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Microscopy is a central technology of biomedical research, 
mentioned in nearly one million PubMed-indexed sci-
entific papers to date (PubMed search ‘microscopy 

OR microscope OR microscopic’, accessed 7 October 2018). 
Increasingly, the images produced are analyzed quantitatively1–3. 
Various microscopy techniques allow capturing structural and 
functional properties of biological model systems, including cul-
tured cells, tissues and organoids. As microscopy makes progress 
to capture such systems in greater detail and throughput and as the 
development of novel assays reveals more complex properties of 
living organisms, the need for robust and easy to use microscopy 
image analysis methods becomes critical to answer a wider variety 
of biological questions.

Many image analysis workflows involve the identification (seg-
mentation) of cell nuclei as a first step to extract meaningful biolog-
ical signals. Research studies may involve counting cells, tracking 
moving populations, localizing proteins and classifying phenotypes 
or profiling treatments; in all of these and more, the nucleus is a reli-
able compartment of reference for identifying single cells in micros-
copy images.

However, selecting strategies to segment nuclei is not an easy 
task for nonexpert users in regular biology labs. Most existing 
user-friendly bioimage analysis tools4–6 identify nuclei using clas-
sical segmentation algorithms such as thresholding7, watershed8 
or active contours9. These need to be configured for each study to 
account for different microscopy modalities, scales and experimen-
tal conditions, often requiring great expertise to select the algorithm 
that suits the problem and to adjust its parameters. For advanced 
users, the choice can also be daunting, considering that hundreds 
of papers are published every year presenting new methods for cell 
and nucleus segmentation. And even under controlled experimen-
tal conditions, no single parameter choice can segment all images 
correctly, because classical algorithms can fail to adapt to the het-
erogeneity of biological samples or can be sensitive to technical arti-
facts10–12. Altogether, this situation slows down the pace of research 
and hinders biological laboratories from adopting imaging technol-
ogies owing to the time and expertise required.

Here, we explore the idea of creating a segmentation model 
that can identify the nucleus of cells automatically in a diverse set 
of stained two-dimensional (2D) light microscopy images with-
out human interaction. Such a model could power future robotic  

microscopes to facilitate a wide range of biological applications, by 
finding and counting nuclei in images in real time across cell types, 
staining types, magnification and in spite of experimental varia-
tions. A single trained model effective across instruments, stains 
and cell types would improve the experience of biologists and speed 
their research. Classical algorithms for identifying nuclei in micros-
copy images follow very similar computational strategies, with vary-
ing parameters or configurations (Methods, Supplementary Note 
3). Our goal was to investigate whether any modern solutions, such 
as large capacity deep-learning models, could provide a single uni-
fying solution without requiring manual configuration.

Biological image segmentation on the basis of machine learning 
already exists in user-friendly software, such as Ilastik13 and ImageJ14, 
and recent studies confirm the usefulness of this approach15. Deep 
learning has shown great potential to solve difficult problems in 
cellular image analysis16, and neural network models for image seg-
mentation also exist17–20. However, existing solutions require users to 
create models that are customized for each experiment, taking time 
to prepare annotations, train models and/or configure algorithms. 
We instead aimed to create a generic, reusable model that is trained 
once and can be shared and run on a variety of fluorescence micros-
copy experiments without additional user intervention. We envi-
sioned software tools for nucleus segmentation that can be used with 
the same ease and robustness as face detectors in natural images; 
they just work, without users having to train models or to configure 
settings and under varying lighting and scenery conditions.

This paper reports the results of the 2018 Data Science Bowl, 
which challenged participants to segment nuclei in a variety of 2D 
light microscopy images without the need for any manual interac-
tion or adjustment. The competition provided participants with 
a training set of images comprising problems (images contain-
ing nuclei) along with the corresponding solutions (segmentation 
masks for the nuclei) and test sets of images for which they had to 
generate the segmentations using a two-stage evaluation protocol. 
Importantly, the holdout set was comprised of 15 diverse image sets 
from biological experiments that were not present in the training 
set, to realistically evaluate how well the algorithms perform across 
different experimental conditions. This is the first time that nucleus 
segmentation methods have been challenged to generalize by oper-
ating blindly on unseen biological experiments without user inter-
action or additional annotation/training.
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Segmenting the nuclei of cells in microscopy images is often the first step in the quantitative analysis of imaging data for biolog-
ical and biomedical applications. Many bioimage analysis tools can segment nuclei in images but need to be selected and con-
figured for every experiment. The 2018 Data Science Bowl attracted 3,891 teams worldwide to make the first attempt to build 
a segmentation method that could be applied to any two-dimensional light microscopy image of stained nuclei across experi-
ments, with no human interaction. Top participants in the challenge succeeded in this task, developing deep-learning-based 
models that identified cell nuclei across many image types and experimental conditions without the need to manually adjust 
segmentation parameters. This represents an important step toward configuration-free bioimage analysis software tools.
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Results
The 2018 Data Science Bowl. For the competition, we created a 
dataset with 37,333 manually annotated nuclei in 841 2D images 
from more than 30 experiments across different samples, cell lines, 
microscopy instruments, imaging conditions, operators, research 
facilities and staining protocols. The annotations were manually 
made by a team of expert biologists that followed a collaborative 
workflow (Methods), and we call these ‘target masks’ instead of 
ground truth, given that each annotation was created by a single 
expert and reviewed by the rest. Researchers around the world 
freely contributed the images and agreed to a Creative Commons 0 
license (public domain); our team’s annotations are similarly freely 
available. This dataset is publicly accessible in the Broad Bioimage 
Benchmark Collection with accession number BBBC038.

The challenge was run for a total of 3 months in which par-
ticipants had access to the training set (with target masks) and the 
first-stage test sets (with target masks withheld). The evaluation of 
competitors’ predictions on the withheld masks of the first-stage 
test set powered the leaderboard, and in the final week of the com-
petition, a second-stage test set (with target masks withheld) was 
released to determine the challenge winners. This second-stage 
evaluation aimed to assess the robustness of models to segment new 
images from new experiments and to also evaluate the ability of the 
models to run completely autonomous segmentation without user 
interaction. To deter manual intervention on the images, the sec-
ond-stage holdout set had 3,200 images with approximately 100,000 
single nuclei that had to be segmented in <7 d, only a small fraction 
of which had accompanying manually defined target masks and 
were actually used for scoring (Methods). Participants uploaded 
their segmentation masks to the Kaggle server (https://www.kaggle.
com/c/data-science-bowl-2018), which validated against the real 
masks hidden from the public, using a quantitative score to rank 
participants (Methods).

A total of 17,929 competitors signed up for the competition in 
3,891 teams during the first stage and 739 teams made successful 
entries during the second stage to compete for US$170,000 in cash 
and prizes. Overall, participants submitted a total of 68,017 submis-
sions throughout the duration of the competition. This contest fos-
tered the development of new methods with contributions of data 
scientists around the world that usually do not work on microscopy 
images, bringing state-of-the-art innovations. The top three par-
ticipants, among many other competitors in the challenge, made 
their solutions open source, which will facilitate their adoption and 
extension by the wider scientific community.

Top solutions improve usability and accuracy of nucleus segmen-
tation. In the second-stage evaluation, competitors were not per-
mitted to use any nonautomated, image-specific configuration. As a 
result, the winning models yielded a major improvement in usabil-
ity compared to current practices for microscopy image segmenta-
tion, which need either algorithm selection and tuning (for classical 
methods) or manual annotations (for machine-learning methods) 
for different image sets.

When compared to a reference segmentation obtained with clas-
sical image processing techniques adapted for the holdout image 
sets using minimal user intervention (Methods), we found that 85 
candidate algorithms from the challenge yielded higher accuracy 
(Fig. 1a). In particular, the top three solutions outperformed these 
minimally tuned classical algorithms by a large margin, producing 
better segmentations over all coverage thresholds (Fig. 1b). We eval-
uated the accuracy of the segmentations using metrics common in 
computer vision research for object segmentation (Methods).

Importantly, the segmentations obtained with classical image 
processing algorithms, unlike the methods in the challenge, required 
manual configuration; there exists no classical algorithm that could 
claim to produce reasonable results on 15 diverse image sets with 

no user intervention. In contrast, a novice with no prior exposure 
to bioimage analysis performed substantially worse than the expert 
and the top-scoring deep-learning models (Fig. 1c). The novice and 
expert invested 5 h and 3 h of work to achieve their corresponding 
segmentation results. Embedded in a user-friendly interface, as has 
already been prototyped in the NucleAIzer system21, the top models 
would require no configuration time.

The classical methods were tested by first organizing images into 
five groups using visual inspection, then analysis pipelines were 
created in the open source software, CellProfiler5 (Methods). These 
pipelines are representative of widely adopted techniques surveyed 
recently in the literature of microscopy image segmentation12,22,23, 
though they are likely suboptimal solutions because the techniques 
were not fully optimized for each of the 15 image sets independently 
to prevent overfitting and in keeping with the no- or low-configura-
tion mission of the data challenge.

In addition to reference segmentations using classical techniques, 
we also evaluated the performance of the top-scoring models to 
deep-learning models trained separately for each type of images. 
We chose U-Net17, a popular deep-learning-based method to solve 
microscopy image segmentation problems, including nucleus seg-
mentation20. The learning capacity of a single regular U-Net was 
not sufficient to capture the experimental variation in the challenge 
(such solutions entered the competition); therefore, we trained five 
models to reduce variance, as in the case of classical algorithms, 
and applied image pre and post-processing routines specific to each 
group (Supplementary Note 4). The results show that even spend-
ing ~20 h of hands-on time (development and training time not 
included in our estimates), these models did not reach competitive 
performance compared to the top solution (Fig. 1c). Several factors 
contributed to this result: limited learning capacity of the evaluated 
U-Net relative to the top models, reduced number of training exam-
ples in the five groups after splitting and experimental variability of 
the test sets.

Finally, we asked an additional annotator to create target 
masks for a subset of images in the test set and we observed inter-
observer variability (Supplementary Fig. 3) a well-known prob-
lem24. Interestingly, the top performing model agreed on boundary 
annotations more often with each annotator than they agreed with 
each other (Supplementary Fig. 3). This suggests that the model 
fitted smooth boundaries that were close to the edge of nuclei, 
whereas manual annotations may be biased by subjective noise 
(Supplementary Fig. 5). The performance of the top model was also 
more similar to humans than to classical algorithms in terms of seg-
mentation accuracy (Supplementary Fig. 3). Although we did not 
investigate this result extensively, it suggests that the top models may 
reach human-annotator-like performance with similar error rates.

Best-performing solutions segment a diversity of microscopy 
images. The most challenging aspect of the competition was that 
the holdout set included microscopy images from 15 different bio-
logical experiments, including various 2D light microscopy types, 
acquisition equipment and biological conditions. This is in contrast 
to previous research studies that optimize nucleus segmentation 
methods individually for each image set or type12,18,22,25–28. From a 
visual standpoint, we identified five groups of images comprising 
nuclei of very different appearances, including two major types of 
light microscopy (Fig. 2a): fluorescence microscopy of mainly cul-
tured cells and brightfield microscopy of stained tissue samples. 
Tissue samples are typically a more challenging image processing 
task owing to the irregular appearances of nuclei and their crowded 
layout. Small fluorescent nuclei images are very common in bio-
medical research and the most common in both training and test 
sets. The entire dataset included 31 different experiments (16 for 
training and first-stage evaluation, 15 for second-stage evaluation), 
representing 22 cell types, 15 image resolutions and five groups of 
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visually similar images, resulting in 841 images and 37,333 manu-
ally annotated nuclei (Methods). We omitted dramatically different 
modalities such as unstained brightfield microscopy and electron 
microscopy.

Top participants stood out by making models that generalized 
well across diverse image types and experimental variation (Fig. 2a), 
and despite a heavily unbalanced dataset (Fig. 2b). Dataset biases 
can mislead the performance of machine-learning models29,30; less-
represented image types were indeed challenging to segment for 
the average participant (Fig. 2a). With the largest group of images, 
containing 80% of the training examples, top participants reached 
a maximum accuracy of 0.90 in the test set, and with the smallest 
group, containing 0.6% of the examples, they reached a maximum 
accuracy of 0.55. In all cases, their performance surpassed the refer-
ence CellProfiler segmentations, as well as the average participant, 
by a large margin.

Best-performing solutions reduce segmentation errors. The 
solutions of the top three teams were significantly better than 
the reference segmentations according to the competition score 
and other metrics that we used to analyze the results (Figs. 1–3 

and Supplementary Figs. 3 and 4). The competition score was an 
aggregated metric that considered multiple factors of segmentation 
quality, including precision, recall and object coverage (Methods) 
and could be deconstructed in multiple ways to understand perfor-
mance and error modes.

First, we assessed performance at a single-object coverage 
threshold to interpret the differences in accuracy between the mod-
els. When a threshold equal to 0.5 was chosen (common in previous 
works12,31), the top performing model got an F1 accuracy of 0.889, 
compared to 0.819 for the CellProfiler reference (Supplementary 
Table 3). Note that these results were the average across all images 
from 15 different experiments in the second-stage evaluation, 12 
cell lines and five image types. When we considered fluorescent 
images with only small nuclei, the F1 accuracy of the top perform-
ing model was 0.932, whereas CellProfiler obtained an F1 score of 
0.844 (Supplementary Table 2). Using a threshold of 0.7 (Fig. 2a) 
challenges methods by requiring a larger minimum object coverage. 
We observed that the top three models all surpassed the CellProfiler 
reference for three image types (small fluorescent, purple and 
pink and purple tissues). For the other two image types (big fluores-
cent and grayscale tissue), all but one model performed worse than 
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Fig. 1 | Accuracy and usability of segmentation strategies in the second-stage holdout sets. a, The histogram counts participant teams (n = 739) 
according to the official competition score of their best submission. The top five competitors are labeled in the distribution, as is the reference 
segmentation obtained by an expert analyst using CellProfiler. b, Accuracy of the top three solutions measured as the F1 score at multiple IoU thresholds. 
The scale of the x axis of the histogram in panel a (competition score) is correlated with the area under the curve of the F1 score versus IoU thresholds. 
The top three models had a similar performance with slight differences at the tails of the curves. c, Breakdown of accuracy in the second-stage evaluation 
set for the top performing model and three reference solutions. The distribution of F1-scores at a single IoU threshold (IoU = 0.7) shows points (n = 106) 
that each represented the segmentation accuracy of one image in the set of 106 annotated images of the second-stage evaluation (Methods). The color of 
single-image points corresponds to the group of images defined for reference evaluations (Methods and Fig. 2). The average of the distribution is marked 
with a larger point labeled with the corresponding average accuracy value. d, Estimated time required to configure the segmentation tools evaluated in c 
(Supplementary Note 4).
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the CellProfiler reference, primarily owing to the limited number of 
examples in the training set (Fig. 2).

In general, the top three models reached similar aggregated per-
formance, but exhibited different behavior and error modes. The 
accuracy results can be disaggregated by image type across multi-
ple object coverage thresholds (Fig. 2c), allowing us to identify the 
strengths and weaknesses of each strategy. For instance, the second 
place solution was the best for large fluorescent nuclei (blue line) 
but poorer for grayscale tissue (green line).

We conducted other performance analyses on the top three 
models relative to the CellProfiler reference (Supplementary 
Note 6) and observed reduced error rates from the models, 
which missed fewer objects, successfully separated merged 
nuclei (Supplementary Fig. 6) and improved precision and recall 
(Supplementary Fig. 7). All these observations support the idea 
that the top three solutions can make configuration-free segmen-
tation of 2D stained nuclei a reality.

Top algorithms were on the basis of deep convolutional neural 
networks. The majority of participants used deep convolutional 
neural networks (CNNs), a popular technique to solve computer 
vision tasks32, as well as various microscopy image and pathology 
problems16,26. A wide variety of CNN architectures can be used for 
image segmentation and participants designed creative solutions to 
improve segmentation accuracy. Interestingly, the top three partici-
pants used very different solutions: an ensemble of U-Nets, a fully 
convolutional feature pyramid network (FPN) and a Mask-RCNN 
(region-based CNN) model. Their performance is summarized in 
Table 1 and the main characteristics of each model are described 

below and in the Methods. Figure 3 presents example segmentations 
obtained by these models together with a reference segmentation 
obtained by CellProfiler.

Best-performing solution. A. Buslaev, V. Durnov and S. Seferbekov  
formed the [ods.ai] topcoders team, and introduced a highly 
optimized, multinetwork (ensemble) model with sophisticated 
data augmentation and data post-processing. Coordinating all 
these elements in a successful solution was a major achievement 
because models with larger learning capacity may overfit and fail 
to perform well with new images. Instead, this solution general-
ized well to the holdout of 15 image sets. In terms of computational 
requirements, this was the most demanding solution, as a single  
image needs to be processed by 32 different neural networks using 
graphics processing units (GPUs). In addition, the post-processing 
steps need to check and combine the predicted objects from all 
32 outputs. Altogether, this system was the most accurate, albeit 
at a high computational cost and complexity. More details in the 
Methods section.

Second-best-performing solution. M. Jiang (team name: Jacobkie) 
presented a solution with a good balance of accuracy and speed; 
only a single neural network was used to process new images. Her 
solution introduced several innovations that can be adopted in 
other models, such as a loss function that penalizes errors taking 
into account object size (small objects have as equal weight as large 
objects), the use of distance maps instead of binary masks as a target 
for learning and pretraining with natural-image, object detection 
datasets. More details in the Methods section.
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Fig. 2 | Performance of submitted solutions across varying, imbalanced image types. a, Example images of the five visually grouped image types 
(Methods) are shown across the bottom and the chart shows the spread of F1 scores (Methods) across all second-stage submissions. F1 scores were 
measured at a threshold of 0.7 IoU (Methods). Box plot: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; 
points, outliers; colored points, top three participants. b, The distribution of the various image types is shown, color-coded as in a. The top competitors 
segmented all image types with high accuracy despite the imbalance of examples in the training set. c, Detail of accuracy results by image types and object 
coverage (IoU) thresholds. The x axis displays IoU thresholds and the y axis represents accuracy measured with F1 scores. For each participant, the plot 
displays five curves showing the trend of segmentation accuracy at different object coverage thresholds.
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Third-best-performing solution. A. Lopez-Urrutia (team name: 
Deep Retina) presented a solution on the basis of a single neural 
network that processed regions with candidate objects instead of 
using a fully convolutional approach. The base model is known as 
Mask-RCNN33, which is a popular architecture for object detection 
and instance segmentation in natural images. The simplicity of the 
solution was attractive, as various implementations of this solution 
existed and could be adapted to this problem by retraining the out-
put layers with the right data. In addition, the Mask-RCNN model 
was actively investigated in the computer vision community, mak-
ing innovations readily available to the nucleus segmentation prob-
lem. More details in the Methods section.

Other solutions, participants and strategies. Apart from the  
top three methods, the fourth place solution34,35 by the team  
‘Nuclear Vision’ fell 0.04 points behind third place and combined 
classical watershed transform with modern deep learning36. A  
stage-one U-Net (direction net) was used to predict the direction 
vector of a pixel inside nuclei and to the nearest nucleus bound-
ary. Another stage-two U-Net (water transform net) estimated  
the watershed levels and output the masks, eroded masks and  
mask centers. Such methods may be useful for automatic or  
interactive segmentation, whereby the traditional watershed 
transform energy landscape is replaced by the output of learned  
deep networks.

1st 2nd 3rd CellProfiler

1st place
[ods.ai] topcoders
Ensemble of 32 fully
convolutional networks

2nd place
Jacobkie
Fully convolutional,
feature-pyramid network

3rd place
Deep retina
Mask RCNN: region-based
convolutional network

Reference
CellProfiler
Expert-designed
image-processing pipelines

Correct

Missing

Extra

Fig. 3 | Example segmentation maps for various images obtained by the top three participants and the CellProfiler reference. The segmentation maps 
show pixel-wise alignments between target segmentation masks and predicted segmentations. If the masks align correctly, pixels in the boundaries are 
colored white. If the target mask or part of it is missing, pixels in the boundaries are colored blue. If the predicted segmentation is introduced in a region 
without real object, the boundary pixels are red.

Table 1 | Comparison of performance of the top three methodologies

Team Core model Competition score Average F1 Recall at  
0.7 Iou (%)

Missed at  
0.7 Iou (%)

Extra at  
0.7 Iou (%)

[ods.ai] topcoders 32× U-Net/FPN 0.6316 0.7120 77.62 22.38 14.55

Jacobkie 1× FC-FPN 0.6147 0.6987 69.14 30.86 15.04

Deep Retina 1× Mask-RCNN 0.6141 0.7008 68.07 31.93 10.90

CellProfilera - 0.5281 0.6280 59.35 40.65 39.55

Rows show information about each method and columns show performance metrics. Core model, type of machine-learning algorithm used to solve the task, with the number indicating how many neural 
networks were used in the solution. The names of neural networks are explained in the main text. Competition score, metric used during the competition to rank participants in the scoreboard (https://
www.kaggle.com/c/data-science-bowl-2018#evaluation). The rest of the performance metrics were computed offline after the competition ended for analysis purposes only. Average F1 is the accuracy 
metric closely related to the official score, which treats the segmentation problem as a binary decision problem (correctly segmented or not) for each object. The average F1 score was computed at 
different IoU thresholds between target masks and estimated segmentations and then averaged across all thresholds. By setting a single IoU threshold, we could count how many objects were correctly 
segmented (true positives or Recall at 0.7 IoU), how many were missed (false negatives or Missed at 0.7 IoU) and how many false objects were introduced (false positives or Extra at 0.7 IoU). aNote that 
the CellProfiler reference segmentations were generated with a different experimental protocol involving manual adjustment of pipelines for five image types in the test set. More details are provided in the 
Methods section.
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The team ‘Creepy ReLU’37 generated synthetic images using 
CycleGAN38. They showed that color stains could be transferred 
from one image to another. However they did not have time to train 
on synthetic images; this approach might have improved the top 
solutions in the competition.

On a sociological note, the competition brought experts from dif-
ferent domains together to share software and cloud resources and 
to develop ideas. In particular, team ‘minerva.ml’39 open sourced 
their code and development process at the start of the competition 
and provided a cloud-based platform that Kagglers could use. The 
author of the open source Matterport Mask-RCNN implementation 
(https://github.com/matterport/Mask_RCNN) also participated in 
the competition40 and provided a complete software pipeline tool 
for training, visualization and submission. We noted that the third 
and fifth-place teams in the competition based their solutions on 
this Matterport implementation. This shows that the quality of open 
source implementation was high, included suitable options and 
parameters and could be used off the shelf.

Discussion
The 2018 Data Science Bowl presented the challenge of automati-
cally finding nuclei in a large variety of unseen microscopy images, 
with no configuration step. This was the first documented attempt 
to produce a model that could segment the stained nuclei of cells in 
15 biological experiments, across experimental conditions, acquisi-
tion equipment and source laboratory. The main goal of the chal-
lenge was to investigate generic segmentation strategies that could 
be automatically applied to many imaging experiments with no fur-
ther user intervention. This approach may reduce the time to quan-
tify images, empowering future generations of biologists to adopt 
and run more quantitative imaging experiments for research and 
clinical practice.

Training automated nucleus segmentation tools using modern 
machine-learning approaches requires collecting annotated exam-
ples. The 2018 Data Science Bowl created a resource of diverse 
images contributed by numerous biological laboratories and manu-
ally annotated by a team of expert biologists at the Broad Institute. 
All those data are now publicly available with public domain licenses 
to facilitate future scientific research as well as industrial develop-
ment. We hope others in the wider bioimaging community will 
contribute more images and annotations to grow this resource with 
additional experimental variations, including unstained brightfield 
and electron microscopy, as well as many other common image 
modalities that were not included in our study.

The challenge attracted participation from different teams in 
the data science community, who made all types of contributions, 
learned together and collaborated to understand the problem better 
and make progress toward the proposed goal. Solutions presented 
by several participants achieved the goal of a single model able to 
segment various microscopy images with no intervention. The 
experimental results indicate that nucleus segmentation could be 
fully automated, requiring no manual settings or image processing 
expertise from users, while still providing improved accuracy ver-
sus the evaluated tools. Higher accuracy may be possible through 
a larger, more diverse training set and by incorporating the latest 
advances in machine learning and computer vision research.

The top participants presented solutions on the basis of fully 
convolutional networks (U-Nets and FPNs) or Mask-RCNN. These 
two approaches were widespread during the competition; what 
distinguishes the winners was a combination of pre-processing 
and post-processing techniques, as well as the application of best 
practices during training (mostly data balancing and data augmen-
tation). A common theme among the top competitors was the use 
of data augmentation during training and testing, including color 
shifts to make networks color invariant, and scaling methods to 
address object size challenges. Interestingly, all top three solutions 

used a ranking strategy to select the best segmentation masks from 
several candidates predicted by the base models. While this is com-
mon practice for RCNN-like models (third-best solution), the top 
two models also created their own strategies to achieve a similar 
effect with fully convolutional networks.

The results present a successful proof of concept that deep 
learning is indeed capable of delivering accurate results without 
user interaction. However, even though the top models are publicly 
available, they still require computational expertise to be applied to 
images. A user-friendly tool is needed to bridge the gap between 
these cutting-edge solutions and everyday biomedical practice, 
similarly to what the NucleiAIzer system proposes21. We also found 
that data availability is a limitation to reach top performance for 
various image types, thus, additional efforts are needed to collect 
and annotate more data to expand the applicability of future sys-
tems. The generalization ability of models may also be evaluated 
in other datasets not used during the Data Science Bowl challenge, 
such as the Cell Tracking Challenge and others. Other aspects of 
usability remain to be addressed. For instance, if there are mis-
takes in the segmentation, how can these models efficiently and 
easily take feedback from humans to correct segmentation errors? 
The results of the 2018 Data Science Bowl are a first step toward 
creating a generic system for segmenting the nucleus of cells in 
every microscopy image. Future work could expand the dataset to 
cover missing major microscopy imaging types, such as unstained 
brightfield images and three-dimensional images. Following  
the strategy laid out here, models could also be constructed to seg-
ment cell structures in addition to the nucleus, such as cell borders 
and organelles.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0612-7.

Received: 2 November 2018; Accepted: 13 September 2019;  
Published: xx xx xxxx

References
 1. Sommer, C. & Gerlich, D. W. Machine learning in cell biology—teaching 

computers to recognize phenotypes. J. Cell Sci. 126, 5529–5539 (2013).
 2. Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content 

screening. Cell 163, 1314–1325 (2015).
 3. Mattiazzi Usaj, M. et al. High-content screening for quantitative cell biology. 

Trends Cell Biol. 26, 598–611 (2016).
 4. Schindelin, J. et al. Fiji: an open-source platform for biological image analysis. 

Nat. Methods 9, 676–682 (2012).
 5. McQuin, C. et al. CellProfiler 3.0: next-generation image processing for 

biology. PLoS Biol. 16, e2005970 (2018).
 6. Wiesmann, V. et al. Review of free software tools for image analysis of 

fluorescence cell micrographs. J. Microsc. 257, 39–53 (2015).
 7. Otsu, N. A threshold selection method from Gray-level histograms. IEEE 

Trans. Syst. Man. Cybern. 9, 62–66 (1979).
 8. Malpica, N. et al. Applying watershed algorithms to the segmentation of 

clustered nuclei. Cytom. A 28, 289–297 (1998).
 9. Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image 

Process. 10, 266–277 (2001).
 10. Dima, A. A. et al. Comparison of segmentation algorithms for fluorescence 

microscopy images of cells. Cytom. A 79, 545–559 (2011).
 11. Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. 

Mag. 29, 140–145 (2012).
 12. Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat. 

Methods 14, 1141–1152 (2017).
 13. Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. Ilastik: Interactive 

learning and segmentation toolkit. in Biomedical Imaging: From Nano to 
Macro, 2011 IEEE International Symposium 230–233 (2011).

 14. Falk, T. et al. U-Net: deep learning for cell counting, detection, and 
morphometry. Nat. Methods 16, 67–70 (2019).

 15. Kan, A. Machine-learning applications in cell image analysis. Immunol. Cell 
Biol. 95, 525–530 (2017).

AnAlysis | FOCUS NaTure MeThoDS

NATuRE METHoDS | www.nature.com/naturemethods

Content courtesy of Springer Nature, terms of use apply. Rights reserved



FOCUS | AnAlysisNaTure MeThoDS

 16. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 
https://doi.org/10.1038/s41592-019-0403-1 (2019).

 17. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for 
biomedical image segmentation. Med. Image Comput. Comput. Assist. Interv. 
9351, 234–241 (2015).

 18. Van Valen, D. A. et al. Deep learning automates the quantitative analysis of 
individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12, 
e1005177 (2016).

 19. Sadanandan, S. K., Ranefall, P., Le Guyader, S. & Wählby, C. Automated 
training of deep convolutional neural networks for cell segmentation. Sci. 
Rep. 7, 7860 (2017).

 20. Caicedo, J. C. et al. Evaluation of deep learning strategies for nucleus 
segmentation in fluorescence images. Cytometry A 95, 952–965 (2019).

 21. Hollandi, R. et al. A deep learning framework for nucleus segmentation using 
image style transfer. Preprint at bioRxiv https://doi.org/10.1101/580605 
(2019).

 22. Xing, F. & Yang, L. Robust nucleus/cell detection and segmentation in digital 
pathology and microscopy images: a comprehensive review. IEEE Rev. 
Biomed. Eng. 9, 234–263 (2016).

 23. Xu, J. et al. Stacked sparse autoencoder (SSAE) for nuclei detection on  
breast cancer histopathology images. IEEE Trans. Med. Imaging 35,  
119–130 (2016).

 24. Jungo, A. et al. in Medical Image Computing and Computer Assisted 
Intervention – MICCAI 2018 (eds Frangi, A. et al.) 682–690 (Springer, 2018).

 25. Wienert, S. et al. Detection and segmentation of cell nuclei in  
virtual microscopy images: a minimum-model approach. Sci. Rep. 2,  
503 (2012).

 26. Cruz-Roa, A. et al. Automatic detection of invasive ductal carcinoma in 
whole slide images with convolutional neural networks. In Medical Imaging 
2014: Digital Pathology 9041, 904103 (International Society for Optics and 
Photonics, 2014).

 27. Koyuncu, C. F., Cetin-Atalay, R. & Gunduz-Demir, C. Object-oriented 
segmentation of cell nuclei in fluorescence microscopy images. Cytometry A 
93, 1019–1028 (2018).

 28. Wen, S. et al. Comparison of different classifiers with active learning to 
support quality control in nucleus segmentation in pathology images. AMIA 
Jt Summits Transl Sci. Proc. 2017, 227–236 (2018).

 29. Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V. & Kalai, A. T. in 
Advances in Neural Information Processing Systems (eds Lee, D. D. et al.) 
4349–4357 (papers.nips.cc, 2016).

 30. Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities 
in commercial gender classification. In Proc. 1st Conference on Fairness, 
Accountability and Transparency Vol. 81 (eds. Friedler, S. A. & Wilson, C.) 
77–91 (PMLR, 2018).

 31. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. & Zisserman, A. 
The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 88, 
303–338 (2010).

 32. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,  
436–444 (2015).

 33. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In Proc. 2017 
IEEE International Conference on Computer Vision 2980–2988 (ICCV, 2017).

 34. Poplavskiy, D. 2018 Data Science Bowl—Discussion 55118 https://www.kaggle.
com/c/data-science-bowl-2018/discussion/55118  (2018).

 35. Вейсов, А. Applying deep watershed transform to Kaggle data Science Bowl 
2018 (dockerized solution). Spark in Me http://spark-in.me/post/playing-with-
dwt-and-ds-bowl-2018 (2018).

 36. Bai, M. & Urtasun, R. Deep watershed transform for instance segmentation. 
In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) 2858–2866 (IEEE, 2017).

 37. Torrubia, A. 2018 Data Science Bowl—Discussion 54816 https://www.kaggle.
com/c/data-science-bowl-2018/discussion/54816 (2018).

 38. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image 
translation using cycle-consistent adversarial networks. in IEEE International 
Conference on Computer Vision (ICCV) 2223–2232 (IEEE, 2017).

 39. Kamil. 2018 Data Science Bowl—Discussion 47590 https://www.kaggle.com/c/
data-science-bowl-2018/discussion/47590 (2018).

 40. Waleed. 2018 Data Science Bowl—Discussion54089 https://www.kaggle.com/c/
data-science-bowl-2018/discussion/54089 (2018).

Acknowledgements
We are extremely grateful to the biologists who donated images for the challenge and, 
further, agreed to deem them public domain to facilitate further research without 
constraint. The contributors are publicly credited here: https://www.kaggle.com/c/data-
science-bowl-2018/discussion/54759. The authors thank the team at Kaggle and  
Booz Allen Hamilton, who facilitated the operations, funding, administration and 
marketing of the data challenge; in particular, we thank W. Cukierski, M. Demkin,  
J. Oder Moynihan, J. Sullivan, E. Sager, R. Hensberger and P. Sedivec. We also thank  
the companies providing sponsorship and support for the challenge, including NVIDIA 
and PerkinElmer. We thank A. de Souza, now at Eli Lilly and Company, for spearheading 
the Data Science Bowl. Finally, we thank the members and friends of the Carpenter 
laboratory for assisting with image annotations, including S. Amaral, P. Faliano,  
I. Schmidt, V. Chernyshev and G. Way. The Broad Institute team’s research effort on this 
post-competition analysis was supported by the US National Institutes of Health grant 
(no. R35 GM122547 to A.E.C.). The experiments were run on GPUs donated by the 
NVIDIA Corporation through their GPU Grant Program.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-019-0612-7.

Correspondence and requests for materials should be addressed to A.E.C.

Peer review information Rita Strack was the primary editor on this article and managed 
its editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

FOCUS | AnAlysisNaTure MeThoDS

NATuRE METHoDS | www.nature.com/naturemethods

Content courtesy of Springer Nature, terms of use apply. Rights reserved



AnAlysis | FOCUS NaTure MeThoDS

Methods
Dataset. The image sets were donated by multiple laboratories studying different 
aspects of cell biology. The names and credits are listed in Supplementary File 1.  
A total of 841 images were collected, representing a wide variety of nuclei observed 
under different experimental conditions and imaged with various staining 
protocols. Our goal was to collect as many independent biological experiments 
as possible to create a resource that contains enough technical and biological 
variability to train generic nucleus segmentation models.

In total, the dataset contained images from more than 30 different biological 
experiments, which were split into 16 experiments for training (670 images) and 
first-stage evaluation (65 images) and exactly 15 experiments for the second-stage 
evaluation (106 images). The number of experiments represented in the training 
and first-stage evaluation is approximate because these include images from public 
or anonymous sources without metadata to confirm the exact number. Holding 
15 experiments for the second-stage evaluation allowed us to simulate the realistic 
evaluation case of bringing newly acquired images for segmenting their nuclei. See 
Supplementary Note 1 for more statistics and details about the dataset.

Annotation strategy. Overall, the image set was annotated with 29,464 individual 
nuclei in the training set, 4,152 in the first-stage test set and 3,717 in the second-
stage test set, for a total of 37,333. The annotations were created by expert 
biologists who manually delineated each object in the images using one of two 
tools: (1) an assisted annotation tool that precomputed superpixel segmentations 
to facilitate the selection of regions in the foreground or background; and (2) the 
GIMP image editing software to create annotation masks by coloring individual 
pixels outlining each nucleus.

The assisted annotation tool made an initial over-segmentation of the image 
using the simple linear iterative clustering superpixels algorithm41. The annotators 
could then color each superpixel with one of four colors to indicate what regions 
correspond to objects and what others to background. Objects were required 
to have different colors if they were touching each other. Superpixels are very 
helpful to reduce the amount of annotation time, but also may contain systematic 
noise because their boundaries are not necessarily perfectly aligned with the real 
object boundary. This strategy was used for training images only to facilitate large 
scale annotation; for test images, we used the per-pixel annotation strategy using 
GIMP to score participants with respect to masks drawn 100% manually. Human 
annotations were not post-processed to avoid introducing unintended artifacts. See 
Supplementary Note 5 for more details.

Image modalities. In this dataset, we included 2D light microscopy images of 
stained nuclei. The majority of the images in this dataset came from fluorescent 
images with cells of different sizes and various types, primarily stained with DAPI 
or Hoechst. The dataset also included tissue samples stained with hematoxylin and 
eosin, displaying structures from a diversity of organs and animal models. The 
image collection was organized to include different technical settings and a variety 
of biologically different experiments. We excluded phase-contrast, differential 
interference contrast and other image modalities because during the data collection 
period we did not find image sets or donating laboratories that could make these 
images available in the public domain.

Evaluation. Performance metrics. The evaluation strategy was on the basis of 
identifying object-level errors. This was accomplished by matching target object 
masks with predicted objects submitted by participants and then computing true 
positives and false positives. In order to match target masks and predicted objects, 
the intersection-over-union (IoU) score was computed for all pairs of objects using 
IoU ¼ jA\Bj

jA∪Bj
I

, where A and B are two objects, and the operator | | measures area.
A minimum IoU threshold t was selected to identify correctly segmented 

objects and any other predicted segmentation mask below the threshold was 
considered an error. With all true positives (TP), false positives (FP), true negatives 
(TN) and false negatives (FN), we created a confusion matrix and computed 
precision (P), recall (R) and F1 scores, using a fixed IoU threshold t as follows:

P tð Þ ¼ TP tð Þ
TP tð ÞþFP tð Þ

R tð Þ ¼ TP tð Þ
TP tð ÞþFN tð Þ

F1 tð Þ ¼ 2TP tð Þ
2TP tð ÞþFP tð ÞþFN tð Þ

We used increasing IoU thresholds to estimate shape-matching accuracy. 
When a segmentation covered the target mask perfectly, the IoU score was 1 
and the object was correctly detected no matter which threshold was used. In 
practice, segmentations can only approximate the real shape of the object, so at 
certain coverage threshold the object was missed. This test estimated how well 
segmentations matched the shape of manually defined target masks. Then, the 
official competition score S, was defined in terms of type I and II errors, using 
multiple IoU thresholds as follows:

S ¼ 1
Tj j

X
t2T

TP tð Þ
TP tð Þ þ FP tð Þ þ FN tð Þ ;whereT ¼ 0:10; 0:15; :::; 0:95f g

For some of the results reported in this paper, we also computed F1, precision 
and recall in an aggregated manner, similar to the official score. The competition 
evaluation score is described in detail in Supplementary Note 2.

Two-stage evaluation protocol. The data challenge was on the basis of a two-stage 
evaluation protocol with one training set and two holdout sets. The training and 
first-stage holdout sets were available to competitors during a period of 2.5 months 
for calibrating the algorithms. The first-stage holdout target masks were not 
directly accessible to the competitors but instead used to test their submitted 
segmented images against, yielding a numerical score. Participants were allowed 
to make a maximum of five submissions per day to obtain feedback about their 
performance, and they could select two submissions for evaluation and ranking. 
Depending on the scores obtained from these submissions, they decided to tune 
their methods and submit again later during the competition.

The second-stage holdout set was released during the final period of the 
competition, giving participants only 1 week to process 3,200 images. These 
images had an estimated 100,000 single nuclei, only 106 (3%) images had 
manually defined target masks useful for scoring, and the competitors did not 
know which images were going to be evaluated. This approach was enforced to 
prevent competitors from using extremely slow solutions, hand-outlining results 
or choosing among a large number of algorithms or settings by visually verifying 
the results. The same submission rules applied during the second-stage evaluation, 
allowing participants to submit at most five times per day and select only two 
submissions for final scoring.

The segmented images produced by the top solutions were manually screened 
and presented naturally occurring errors produced by automated solutions; 
none of them had signs of hacking or cheating. This experimental procedure 
was as rigorous as those used in other initiatives organized by scientists for other 
scientists. Kaggle has a long history of experience working with scientists to define 
these experimental settings and has a good pool of best practices for data science 
that were enforced to assure the validity of the results and identify hacking.

Grouping of images. The guiding principles for creating the five groups of images in 
the dataset was visual similarity on the basis of image colors and object sizes. The 
goal was to facilitate the application of classical image segmentation algorithms, 
which most heavily relied on (1) the nuclei and background colors (white versus 
black, purple versus white, purple versus pink, back versus gray); and (2) the 
approximate size of nuclei in the image. The number of groups constructed was 
kept as low as possible while maintaining the ability to create a robust analysis 
workflow for each group.

This organization in five groups may reflect staining protocols and microscopy 
techniques used in the experiments. However, that information was not explicitly 
used for determining the assignment of images to groups, it was all on the basis of 
visual inspection. In fact, the analyst that created the groups and designed classical 
segmentation workflows had no knowledge of experimental details of the test sets. 
This was intentional, with the purpose of making generic segmentation solutions 
with minimal assumptions, similarly to the conditions presented to participants of 
the competition.

The five groups of images were also used to conduct data analysis of 
segmentation performance of competitors. Most of the results presented in this 
paper have been organized around these five generic groups of images. However, 
this information was not provided to participants of the competition, for them, the 
entire dataset contained varied example microscopy images with a single object of 
interest, the nucleus.

Reference segmentations. Our goal was to evaluate the contribution of nucleus 
segmentation methods proposed by participants of the challenge, considering that 
these methods worked across a variety of experiments with no user intervention. 
The most appropriate baseline was an existing strategy that could be applied to any 
image (within the constraints laid out, 2D images stained for nuclei) and produce 
accurate results with no human interaction. Given that there was no such method 
in existence, we approximated it by taking an approach that used as little human 
time as possible. As an approximation for quantitative reference, we do not call the 
approach baseline segmentations, but rather reference segmentations.

We chose CellProfiler v.3.1.5 as the tool to create reference segmentations 
given its flexibility to configure robust pipelines on the basis of well-established 
algorithms, while investing a minimum amount of time. CellProfiler is a 
powerful open source tool for microscopy image analysis that includes a variety 
of fundamental image processing algorithms in a modular way. The algorithms 
can be organized in a computational graph (pipeline) that takes images as inputs 
and produces various types of outputs. Importantly, a pipeline is defined using a 
user-friendly interface and can run complex operations without the need to write a 
single line of code. These properties made CellProfiler a good reference for models 
in the competition, because the goal of the challenge was to investigate generic 
nucleus segmentation methods with minimal user interaction.

Five custom pipelines were designed, one for each of the image types in the test 
set, with the goal of evaluating the classical algorithms implemented in CellProfiler. 
A single classical segmentation pipeline was unlikely to work well in the variety of 
images represented in the test set, thus, we adapted the best practices reported in 
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the literature for each group of images. This approach had an advantage over  
the deep-learning models tested during the competition because the image  
sets were manually organized and processed with special routines according 
to their type. Deep-learning models were not expected to have any manual 
intervention from users.

The pipelines were designed with three major sequential steps: (1) pre-
processing to transform the image into a grayscale matrix, where nuclei  
were observed as relatively smooth white shapes on a black background;  
(2) segmentation of the grayscale image using thresholding, distance transforms and 
watershed on the basis of approximate expected nuclear size; and (3) segmentation 
revision using seeded watershed on the basis of the previous segmentation and 
additional nuclear size priors. Steps 2 and 3 were on the basis of the Identify 
Primary Objects and Identify Secondary Objects modules of CellProfiler, which are 
documented in the cell segmentation literature5,8,42–46. Pipelines are available online 
at https://github.com/carpenterlab/2019_caicedo_submitted/tree/master/pipelines, 
with annotations in each module to describe that module’s function in the overall 
pipeline. Supplementary Figs. 1 and 2 illustrate the corresponding computational 
graphs for each of the five pipelines designed.

Importantly, we did not optimize the algorithm parameters for each 
experiment, but rather tuned the methods to be as generic and automatic as 
possible for each group. In that sense, the solution may be suboptimal, but is 
representative of the daily use of image analysis. Perhaps some errors can be fixed 
by tweaking parameters for individual images or experiments, but we are not 
interested in these types of solutions, given that our goal is to minimize manual 
overhead work.

Top three solutions. Best-performing solution. The system was on the basis  
of an ensemble strategy with eight fully convolutional neural network architectures; 
for each, four replicate models were trained resulting in a total of 32 trained 
segmentation networks in the final solution. All eight base architectures  
followed the encoder–decoder principle to process an input image and generate  
the segmentation map in the output. Six of these base architectures used U-Net-
like decoders17 and the other two used a FPN47 decoding scheme. The  
encoders included Resnets (34, 50, 101, 152)48,49, Dual Path Networks50  
and Inception-Resnet51.

The team reported that properly modeling the target masks for training 
U-Net or FPN models was critical to achieve the best performance. In their final 
solution, they incorporated an approach on the basis of nuclei masks separated by 
artificially generated boundaries. Then, the task of a segmentation network was to 
classify pixels into three types: background pixels, interior of cells and boundary 
pixels. The best performance was obtained when the boundary pixels were marked 
between only touching cells. Previous works have also considered modeling the 
target masks in a similar way18,20,52, which is equivalent to a semantic segmentation 
approach to separate instances.

The combination of outputs from the 32 networks was performed in three 
steps: first, aggregation of predicted masks using the mean of all, second using 
a ranking model to filter out noisy predictions and third applying a watershed 
algorithm to refine boundaries. The ranking model of the second step used 
classical morphological features extracted from each candidate nucleus. These 
features were used to train a regression model (gradient-boosted trees) that learned 
to predict IoU scores from ground-truth examples. During test, each candidate 
object was post-processed in this way to estimate how well it aligned with a 
potentially real object. This strategy allowed scoring many segmentation masks 
and ranking them from the most to the least promising one, which was useful to 
identify and remove false predictions.

The team focused on preventing overfitting with two strategies: (1) using 
neural networks pretrained on the popular ImageNet database53 as feature encoders 
for all eight architectures; and (2) using heavy data augmentation to harness the 
training examples as efficiently as possible. A total of 24 augmentation routines, 
including channel shuffling, color inversion and object copying, were used 
for training all models. Additional microscopy images from publicly available 
databases were also employed by this team to expand the pool of training examples, 
including Wikimedia images, which were manually annotated by them. The open 
source code is available at https://github.com/selimsef/dsb2018_topcoders

Second-best-performing solution. The system was a single neural network model 
on the basis of the FPN architecture47. The solution introduced two customized 
output layers, each producing multichannel-relative position masks with 
estimated distances of each nucleus to their boundaries in four directions (vertical, 
horizontal, 45 degrees and 135 degrees). Relative position masks are analogous to 
the ‘deltas’ or distances of pixels with respect to anchor reference points in region 
proposal networks54. Importantly, the coordinate maps were computed densely 
for every pixel in the interior of nuclei, whereas pixels in the background were set 
to zero. Also, relative position masks were post-processed and transformed into 
boundaries, refined with watershed and ranked by consistency between local and 
global scores to select the final set of nonoverlapping masks.

The backbone FPN in this solution was pretrained on the ImageNet53 and 
COCO55 datasets using the Matterport implementation of the Mask-RCNN33 
framework. The two output layers were trained using a multitask framework.  

A new loss function was introduced to penalize instance errors by the size of 
objects, balancing the contribution of errors by small objects with respect to large 
objects. Various data augmentation techniques were applied during training and 
testing and no external data were used. Test-time data augmentation consisted 
of making predictions on transformed versions of the test image (such as scaling 
or rotation) and then integrating those predictions in a single output. The open 
source code is available at https://github.com/jacobkie/2018DSB.

Third-best-performing solution. This solution was a Mask-RCNN model, pretrained 
with the COCO dataset55 for detecting and segmenting objects in natural images. 
The solution included data augmentations that were meaningful in the biological 
context, including simulated magnifications of microscopes by scaling images 
up and down artificially. Aspect ratio modifications, flips and rotations were also 
used. The training dataset was balanced with respect to types of image, although 
no special analysis was used to determine the image type; only image size was 
considered to oversample underrepresented images with random augmentations. 
Additional data augmentations were also applied during training, and the  
model was not retrained for the stage-two evaluation with additional data or  
more iterations. This leaves room to investigate the role of more data when  
using this model.

To generate segmentations for new images, the participant introduced 15 
test-time data augmentations, which looked at the test image under different 
transformations and aggregated the predictions in a single output. These 
transformations included rotations in different angles, image scaling and color 
shifts. This was one of the differences of the participant’s approach with respect 
to others that also used Mask-RCNN without the same success. The participant 
also reported that the simpler post-processing techniques, such as morphological 
dilation, may reach similar performance and that the parameter configuration and 
data augmentation during training seemed to be more important according to his 
experiments. The open source code is available at https://github.com/Lopezurrutia/
DSB_2018.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
The methods of the top three participants are publicly available with usage 
instructions and parameters described by their creators. The authors of this 
manuscript did not implement and do not maintain these repositories. All the 
credits and copyright belong to the top three participants who created these models 
for the 2018 Data Science Bowl challenge.

We analyzed data from the participants, downloaded from the Kaggle website 
using administrative permissions provided by them. Custom code was developed 
to investigate the patterns and trends in the submitted entries. All the data used 
to complete the analysis are not made publicly available owing to Kaggle’s privacy 
policies. Instead, aggregated results and code are available at https://github.com/
carpenterlab/2019_caicedo_dsb.

Data availability
The dataset is publicly accessible in the Broad Bioimage Benchmark Collection 
with accession number BBBC038.
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