Objective assessment of stored blood quality by deep learning

Minh Doan, Joseph A. Sebastian, Juan C. Caicedo, Stefanie Siegert, Aline Roch, Tracey R. Turner, Olga Mykhailova, Ruben N. Pinto, Claire McQuin, Allen Goodman, Michael J. Parsons, Olaf Wolkenhauer, Holger Hennig, Shantanu Singh, Anne Wilson, Jason P. Acker, Paul Rees, Michael C. Kolios, and Anne E. Carpenter

Stored red blood cells (RBCs) are needed for life-saving blood transfusions, but they undergo continuous degradation. RBC storage lesions are often assessed by microscopic examination or biochemical and biophysical assays, which are complex, time-consuming, and destructive to fragile cells. Here we demonstrate the use of label-free imaging flow cytometry to noninvasively assess RBC storage lesions. Using brightfield images, a trained neural network achieved 76.7% agreement with experts in classifying seven clinically relevant RBC morphologies associated with storage lesions, comparable to 82.5% agreement between different experts. Given that human observation and classification may not optimally discern RBC quality, we went further and eliminated subjective human annotation in the training step by training a weakly supervised neural network using only storage duration times. The feature space extracted by this network revealed a chronological progression of morphological changes that better predicted blood quality, as measured by physiological hemolytic assay readouts, than the conventional expert-assessed morphology classification system. With further training and clinical testing across multiple sites, protocols, and instruments, deep learning and label-free imaging flow cytometry might be used to routinely and objectively assess RBC storage lesions. We would automate this protocol, minimize laboratory sample handling and preparation, and reduce the impact of procedural errors and discrepancies between facilities and blood donors. The chronology-based machine-learning approach may also improve upon humans’ assessment of morphological changes in other biomedically important progressions, such as differentiation and metastasis.

Many clinically important assays involve expert assessment of images and the determination of the quality of red blood cells (RBCs) is no exception. RBCs are needed for life-saving blood transfusions and there is a worldwide shortage. RBCs are degraded by continued storage, yielding oxidative damage, decreased oxygen release capability, and membrane deformation, which can affect the in vivo circulation of transfused RBCs (1–6). Technological progress in the preservation and storage of cells has enabled blood banks to store RBCs at 1 to 6 °C for up to 8 wk in some countries (7–10). During storage, however, the loss of membrane integrity causes the red cells to morph reversibly from regular biconcave discocytes (smooth/crenated discs) into echinocytes (crenated discoid and spheroid), characterized by membrane protrusions or spicula. Eventually, these echinocytes further degrade irreversibly into spherocytocytes (crenated spheres and smooth spheres) (11, 12). An increased presence of spherocytocytes is associated with increased viscosity and disturbed capillary blood flow and oxygen delivery (2, 13), leading to decreased safety and efficacy of the transfusion. In addition to these degradation events during storage, each blood sample already contains a mixture of morphologies due to the cells’ varying biological ages. While prospective clinical trials have failed to show a clear relationship between the duration of RBC storage and patient outcomes, there continues to be a strong interest in understanding how the physiological changes that occur to RBCs during ex vivo storage are captured by their morphology, and in turn how this impacts RBC quality (14–18).

The quality of a stored blood unit is often assessed using microscopic examination or biochemical and biophysical assays, which are complex, time-consuming, and destructive to fragile cells (3–5, 12). In the microscopic approach, which is tedious and requires expertise, a sample is spread (smear) on microscopic slides and the relative fractions of the six subclasses of RBCs

We developed a strategy to avoid human subjectivity by assessing the quality of red blood cells using imaging flow cytometry and deep learning. We successfully automated traditional expert assessment by training a computer with example images of healthy and unhealthy morphologies. However, we noticed that experts disagree on ~18% of cells, so instead of relying on experts’ visual assessment, we taught a deep-learning network the degradation phenotypes objectively from images of red blood cells sampled over time. Although training with diverse samples is needed to create and validate a clinical-grade model, doing so would eliminate subjective assessment and facilitate research. The time-based deep-learning strategy may also prove useful for other biological progressions, such as development and disease progression.

Significance

We developed a strategy to avoid human subjectivity by assessing the quality of red blood cells using imaging flow cytometry and deep learning. We successfully automated traditional expert assessment by training a computer with example images of healthy and unhealthy morphologies. However, we noticed that experts disagree on ~18% of cells, so instead of relying on experts’ visual assessment, we taught a deep-learning network the degradation phenotypes objectively from images of red blood cells sampled over time. Although training with diverse samples is needed to create and validate a clinical-grade model, doing so would eliminate subjective assessment and facilitate research. The time-based deep-learning strategy may also prove useful for other biological progressions, such as development and disease progression.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: mkolios@ryerson.ca or anne@broadinstitute.org.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001227117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2001227117

PNAS | September 1, 2020 | vol. 117 | no. 35 | 21381–21390
Deep learning has shown great promise to detect biomedically important cell states in images (22). We hypothesized that a deep-learning-based morphological assessment approach might provide a reliable proxy for RBC quality (although we emphasize that RBC quality cannot be absolutely measured without treating patients and measuring outcomes). We therefore tested recent deep-learning methods on RBC images from three completely independent cohorts in two different countries using imaging flow cytometry (IFC) to assess whether 1) a neural network might extract degradation-related features from RBCs as they flow through the instrument (23). The instrument yields a large number of isolated, single-cell images well-suited to deep-learning algorithms, which learn from raw pixel information and benefit from a large pool of images to extract meaningful features. Through a hierarchical architecture of feature layers, a deep-learning model could be implemented for routine automated assessment of RBCs independently from visual quality (which plots sensitivity as a function of one minus specificity) curves and its associated area under the curve (SI Appendix, Fig. S5 A–L). Because all of these accuracy values are comparable to the accuracy between different experts (82.5%) (Fig. 2C), we conclude the trained deep-learning model is roughly as effective as an expert. With proper clinical validation and ideally additional training images from other facilities, this strategy could be implemented for routine automated assessment of RBCs by IFC. We freely provide the trained model for training and testing on data from other blood bank facilities (Code Availability).

Despite this successful result, we questioned whether visual inspection by experts best captures RBC storage lesions. As mentioned above, each individual expert only agrees with the experts’ consensus around 82.5% of the time (Fig. 2C). This means that an automated method trained to replicate an expert cannot do better than 82.5%. We noted that most of the experts’ discrepancies, as is also the case for the supervised deep-learning model, occurred between adjacent RBC subclasses (SI Appendix, Figs. S6 and S10), indicating that classification of RBCs into discrete “bins,” whether human-annotated or automated, may be a poor fit to this relatively continuous biological process (visualized in SI Appendix, Fig. S7).

We aimed to devise improved methods to assess RBC blood quality by training deep convolutional neural networks to characterize the morphology of unstained RBCs at different time points during blood storage (Fig. 1 and SI Appendix, Fig. S1). We used an imaging flow cytometer to capture images of single RBCs as they flow through the instrument (23). The instrument naturally favors cells in suspension, such as blood cells, capturing images at a rate of hundreds to thousands of cells per second. This yields a large number of isolated, single-cell images well-suited to deep-learning algorithms, which learn from raw pixel information and benefit from a large pool of images to extract meaningful features. Through a hierarchical architecture of feature layers, a deep neural network identifies patterns in the input image relevant to discriminating morphologies of interest while suppressing irrelevant variations (24).

We first developed a supervised classifier (Fig. 4A), where the machine-learning model is supervised to “learn” to categorize cells into the six morphological classes of RBCs mentioned above, plus an additional side-view class where the true class was indiscernible. We collected blood samples from healthy volunteers at two sites on different continents (Canadian Blood Services, hereafter “Canadian,” and the University Hospital of Geneva, hereafter “Swiss”) and processed red cell units using standard blood bank protocols (25), followed by IFC analysis every 3 to 7 d until expiration at 6 wk (SI Appendix, Figs. S1A and S2) (25–27). Five researchers annotated ~52,700 RBCs spanning across the blood units (SI Appendix, Fig. S3), creating the largest freely available public dataset of its kind (see Data Availability; ~67,400 cells including the undecidable class and held-out dataset, described later). The brightfield images of ~40,900 annotated RBCs were then used as ground truth to train a ResNet50 model (28), a well-known neural network for image classification (29).

This fully supervised model was able to approximate human annotators in categorizing cells into one of the seven expert-defined morphological classes. Taking great care not to “contaminate” any test sets with cell images from samples used for training (SI Appendix, Fig. S4), we assessed the performance and robustness of this fully supervised model in several tests. First (Validation in SI Appendix, Fig. S4), we observed strong accuracy (79.1 to 80.1% agreement with experts) of the models; as a baseline, a random classifier yields only 14.3% accuracy for seven classes. These values were obtained for the optimized network trained on images solely from one site and tested on the other, even though the samples were prepared by different facilities across continents without any prior knowledge of each other (Fig. 2A and B). We hypothesize the simplicity of label-free IFC contributes to this success across cohorts. Training the network on combined Canadian and Swiss training data (Test 2 in SI Appendix, Fig. S4) achieved an average accuracy of 76.7% on a held-out dataset, which was only tested a single time prior to submission of this report (Fig. 2D–F); this approaches the 80.3% accuracy (average recall of 0.80, precision of 0.81, and F1-score of 0.80) seen on the nonheld-out data that was used in optimizing the network (Test 1 in SI Appendix, Fig. S4), indicating the model is not overfit. To further assess the robustness and the variability of the classification model when different subsamples of the training data are selected, a 10-fold leave-one-out cross-validation approach has also been conducted. We iterated the training-validation partitions in which 9 of 10 bags (green blocks in SI Appendix, Fig. S5 A–J) are used to train a model that is then evaluated on the remaining bag (red block in SI Appendix, Fig. S5 A–J). This procedure is then repeated for 10 possible choices for the left-out bag, and the predictive performance scores from the 10 runs are then reported as an average classification accuracy of 86.7% ± 3.5% (mean ± SD) as well as receiver operating characteristic (which plots sensitivity as a function of one minus specificity) curves and its associated area under the curve (SI Appendix, Fig. S5 A–L).
which each cell was sampled (Fig. 1B). Although storage duration correlates with RBC health, predicting storage age is not the goal for two reasons. First, the storage age of blood bags is typically already known, thus there is no need to predict it. Second, storage duration correlates imperfectly with RBC health, in the same way that individual humans’ age and health are correlated but not completely predictive. For RBCs of identical storage duration, there are dramatic biological age variations and cell heterogeneity that are more medically relevant than storage age. Nevertheless, weak supervision in this context means that the model is trained on a variable (RBC storage duration) that causes the network to pay attention to features in images that correspond to this variable. Once a network is trained, storage duration predictions themselves are ignored, and an intermediate layer of the network is used to compute thousands of features from the input images; these features should capture morphological changes that occur in response to storage. A dimensionality reduction method is then applied to map cells onto a linear continuum that captures this biological phenomenon.

Following this strategy, we trained the ResNet50 network to estimate (regress) the storage duration of RBC images. Because no human annotation is required with this strategy, we could use more than one million RBCs pooled from the entire joint dataset (Canadian and Swiss, not mapping to any abovementioned datasets). Not surprisingly, given biological age variations and cell heterogeneity, the model was not particularly accurate in predicting the age of a blood unit from a single-cell image in the held-out test sets (average error was 18.87 ± 6.96 d in a prediction range spanning 48 d), nor did it show strong ability to predict the known morphological classes, based on the ∼40,900 annotated cells used in the previous supervised learning framework (SI Appendix, Fig. S8A).

Nevertheless, an intermediate layer of this trained network (Materials and Methods) learned to extract single-cell features that revealed a meaningful order of morphological progression. Visually inspecting an embedding space obtained with Uniform Manifold Approximation and Projection (UMAP) (34, 35) suggests
that the single-cell features could be approximately aligned on a low-dimensional manifold (Fig. 3 A and B) (see ref. 36). This progression proceeds correctly from healthy to unhealthy cell phenotypes: Discocytes (smooth discs and crenated discs) to echinocytes (crenated discoids and crenated spheroids) to spherocytes (crenated spheres and smooth spheres). The progression is confirmed by the annotated cells, but the linear pattern is detectable even in their absence. The trajectory also positioned side-view cells in proximity to disc-like cell classes, which is sensible because only disc-shaped objects could present in flank angles, while spheres are spherical regardless of the view. Other trajectory recovery methods, such as diffusion map (37) and diffusion pseudotime (38, 39), did not provide as clear a resolution of the progression; they are well-suited to trajectories that branch (40) (Materials and Methods). In contrast, the same analysis using classic image features extracted by CellProfiler (41) organized cells into discrete clusters (SI Appendix, Fig. S9) rather than a continuous progression of morphologies. We therefore defined the recovered 1D UMAP manifold from healthy to unhealthy as a new metric of blood unit quality, self-learned MI (SMI), where cells that possess higher values in the 1D manifold of deep-learning features are associated with older storage duration and lower quality for blood transfusion (Fig. 3 C).
Validating this metric is challenging, given that there is no perfect ground truth. Expert morphological annotation cannot be deemed as correct, given intraexpert discrepancies as mentioned above. The current regulatory gold standard for RBC quality requires radio-labeling (or biotinylating) RBCs, transfusing them into volunteers, and measuring the percentage that circulates after 24 h, with 75% being the threshold. This was not feasible for our study and furthermore is a methodology that many in the field seek to replace, as it does not capture the ultimate endpoint of interest, oxygen delivery (42).
We therefore subjected three blood units to two parallel quality assessments at weeks 0, 2, and 6 of the storage period. The quality assessments were 1) a biochemical assay for hemolysis, which focuses on red cell stability, and 2) IFC with the standard expert morphology classification, MI. These two assessments correlate, but not strongly (R = 0.65) (SI Appendix, Fig. SSI). Two blood units were analyzed during the validation of the weakly supervised framework (Test 3 in SI Appendix, Fig. S4), and one was held out and tested a single time prior to the submission of this manuscript (Test 4 in SI Appendix, Fig. S4). A morphological ordering of single cells shows the expected degradation events over time (Fig. 3 D–H).

We found that the SMI of the three blood units corresponded better to the physiological–biochemical readout, the hemolytic score (coefficient of determination, $R^2 = 0.93$) (Fig. 3I) than to the classic inspection-based MI ($R^2 = 0.67$) (Fig. 3J). This suggests that the SMI can produce measures of blood quality that are more consistent with biochemical readouts, and less consistent with a subjective morphological inspection. The automated MI by fully supervised learning showed the opposite trend ($R^2 = 0.74$ compared to the hemolytic score and $R^2 = 0.93$ compared to classic MI) (Fig. 3 K and L), indicating that fully supervised models carry over subjective biases and are less consistent with more objective biochemical readouts. Applying a healthy/unhealthy threshold (as in SMI) instead of indexing (0, 0.2, 0.4, 0.6, 0.8, 1, as in MI) using manually annotated images is also less correlated to the hemolytic score ($R^2 = 0.85$) (SI Appendix, Fig. S8E), indicating that the improvement is due to the weakly supervised approach rather than a change in thresholding versus indexing.

As a final test of generalizability and robustness, we combined the Swiss and Canadian training data and tested the SMI scoring system on an additional 20 red cell units sampled at five storage durations acquired by a third facility, the Blood for Research Facility (netCAD, Vancouver, BC, Canada) (Fig. 4). Again, we observed the low-dimensional manifold progression of cells from healthy to degenerated. Furthermore, with the caveat of one sample particularly prone to hemolyze, likely due to unknown donor factors (Materials and Methods), we observed the expected correlation between SMI and hemolytic scores (Fig. 4D). The R^2 of 0.58 is lower than that observed in the tests in Fig. 3, but still indicates the ability of the SMI strategy to be relatively robust to samples collected by different operators at different clinical locations.

Discussion

Methods and metrics for the assessment of RBC quality are rapidly developing and uncertain, given the lack of sufficient clinical data to conclusively determine ideal proxies (whether morphological or biochemical) for in vivo circulation or for the clinical outcomes of interest (42, 43). Our work does not aim to resolve this controversy nor claim the superiority of any one assessment method over others. Rather, in this study we present two strategies that are capable of providing more reliable and convenient quantitative data in future studies of RBC quality that aim to resolve some of these controversies and identify useful donor factors.

The first strategy used supervised deep learning to automate and standardize the current standard blood-quality scoring procedure, which is based on expert visual classification of RBCs into morphological classes and computation of the MI; this work automates and standardizes a tedious and subjective assay, providing near expert-level results. The second strategy derived an SMI to measure blood quality using weakly supervised deep learning trained on storage age; this approach went beyond human vision and matched physiologically relevant physical tests of RBC quality better than expert manual morphology assessment, while avoiding assessment subjectivity. It is important to note that the SMI failed to recognize the unusually high hemolysis levels of one blood sample (Fig. 4). The discrepancy between morphology and hemolysis in this instance, and as observed in prior studies (44, 45), is precisely the phenomenon that the field wishes to scrutinize in order to determine the underlying causative factors of this discrepancy; our methodology makes this easier to study. If the field conclusively determines that hemolysis, as measured here, is an ideal target metric for patient outcomes, then rare samples like this one would need to be collected and included in the training of SMI models.

We tested for overfitting, a common machine-learning problem that yields success on one set of data but failure on data from other facilities: Here, we obtained similar accuracy when the model was trained and tested across entirely different patient cohorts (Swiss vs. Canadian, whose samples were prepared completely independently on different continents and without knowledge of the others’ protocol and set-up). Robustness was further confirmed using samples from a third independent site. This generalizability is presumably because sample preparation and imaging for brightfield IFC have few variables and parameters. We anticipate that the system would likely benefit from retraining on a broader, consortium-scale collection of data, including multiple donor demographics, preparation procedures, and manufacturing facilities, as well as inclusion of samples that are hemolysis-sensitive. This would allow testing the power and limitations of the two new strategies, especially with respect to minimal clinical transfusion outcomes or proxies agreed upon by the field as being relevant to clinical transfusion outcomes (42).

Such an effort would be worthwhile: Our proposed assay offers simple, label-free sample preparation, enabling nonexperts to assess the quality of stored blood. This is in contrast to microscopic examination (which requires experts and whose smearing step may damage the sample), conventional biochemical/biophysical assays (which require complex laboratory procedures), or IFC followed by manual gating (11, 12, 25) (which adds a step and is subjective). Although substantial engineering and testing would be needed, in principle the presented strategy could be adapted to an inexpensive laser-free imaging flow cytometer for resource-poor situations. Improved techniques to monitor blood product quality would revolutionize efforts to personalize allocation of blood products based on factors thought to impact RBC quality, including donor characteristics (age, sex, ethnicity, frequency of donation) (44, 46–50). Like many artificial-intelligence–driven analysis systems introduced in recent years, the goal need not be to entirely eliminate expert interaction but instead to screen samples or cell images to identify the most readily classifiable, so that the expert’s time is used on samples or cells that are more borderline.

More broadly, in this work we found that machine learning can surpass humans’ visual assessment of biomedically important morphological changes that occur over time. The weakly supervised approach discovered the natural progression of RBC deterioration without relying on human observations. In several applications, machine-learning–based systems have proven superior to humans but these have been straightforward supervised tasks (classification), including natural image classification (51), radiology (52), dermatology (53, 54), and pathology (55). Conversely, here machine learning itself reveals a clinically important chronological progression of cells based on their morphology, as has been previously done using other data types, most commonly mRNA levels (56–59), and also biomarker staining (60). Our weakly supervised strategy based on chronology might be applied to the morphological analysis of a variety of other noisy biological processes that occur over time, such as differentiation and metastasis.

Materials and Methods

Sample Preparation. For the initial rounds of training, 18 red cell concentrate units were collected; 10 (bags A to J) at the Blood for Research Facility, Centre
for Innovation, Canadian Blood Services, and 8 (bags CE44 to CE52) at the Transfusion Center of the University Hospital of Geneva, Switzerland. The Canadian Blood Services Research Ethics Board approved (Protocol #0058) the collection of the blood products used in this study that were obtained from volunteer, healthy blood donors, who provided written, informed consent. The utilization of blood samples from healthy donors for research was approved by the Ethical Committee of the University Hospital of Geneva. As this was general approval for the use of blood samples for nondiagnostic anonymized research signed by all donors, there is no specific ethical committee approval number. Written informed consent was received from participants, and samples were anonymized prior to inclusion in the study. Further details about sample protocols have been described in Pinto et al. (25) and in SI Appendix, Fig. S1.

An additional (third) dataset comprised of hemolytic and IFC measurements of 20 red cell units sampled at five storage durations (total 100 data points) were collected at the Blood for Research Facility (netCAD, Vancouver, Canada) and shipped to Canadian Blood Services in Edmonton, Alberta for testing (Fig. 4). The sample preparation protocol for IFC was similar to that of the other Canadian samples. Samples were then analyzed at the University of Alberta Faculty of Medicine and Dentistry Flow Cytometry Facility. One sample in this batch showed an elevated hemolysis levels compared to the others (Fig. 4A). It is unlikely that this was due to bacterial contamination as no common visual indicators of bacterial contamination were present and the hemolysis levels, although higher than the other samples, are still acceptable at day 42 (~0.8%). Additionally, a review of the IFC images themselves at two time points did not reveal any significant presence of bacteria. This outlier is therefore more likely caused by donor factors that make this unit more susceptible to hemolysis; this could not be confirmed as the sample was not available for further investigation.

IFC Data Acquisition and IDEAS Analysis. For each sample, 5 μL of red cell concentrate were suspended in 200 μL of PBS (magnesium and calcium-free) in a 1.5-ml low-retention microfuge tube (Sigma T4816-250A). Samples were placed on an Amnis ImageStream Mark II (Amnis, EMD Millipore), five laser two-camera system (ASSIST calibrated) with a brightfield area lower limit of 50 μm² used to eliminate debris and speed beads. Channels 1, 9 (brightfield), and 12 (dark-field) were used to capture 100,000 brightfield/darkfield RBC images per sample using the low-speed/high-sensitivity settings at 60× magnification (0.9 numerical aperture, 0.33 μm per pixel resolution, 40-μm field-of-view, 2.5-μm depth-of-field). The IFC measurements were repeated for each scheduled time point throughout the blood storage.

The instrument-associated analysis software IDEAS v6.2 was used to preliminarily process the acquired IFC data to remove out-of-focus cells, artifacts, debris, and clumped objects, as previously described (25–27). Images of in-focus single cells were then used for manual annotation and downstream deep-learning analysis. Brightfield and darkfield images were exported in .CIF or .TIF formats. Darkfield images were ignored for the final results shown in this study.

Ground Truth Annotation. For the supervised machine learning procedure, each RBC was manually annotated by assigned human annotators, in consultation with an RBC morphology expert. Five annotators with different backgrounds (biologists, engineers, and a hematologist) were tasked to manually label allocated RBCs (see next section) as smooth disc, crenated discoid, crenated spherosid, crenated sphere, smooth sphere, side-view, and undecidable class. The undecidable category includes debris or cells that are blurry, blebbed, or folded, and typically represent artifacts of the testing process (SI Appendix, Fig. S3, bottom row; see also description in figure legend). Brightfield and darkfield images of annotated cells were then exported as .TIF.

Data Splitting and Validation Strategy. The overall strategy is schematized in SI Appendix, Fig. S4.

Training. Image data from replicate samples of bags A, B, D, E, F, H, CE47, CE49, CE50, and CE52 were pooled together. About 17,000 cells of that pooled dataset were annotated by three different annotators. Two annotators were tasked to annotate images from the same blood bags, but different individual cells from them; one annotated cells with an even object index and the other, cells with an odd object index. Finally, one additional annotator reviewed every cell individually and flagged dubious annotation mistakes for correction or removal.

Test 1. A class-balanced set of ~1,500 cells pooled from bags C, G, and I (SI Appendix, Fig. S3) were selected to test interobserver variation and labeling replicability between the five annotators; that is, each individual was tasked to label the exact same cells using an in-house web application (SI Appendix, Fig. S12).

Test 3 (morphology). Image sets randomly sampled from (unpooled) bags CE47 and CE49 were used to test the robustness of the trained neural network on imbalanced data. During and after Tests 1 and 2, if suboptimal settings were
detected, retraining of the supervised and weakly supervised models were allowed and optimization with improved parameters was implemented until the models were satisfactorily considered final. Once finalized, no further changes to the model weights were allowed and only a single inference was done on the hold-out test sets. **Tests 3 and 4 (physiology).** In particular, bags CE47, CE48, and CE49 have parallel data for both morphological (assayed by an IFC) and physiological (assayed by hemolysis test) assessments. Physiological readouts were used as a means to validate conclusions drawn by morphological findings. **Tests 2 and 4.** More than 20,000 annotated cells of bags C, G, I, CE44, CE45, CE48, and CE51 were kept hold-out during the development and optimization of the machine learning algorithms. These data were unloaded only when all machine learning models were final. The prediction on this hold-out data were computed a single time, immediately before the submission of the report for the final validation of the trained models. **Supervised Deep Learning.** Protocols for image preprocessing and deep-learning training of the supervised classification are similar to our previously established label-free imaging flow cytometry machine vision framework (61). In brief, the input images were contrast-stretched channel-wise and resized to 48 × 48 pixels by cropping or padding. To counter illumination variations in image inputs, the data were zero-centered using channel-wise and subtracted augmented, tiling domain combinations of horizontal or vertical flips, horizontal, or vertical shifts (up to 50% of the image size), and rotations up to 180°. We implemented a ResNet50 architecture (62) (**SI Appendix, Fig. S51**), with categorical cross-entropy as the loss function and accuracy as the performance metric. The model was compiled using the Adam optimizer with a learning rate of 0.0001. The learning rate was reduced by a factor of 10 when the validation loss did not improve for 4 consecutive epochs. The model was trained for a maximum of 512 epochs, although early stopping generally terminated training before 200 epochs when there is no improvement in the validation loss after 50 consecutive epochs, as detailed in Doan et al. (61). Training and validation data were randomly undersampled per blood unit across cell types to create a balanced dataset. Eighty percent of sampled data were assigned to the training dataset, with the remaining 20% assigned to internal validation of the model during its training. Prediction metrics included recall, precision, F1-score, and weighted accuracy.

Weakly Supervised Learning. **Regression model.** The architecture of the weakly supervised ResNet50 neural network is essentially similar to that of the supervised ResNet50, except for two modifications: 1) We removed the last seven-class (categorical) layer and replaced with a dense layer without activation function (for regression purpose instead of classification) and 2) we used “mean absolute error” as a loss function for the weakly supervised regression model, instead of “categorical cross-entropy” as in the supervised classification model.

The weakly supervised ResNet50 was trained to predict the age of storage time for each presented single-cell RBC image. In the last layer of this architecture, the duration of 49-d storage was regressed to a real number in a continuous scale. The model was trained with a maximum of 512 epochs, although early stopping generally terminated training before 200 epochs when there is no improvement in the validation loss after 50 consecutive epochs, as detailed in Doan et al. (61). Training and validation data were randomly undersampled per blood unit across cell types to create a balanced dataset. Eighty percent of sampled data were assigned to the training dataset, with the remaining 20% assigned to internal validation of the model during its training. Prediction metrics included recall, precision, F1-score, and weighted accuracy.

UMAP embedding. 200 training epochs and a learning rate of 1.0 was used to optimize the embedding. The seed used by the random number generator was kept constant at 42 throughout the training. The distributions of the 1D UMAP along this unidirectional UMAP axis allowed the estimation of the cell degradation phenotype for the given blood unit. Based on the visual inspection of a subset of annotated data (merged bags A, B, D, E, F, H, CE50, and CE52), we categorized all RBCs below a manually selected threshold in the component space of the 1D UMAP as healthy, which when summed can exclude most spherocytosis (crenated spheroid, crenated spheres, and smooth spheres), which revealed that cells lay approximately on a 1D manifold. We explored for 20 units in the additional dataset (**Fig. 4**), hemolysis measurements were performed following the testing facility protocol as previously described (46), with the exception that the supernatant preparation (storage media collection) was performed as described above.

Conventional Image Analysis. Images contained within .CIF files were stitched into montages by using a Python script. Cellular objects from the montages were identified (segmented) using CellProfiler 3.1.8 (41, 64). More than 600 object features were extracted by a series of built-in measurement modules, including measuring object intensity, size, shapes, textures, and correlations. Data cleaning and feature selection were performed by Cytominer (65) to remove features with near-zero variance and features that have poor correlation across replicates. Redundant features that are highly correlated were then identified and only one feature for each of these groups was retained. After pruning, 135 relevant cell features were retained, in which no pair of features had a correlation greater than the 95% cutoff threshold.

Data Availability. Annotated data of ~67,400 cells (including undecidable class and hold-out dataset) can be found in Fighare (67). The unannotated data for weakly supervised learning can be found in Fighare (67). The 3D-PCA, t-SNE, and UMAP visualization of supervised learning embeddings (penultimate layer, pool5) for 7,000 annotated RBCs are available in ref. 68; extracted features are available in Fighare (69). The 3D-PCA, t-SNE, and UMAP visualization of weakly supervised learning embeddings (intermediate layer, Res4a_ReLU) for 7,000 annotated RBCs are available in ref. 36; extracted features are available in Fighare (70). The 3D-PCA, t-SNE, and UMAP visualization of classic image features (extracted by CellProfiler) for 5,000 cells randomly selected from the pooled annotated Swiss test sets (33,467 RBCs) are available in ref. 71; extracted features are available in GitHub (72).

Code Availability. The complete vignette of fully supervised and weakly supervised learning for red blood cell morphology analysis is disseminated in Github (73). The code for the web-based application for human annotation can be found in Github (74). We disseminated a more generalizable deep learning package, Deepometry (28). This open-source pipeline eases the analytic workflow for single-cell images, from handling raw images to operating the neural network ResNet50 architecture. This workflow was originally built for imaging flow cytometry data but can be readily adapted for microscopic images of isolated single objects. Unlike other deep-learning schemes which are through-and-through the database, our modifi- cation of ResNet50 allows researchers to use any number of stained or unstained channels. Deepometry embedding outputs can be viewed using public web-based visualization tools, such as Tensorflow projector (https://projector.tensorflow.org/) or Morpho (https://due.io/morpho), for interactive inspection.

ACKNOWLEDGMENTS. We thank the staff of the nCdLab for Blood for Research facility, Centre for Innovation, Canadian Blood Services, Sophie Waldvogel, and all the staff at the Transfusion Center of the University Hospital of Geneva (Switzerland) for providing blood samples and quality-control data, and the generosity of the blood donors who made this research possible: T. C. Chant for consultation associated with validating the selection of images for the truth populations used for analysis, and for the development of the red blood cell gating and filtering template on the IDEAS software.
platform; The Lunenfeld Tanenbaum Research Institute flow cytometry facility for preclinical flow image flow cytometry experiments (supported through grants from the Canada Foundation For Innovation); M. H. Rohban for his expert consultations on developing fundamental concepts and critical elements of the machine-learning and deep-learning frameworks throughout the project; Dr. R. Lamarche for critical feedback on the manuscript. Funding for this project was provided by US National Science Foundation/UK Biotechnology and Biological Sciences Research Council Joint Grant NSF DBI 1458526 and BBN050153 (to A.E.C. and P.R.); Biotechnology and Biological Sciences Research Council Grant BB/P026818/1 (to P.R.); Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research; via a Collaborative Health Research Projects Grant 315271 “Characterization of blood storage lesions using photographic technologies” (to M.C.K. and J.P.A.); and was administered by Carigast S.A. of Geneva, Switzerland (to A.R.). The Canadian Blood Services research program is funded by the federal (Health Canada), provincial, and territorial Ministries of Health. Experiments were performed at the University of Alberta Faculty of Medicine & Dentistry Flow Cytometry Facility, which receives financial support from the Faculty of Medicine & Dentistry and Canada Foundation for Innovation for core facilities. The views expressed herein do not represent the views of the Canadian federal government or any other funding agencies.

11. J. R. Hess, B. G. Solheim, J. Sikorski, L. A. Derrick Tovey, Scanning electron microscopy of red blood cells.
12. G. H. Longster, T. Buckley, J. Sikorski, L. A. Derrick Tovey, Scanning electron microscopy of red blood cells.
13. J. R. Hess, B. G. Solheim, J. Sikorski, L. A. Derrick Tovey, Scanning electron microscopy of red blood cells.