
[Collman15] dataset and each of the experts were similar to the level of inter-expert agreement
(in terms of the F1 score).

The results of this cross-dataset validation are shown in Table 4. Importantly, while the per-
formance of compared methods, did not diminish dramatically. In fact, the DoGNets actually
improved in their performance, which we attribute to the fact that in the Weiler dataset all
expert annotations were based on FM images, rendering the analysis more straightforward in

Table 4. The quantitative validation of DoGNet trained on [Collman15] cAT dataset and applied to [Weiler14] dataset. Differences with F1 scores on [Collman15]

cAT dataset are shown in parentheses.

Method # params F1 Score Prec. Recall AUC |DiC|
ConvNets

Direct 3392 0.72 (0.03)T 0.79 0.66 0.88 5.33
FCN 3002 0.64 (-0.07)| 0.85 0.51 0.84 19.
Unet 622 0.79 (0.06)T 0.85 0.74 0.97 4.33
DoGNets

Shallow Isotropic 62 0.85(0.1)7 0.83 0.88 0.96 3.33
Shallow Anisotropic 107 0.83 (0.08)7T 0.88 0.78 0.94 3.33
Deep Isotropic 140 0.88 (0.15)7 0.83 0.95 0.93 3.33
Deep Anisotropic 230 0.71 (0.0) 0.80 0.63 0.90 7.33
Manually tuned methods

Nieland 2014 [38] - 0.64 (0.27)7 0.66 0.62 0.44 2.
Simhal 2017 [32] - 0.65 (0.0) 0.81 0.55 0.55 13.

https://doi.org/10.1371/journal.pcbi.1007012.t1004
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comparison with the [Collman15] synapses that are visible in EM data but not in the FM data
that were not included.

Synthetic dataset

In order to further evaluate our approach rigorously in a fully controlled setting, we also
applied it to a synthetic dataset. The goal of the evaluation of DoGNet using synthetic data was
to estimate the quality of synapse detection compared with baseline procedures for distinct lev-
els of signal-to-noise ratio; including the presence of spurious synapses; and for different pre-
synaptic-to-postsynaptic markers displacements on image planes to emulate the 3D structure
of synapse. Further, this systematic evaluation using synthetic data addresses questions regard-
ing meta-parameter choice, methodological limitations, and the justification of neural network
usage for synapse detection tasks. Because the number of training samples was unlimited, deep
networks with a large number of parameters were unlikely to overfit the data.

Our dataset models three entities: true synapses, spurious synapses that emulates false bind-
ings, and random noise. We emulated true synapses and spurious synapses using Gaussian
probability density functions placed in different image planes with additive white noise, where
each image plane refers to a specific protein marker such as synapsin, vGlut, PSD-95, vGat or
gephyrin. To assess the generalized performance of different architectures, in our synthetic
experiments we simulated both excitatory and inhibitory synapses.

Spurious synapses are made to emulate false bindings in combination with random noise in
order to act as a distraction for the classifier to evaluate its robustness. An actual synapse has
intensity peaks at least in one presynaptic and in one postsynaptic image plane, while spurious
synapses have peaks only in presynaptic or postsynaptic channels, but never in both. An exam-
ple of a true excitatory synapse might be a signal that has a punctum in synapsin, vGlut and
PSD-95 markers separated by a distance less than a half of a micron. An inhibitory synapse
would have punctae in synapsin, vGat and gephyrin. The displacement in markers punctae,
caused by the 3D structure of synapses, makes the process of differentiation between actual
and spurious synapses considerably more challenging, thereby rendering the simulation more
realistic. The intensity of the synaptic signal were emulated using Log-Normal distribution
with zero mean and 6 = 0.1.

Modeling synapses using isotropic Gaussians in our synthetic dataset enables the initial
evaluation of purely isotropic DoGNets. First the sensitivity of the approach to signal-to-noise
ratio was evaluated (Fig 4). Results indicate that small convolutional neural networks are sensi-
tive to initialization and may become trapped in local minima, whereas DoGNet performance
was more robust, although DoGNets initialized randomly rather than using our initialization
scheme also suffered from local minima. Importantly, deeper architectures were capable of
handling larger displacements between punctae (Fig 5). This result is anticipated because
multi-layer architectures have larger receptive fields and capture more non-linearities, allow-
ing the capture of more complex relations in the data. For example, in the presence of substan-
tial displacements, at least one additional convolution layer followed by an element-wise
multiplication was needed to perform a logical AND operation between pre and post synaptic
channels after blob detection [32].

We also present a study of training with limited examples. We have evaluated trainable
methods (Direct, FCN, U-Net, Shallow Isotropic, Deep Isotropic) on fixed size crop without
any augmentation in search of minimal size of image region when each method starts work
suitable the signal-to-noise ration was sent to approx 4.5 and the maximal displacement to two
pixels. We present the results of this study in (Fig 6). We show that Shallow and Deep DoG-
Nets are able to learn a simple signal like a multiplexed blob form only few samples.
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Discussion

We introduce an efficient architecture (DoGNet) for the automatic detection of neuronal syn-
apses in both cultured primary neurons and brain tissue slices from multiplexed fluorescence
images. Under some conditions, the accuracy of DoGNet accuracy approaches the level of
agreement between human annotations. DoGNet also outperforms ConvNets when the num-
ber of training examples is limited. Importantly, the DoGNet approach is capable of efficiently
integrating a number of different input images from multiplexed microscopy data with a larger
number of channels, which can be prohibitively difficult for human experts to accomplish effi-
ciently. This allows for the detection of synapses in large datasets and facilitates downstream
quantitative analysis of synaptic features including brightness or intensity, size, and

asymmetry.

Neiland2014
Simhal2017
Direct

FCN

U-Net

Shallow Isotropic
Deep Isotropic

0.0 1.0 2.0 4.0
Punctae displacement

Fig 5. Methods sensitivity to punctae displacement. With increasing displacement, it is more difficult to discriminate between true synapses and
spurious synapses. The quality of the segmentation map produced by DoGNets decreases more slowly than that of other methods.

https://doi.org/10.1371/journal.pcbi.1007012.g005
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Fig 6. Methods sensitivity to small numbers of training examples. Comparison of different trainable architecture baselines with DoGNets for various
amount of training data. In this experiment, the training sets corresponded to patches of different sizes, ranging from 45 x 45 pixels (with
approximately 12 synapses) to 128 x 128 (with approximately 96 synapses). The maximal displacement was set to two pixels, the signal-to-noise ratio
was fixed to 3.0, and no augmentation such as random cropping was applied. Shallow DoGNets need only few examples to reach acceptable
performance. With a sufficient number of examples the baseline architecture can perform as well as or better than DoGNets.

https://doi.org/10.1371/journal.pcbi.1007012.g006

The robust automated detection of synapses is important for downstream synapse classifi-
cation, particularly as multiplexed imaging modalities such as PRISM are applied to larger-
scale genetic and compound screens, which rely on phenotypic classification of synapses to
understand the molecular basis of neurological diseases. By integrating features of synapses
detected using machine learning techniques, the proposed method can be used to classify syn-
apses to study their identities and spatial distributions. In conjunction with dendrite and axon
tracking [39], this approach may be used to build connectivity maps, tracing synaptic connec-
tions for each individual neuron.

DoGNet is computationally efficient during both training and inference. Training the sim-
plest model Simple Isotropic required only 7.37 seconds on an NVidia TitanX GPU and 37.84
seconds on Intel i7 CPU for 2000 epochs, which is several times faster than training U-Net and
FCN ConvNets. Each epoch is an array of ten patches 64 x 64 pixels randomly cropped from
the training set. The inference process for a 1000 x 1000 image requires only 0.001 second on a
Titan-X GPU and only 0.1 second on Intel i7 CPU. Most of this time is consumed by post-pro-
cessing, making it suitable for both high-throughput studies and small-scale experiments with-
out GPU acceleration. The proposed architecture is not specific to synaptic images, and can be
applied to other cellular or tissue features where objects of interest show punctate spatial pat-
terning, such as single molecule annotation in super-resolution imaging and single-particle
tracking, detection of exocytic vesicles, and detection of puncta in mRNA FISH and in situ
sequencing datasets [20, 21]. In cases where high precision estimates of puncta features, such
as their spatial extent and centroid positions exists, it may be beneficial to follow DoGNet seg-
mentation with dedicated point spread function (PSF) fitting methods such as Maximum Like-
lihood Estimation or Least Squares fitting. In this case, DoGNet could be used to improve and
streamline initial segmentation tasks that generally occur prior to more robust PSF fitting
methods in analysis pipelines [40, 41].

Despite the preceding strengths, the proposed method also has several limitations, most of
which are common to supervised methods. First, DoGNet is useful for synapses because syn-
apse sizes are on the order of the resolution of the light microscope, and thus present as diffrac-
tion limited spots. However, this approach would be unsuitable to more complex, larger
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objects such as nuclei, bacterial cells, or possibly large organelles. In summary, DoGNets are
limited to the class of 2D signals with a convex shape and limited radius (blobs). A second lim-
itation is the dependency on the proper parameter initialization scheme. For DoGNets, which
have fewer parameters, improper initialization of a single parameter, for example setting o
close to zero, can cause the entire network to diverge. In contrast, ConvNets with a larger
number of parameters can more easily recover from improper initialization. Notwithstanding,
we have found that our initialization scheme for DoGNets works reliably across multiple runs
and distinct datasets. For practical use, shallow DoGNet seems to be more reliable than deep
DoGNets. We note that shallow DoGNet can still become a part of more complex networks.

We have also shown the ability of DoGNets to transfer across datasets by training them on
one AT dataset [Collman15] and applying them to another, distinct dataset [ Weiler14]. This
type of transfer may prove useful in the detection of synapses with high confidence by training
DoGNet on either cAT data sets such as [Collman15] [16] or highly multiplexed datasets such
as [PRISM] [6], which are more difficult to acquire experimentally but facilitate synapse anno-
tation with higher certainty. Specifically, electron microscopy allows for highly robust synaptic
annotation through conserved features of the synaptic cleft and the post-synaptic density,
whereas multiplexed fluorescence data allow for accurate annotation of synapses through the
colocalization of multiple synaptic markers.

Conclusion

We present DoGNet—a new architecture for blob detection. While DoGNets are applied here
to synapse detection in multiplexed fluorescence and electron microscopy datasets, they are
more broadly applicable to other blob detection tasks in biomedical image analysis.

Due to their low number of parameters, DoGNets can be trained in a matter of minutes,
and are suitable for non-GPU architectures because the application of a pretrained DoGNet
amounts to a sequence of Gaussian filtering and elementwise operations. In our experiments,
DoGNets were able to robustly detect millions of synapses within several minutes in a fully
automated manner, with accuracy comparable to human annotations. This computational effi-
ciency and robustness may prove essential for the application of multiplexed imaging to high-
throughput experimentation including genetic and drug screens of neuronal and other cellular
systems.

Supporting information

S1 Text. Baseline network architectures.
(PDF)

S1 Fig. Results of Shallow Isotropic DoGNet on PRISM dataset. The top image is the origi-
nal one, the middle is the probability map produced by DoGNet and on the bottom is the over-
lay of detected synapses on the original image. Detected synapses are denoted with a red
arrow, indicating their orientation concerning pre- and postsynaptic sides. The ground truth
synapses locations are depicted using white crosses. Yellow bounding box highlights the

densely annotated region.
(TIF)

S2 Fig. Results of Deep Anisotropic DoGNet on the Weiler14 dataset.
(TIF)

S3 Fig. Results of Deep Isotropic DoGNet on the Collman15 dataset.
(TIF)
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