
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=iedc20

Expert Opinion on Drug Discovery

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iedc20

Harnessing the power of microscopy images
to accelerate drug discovery: what are the
possibilities?

Justin Boyd , Myles Fennell & Anne Carpenter

To cite this article: Justin Boyd , Myles Fennell & Anne Carpenter (2020) Harnessing the power
of microscopy images to accelerate drug discovery: what are the possibilities?, Expert Opinion on
Drug Discovery, 15:6, 639-642, DOI: 10.1080/17460441.2020.1743675

To link to this article:  https://doi.org/10.1080/17460441.2020.1743675

Published online: 21 Mar 2020.

Submit your article to this journal 

Article views: 914

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=iedc20
https://www.tandfonline.com/loi/iedc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17460441.2020.1743675
https://doi.org/10.1080/17460441.2020.1743675
https://www.tandfonline.com/action/authorSubmission?journalCode=iedc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=iedc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17460441.2020.1743675
https://www.tandfonline.com/doi/mlt/10.1080/17460441.2020.1743675
http://crossmark.crossref.org/dialog/?doi=10.1080/17460441.2020.1743675&domain=pdf&date_stamp=2020-03-21
http://crossmark.crossref.org/dialog/?doi=10.1080/17460441.2020.1743675&domain=pdf&date_stamp=2020-03-21


EDITORIAL

Harnessing the power of microscopy images to accelerate drug discovery: what are
the possibilities?
Justin Boyd a, Myles Fennellb and Anne Carpenter c

aInternal Medicines Research Unit, Pfizer Inc., Cambridge, MA, USA; bNeuroscience and Platform Biology, Arvinas, New Haven, CT, USA; cImaging
Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA

1. Introduction

We’ve all heard it or said ourselves: a picture is worth a thousand
words. Today, with the improvements in both capability and user-
friendliness of imaging and image analysis tools, it is not hyper-
bolic to say that a picture is worth more than a thousand data
points. This is true for all spatial scales of imaging and especially
true for microscopy, when it comes to drug discovery. The poten-
tial to provide numerous quantitative data measurements in
combination with scalability makes cellular imaging particularly
valuable for drug hunters. Imaging and image analysis have pro-
vided key robust means to quantify complex phenotypes asso-
ciated with disease and to assess the efficacy of treatment
conditions at a cellular level [1–3]. Moreover, image-based profil-
ing provides additional value to drug discovery by enabling
researchers to generate comprehensive phenotypic signatures,
comparable to other profiling technologies, such as genomics
and proteomics, but at much lower cost. Advances in high dimen-
sional data analytics and the adoption of artificial intelligence (AI)
techniques promise to yield even further improvements in image-
based profiling.

2. High-content screening and image-based
profiling

High-content screening combines automated microscopy with
automated image analysis and is a common phenotypic drug
discovery strategy. Discrete cellular features, defined by the
researcher, are quantified through measuring segmented cellular
features and used to characterize disease-associated phenotypes
[4]. HCS takes a pre-defined approach to identify features that
differentiate cellular systems in a predictive way based upon spe-
cific feature changes. In other words, HCS focuses on quantifying
single cellular processes or functions in the context of a disease.
Historically, only a few user-defined features – fewer than 6, and in
most cases 1–2 – have been used to differentiate treatment con-
ditions [5]. Robust phenotypes associated with perturbations (e.g.
nuclear translocation) can be quantified with few measurements,
making screening tractable. By limiting the measurements to dis-
crete features proximal to the biology of interest, researchers can
quickly and effectively identify conditions (e.g. compounds or
genetic perturbations) which provide the desired effect.
Moreover, this approach is amenable to determining the potency

and efficacy of compounds for structure-activity relationship (SAR)
determination.

Image-based profiling takes an automated unbiased
approach that relies on measuring as many features as possi-
ble to generate context-dependent signatures and relies on
high dimensional data analytical techniques in order to cluster
experimental conditions. A key difference between the two
approaches centers on the contribution of individual features:
for HCS, specific features define the phenotype; for profiling,
the signature based on hundreds to thousands of feature
measurements defines the phenotype. In image-based profil-
ing, readouts become data signatures representing the func-
tional consequences of treatments and can be exquisitely
sensitive and unbiased [6]. This method can be applied in
cases where markers relating to specific biological activity
are used (e.g. reporter genes, antibody labeling, or conjugated
ligand) and in cases where cell compartment dyes are used,
such as those in Cell Painting [7].

3. Target identification

With the advent of efficient cell engineering, access to patient
cells, and better methods for growing cells in biologically rele-
vant contexts, our ability to explore disease-associated pheno-
types in vitro (and ultimately screen small molecule therapeutics
at scale) continues to improve [8]. Genomics and proteomics are
commonly used to characterize the functional consequences
associated with disease, especially in the context of assessing
risk association fromGWAS studies. These techniques are power-
ful tools for characterizing disease targets, but they lack spatial
context. Using cellular imaging, genes contributing to disease
biology can be identified through functional genomic studies in
intact cells and tissue. This modality complements the other
omics approaches with the advantage of spatial context.
Additionally, imaging provides a signature which can be used
at scale for efficient screening. Imaging has been used to identify
genes that regulate cell cycle progression and define them into
distinct functional clusters by labeling and measuring nuclear
features [9]. In an siRNA study, authors used image-based profil-
ing based on CD4-associated phenotypes defined by 15 features
to identify 45 host genes as potentially novel targets in HIV [10].
Other examples include studies characterizing the contribution
of genes to cellular functions using image-based profiling [11].
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4. Small molecule screening

Themost common application of automated imaging and image
analysis for drug discovery is high-content screening for small
molecules. For over two decades, this approach has become
a staple strategy for phenotypic drug discovery across diverse
applications [2,3,12]. The vast majority of HCS relies on a few
discrete features to define hits [5]. Conventional screens focus on
single primary feature measurements – how bright, how many,
what size, etc. – relating to the proximal biology being targeted
for defining hits, which often requires identifying a cell-based
biomarker associated with desired disease-related outcomes.
Cell count is often used as a proxy for toxicity and for normalizing
primary signals. The potential for more content to define the
functional consequences of a small molecule is inherent to the
technology (hence ‘high-content screening’), yet rarely lever-
aged. In a seminal study, Perlman et al. [13] presented the
strategy of profiling compounds using automated imaging and
analysis. The authors describe how 11 probes were combined to
generate 93 image-basedmeasurements for profiling the activity
of compounds. Although the study was limited to 100 com-
pounds, it demonstrated the power of image-based profiling to
cluster compounds by mechanism. Developments in the
16 years since that study have increased the number of feature
measurements and developed improved computational tools for
dealing with high dimensional data to cluster compounds [14].
For example, the latest version of CellProfiler, a common image
analysis tool for HCS and image-based profiling, typically mea-
sures over 2000 feature measurements per imaged cell, enabling
a tremendous amount of content contributing to morphological
profiles.

Strategies taking advantage of the enormous information con-
tent in images typically use machine learning to define the signa-
tures for screening small molecules. In a study screening known
drugs in a model of cerebral cavernous malformation, researchers
leveraged image-based profiling and machine learning to identify
hits [15]. One of these has progressed to the clinic, highlighting the
effectiveness of image-based profiling to identify drugs. Additional
value of image-based small molecule screens may be found in
repurposing existing image sets: Simm et al. [16] demonstrated
that images from a previous screen could be reanalyzed to gen-
erate phenotypic fingerprints using machine learning to predict
biological activity in assays spanning diverse disease areas. Such
approaches could enable researchers to apply legacy data to select
small compound setswith ahighprobability of hits for caseswhere
biologically relevant assays may not be scalable for high-
throughput screening. Challenges remain with the use of imaging
for compound profiling, particularly when using to guide SAR
against molecular targets. If a metric such as IC50 is required to
measure potency, it is often difficult to interpret image signatures
across a range of concentrations rather than hit identification.
Image-based profiling captures numerous mechanisms in any
given context. Additionally, individual features are likely to
respond to dose/time differently, contributing to the complexity
of quantifying pharmacological effects. Perhaps distilling
a signature down to specific features around which SAR is per-
formed canbe a tractable approach. As compounds are optimized,
image-basedprofiling can thenbeused to assess hit-to-leadsmore
comprehensively.

5. Compound annotation

Many institutions and companies have accumulated large sets of
images and phenotypic measurements from HCS and profiling
experiments. It is becoming clear that these data may be used to
annotate compound libraries. Cellular imaging is one of the few
profiling technologies that can be run at scale and thus, together
with other types of compound annotations, the rich phenotypic
profiles from imaging can help to deconvolve mechanisms and/
or be used to identify putative liabilities (e.g. toxicity). This pro-
vides higher resolution for clustering compoundswith those that
produce similar phenotypes. Such clusters can be used to predict
the mechanism of action or reveal potential toxic effects. Since
pioneering studies more than a decade ago [17–19], some phar-
maceutical companies routinely cluster hit compounds based on
morphological profiles to reveal common underlying mechan-
isms. Because the clusters are based on morphological pheno-
types, compound annotation is not limited to structure groups.
Both compounds sharing structural similarity and compounds
targeting the same pathway can be clustered based upon the
biological activity using morphological measurements. Taking
advantage of image-based profiling, researchers have been
able to identify novel mechanisms, annotate compounds for
diverse biological activity, and characterize newly synthesized
compounds. For example, researchers used profiling to charac-
terize library sets with predicted phenotypes – known mechan-
isms – and unpredicted phenotypes – novel mechanisms [20]. In
another study, researchers demonstrated that image-based pro-
filing using Cell Painting was able to enrich compounds for more
biological diversity compared to the conventional approach of
using compound structure diversity to sample biological space
[21]. Image-based profiling using Cell Painting was also used to
instruct the synthesis strategy of novel compounds [22,23].

6. Conclusion

Within every cellular image, there are combinations of features
that can be used to cluster treatment conditions. As automated
imaging and image analysis have improved, cellular imaging has
become a viable means to identify new targets, screen for com-
pounds, and define the mechanism of action of molecules.
Moreover, automated imaging and analysis can be used to
annotate libraries based upon morphological profiling, and rea-
nalyzing images can provide a method to repurpose data gen-
erated from previous imaging screens. With these advances,
cellular imaging and image analysis are already beginning to
improve the efficiency of phenotypic drug discovery.

7. Expert opinion

HCS and image-based profiling are viable strategies to drive drug
discovery. High-throughput microscopy assays are now robust;
image acquisition is not rate limiting; image analysis excels at
feature extraction andmeasurement; and advanced analytics pro-
vide paths for meaningful use of data. While HCS is currently
a popular modality for phenotypic screening, image-based profil-
ing has been gaining attention as a means of clustering com-
pounds and identifying disease phenotypes and targets. However,
the intense data load and computational needs, as well as
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hesitation to consider imaging a true quantitative data type, have
historically been a challenge for image-based profiling, contribut-
ing to slow adoption into mainstream applications of drug
discovery.

Image-based profiling so far represents only a small fraction
of the overall image-based experimentation in both academic
and pharmaceutical settings; conventional high-content
screening makes up the majority of high-throughput micro-
scopy experiments. The computational expertise and infrastruc-
ture for profiling is a relatively easily solved problem.We believe
overcoming the inertia of the current drug discovery enterprise
will play an important role as well. For example, drug discovery
is typically organized by disease area whereas many applica-
tions of image-based profiling span multiple. Typically, confi-
dence in the biological rationale of a target continues to trump
data-driven discovery. Although each new computational
approach to drug discovery ought to be assessed individually
based on its merits and actual actionable information content, it
can be difficult to overcome a bias or anxiety stemming from
prior predictive computational approaches. In addition, the
current processes and infrastructure of drug discovery favor
adopting hypotheses with a narrow focus in order to streamline
processes and to define stage gates for actionable steps. Most
hit-to-lead efforts continue to take iterative steps to optimize
compounds based on efficacy (Emax) and potency (EC50)
against simple phenotypes. Rather than relying on one experi-
ment with complex profiles for clustering compounds, multi-
plexing HCS with orthogonal readouts has been the choice for
triaging hits from genetic or compound screens. Such a strategy
is illustrated in a screen using a Mycobacterium tuberculosis
transposon mutant library for virulence factors by combining
HCS readouts with a cytokine panel [24]. Targeted phenotypes
with simplistic readouts continue to define the mainstream
high-content screens in drug discovery over profiling [5], even
in cases where biologically relevant model systems are limited
in scale. For example, Berg et al. [25] report success in using
a simple high-content measurement of fluid droplet morphol-
ogy as the central criterion for screening in a cystic fibrosis
model. In both cases above, it would be interesting to test
whether image-based profiling could have provided
a stronger ability to differentiate hits. Moreover, would more
chemical diversity have been achieved if the researchers had
used previous high-content image sets to predict activity? The
latter approach may provide a low-risk option for companies
interested in deploying profiling in a low-commitment way: it
can impact multiple programs across disease areas by repurpos-
ing legacy data, requiring only computational resources.

An area that could help propel image-based profiling tomain-
stream drug discovery is in 3D cell-based assays. Advances in 3D
biology are areas where additional considerations need to be
taken in order to accommodate the opportunity for utilizing
more biologically relevant systems. There is an increasing inter-
est in 3D biology applications for drug discovery, and imaging is
a critical modality to assess disease and treatment associated
phenotypes. Moreover, image-based profiling is likely the most
effectivemeans to extractmeaningful insight due to the inherent
complexity and limited scalability of these systems, compared to
conventional monolayer cultures [26].

As AI analytics continue to be developed and applied to image-
based experiments, it is likely that profile-based screens will gain
more traction. We are witnessing this trend with companies like
Recursion Pharma and insitro, two AI-driven startups where
image-based phenotypic profiles are a key component of their
drug discovery engine. Whether building a drug discovery entity
from the ground up or augmenting an existing major R&D enter-
prise, there is growing interest in adopting AI strategies through-
out the entire pipeline of drug discovery to inform omics,
chemistry, biology, and clinical data [27]. Images offer a low-risk
point of entry into AI, with many successfully proven applications.

Lessons learned from other profiling approaches will influence
image-based profiling, in terms of the applications attempted, the
computational strategies employed, and perhaps most important
of all: the social/cultural acceptance of images as a useful data type
in drug discovery. Interest groups and pre-competitive consortia
in this area have recently formed and can provide feedback on
successes and challenges associated with extracting more from
images to drive drug discovery. During the 2019 annual meeting,
the Society for Biomolecular Imaging and Informatics hosted
a colloquium to discuss image-based profiling and specifically
the utility of Cell Painting in drug discovery. In 2020, additional
efforts between industry and academic partners will be underway
to establish best practices for this field and build the framework for
public reference databases. Such efforts will catalyze the expan-
sion of imaging as a tool for drug discovery.
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