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Abstract
Background: The mechanisms that regulate platelet biogenesis remain unclear; fac-
tors that trigger megakaryocytes (MKs) to initiate platelet production are poorly un-
derstood. Platelet formation begins with proplatelets, which are cellular extensions 
originating from the MK cell body.
Objectives: Proplatelet formation is an asynchronous and dynamic process that poses 
unique challenges for researchers to accurately capture and analyze. We have de-
signed an open-source, high-content, high-throughput, label-free analysis platform.
Methods: Phase-contrast images of live, primary MKs are captured over a 24-hour 
period. Pixel-based machine-learning classification done by ilastik generates prob-
ability maps of key cellular features (circular MKs and branching proplatelets), which 
are processed by a customized CellProfiler pipeline to identify and filter structures 
of interest based on morphology. A subsequent reinforcement classification, by 
CellProfiler Analyst, improves the detection of cellular structures.
Results: This workflow yields the percent of proplatelet production, area, count of 
proplatelets and MKs, and other statistics including skeletonization information for 
measuring proplatelet branching and length. We propose using a combination of 
these analyzed metrics, in particular the area measurements of MKs and proplate-
lets, when assessing in vitro proplatelet production. Accuracy was validated against 
manually counted images and an existing algorithm. We then used the new platform 
to test compounds known to cause thrombocytopenia, including bromodomain in-
hibitors, and uncovered previously unrecognized effects of drugs on proplatelet for-
mation, thus demonstrating the utility of our analysis platform.
Conclusion: This advance in creating unbiased data analysis will increase the scale 
and scope of proplatelet production studies and potentially serve as a valuable re-
source for investigating molecular mechanisms of thrombocytopenia.
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1  | INTRODUC TION

Platelets and their precursor cells, megakaryocytes (MKs), are es-
sential for hemostasis. MKs, which reside mainly in the bone mar-
row, generate platelets by remodeling their cytoplasm into long, 
beaded proplatelet extensions, which function as the assembly lines 
for platelet production.1 However, the mechanisms that regulate 
platelet biogenesis remain unclear due to a limited understanding 
of factors that trigger MKs to initiate proplatelet production. A bet-
ter understanding of the signaling pathways that power platelet 
production may yield new therapeutic strategies for the treatment 
of thrombocytopenia (low platelet counts), a major clinical problem 
encountered across a number of conditions including sepsis, cancer, 
and autoimmune diseases. Thrombocytopenia can be caused due to 
a wide variety of medications, and can range from mild to life threat-
ening in severity. Drug-induced thrombocytopenia can occur due to 
the destruction of circulating platelets, and/or defects in MKs taht 
render them unable to replenish platelet counts.2 While platelet 
survival and clearance rates can be readily measured via flow cy-
tometry, quantification of platelet production from MKs, such as the 
rate and extent of proplatelet production, currently requires direct 
visualization and low throughput analysis. As such, it is often difficult 
to distinguish what stage of thrombopoiesis is affected in thrombo-
cytopenic patients and consequently it is hard to optimize the best 
therapeutic strategy.

Platelet formation from MKs in vitro is a highly dynamic and 
asynchronous process that poses unique challenges for research-
ers to accurately capture and analyze. Culturing primary MKs has 
allowed examination of platelet production in controlled, in vitro 
settings. Platelet production begins with the extension of large 
pseudopodia from the MK cell body using microtubule-dependent 
forces.3 Microtubules then band together into bundles lining pro-
platelet shafts and form looped structures at their tips.3 Powered 
by dynein-dependent microtubule sliding, proplatelets undergo 
extensive elongation and can reach millimeters in length.4-6 During 
the final stages of maturation, MKs release proplatelets that reorga-
nize into platelets. This process occurs spontaneously in vitro and 
has been directly visualized in vivo.4,7,8 To date, practical limitations 
associated with culturing primary MKs,9 live-cell imaging, and data 
analysis have impeded discoveries of molecular mechanisms capable 
of regulating proplatelet production.

Live-cell, label-free analysis of MKs over time is optimal for quan-
tifying proplatelet production and necessary for high-throughput 
applications. To date, manual counting of live proplatelet-producing 
MKs is the gold standard for quantification of proplatelet produc-
tion. However, manual cell counts of proplatelet-producing cells 
vary widely, and in addition, only a small percentage of MKs undergo 

proplatelet production in vitro such that large numbers must be 
tediously assessed. While fluorescent labeling is a valuable tool 
for imaging other cell types, MKs present challenges because they 
are non-adherent; the fragile nature of proplatelets causes them 
to disconnect from the cell body after manipulation, and it can be 
difficult to image the thin bridges connecting beaded proplatelets. 
These practical limitations of imaging proplatelet production have 
made thresholding individual cells and high-throughput quantitation 
challenging. In fact, most studies have used static snapshots from 
a limited number of fixed cells that yield predominantly qualitative 
results.8,10

Another limitation in current analysis techniques is the ability 
to classify and score proplatelet morphology. A true “high-content” 
analysis provides information on several morphological or pheno-
typical metrics.11 To date, fluorescent labels on fixed cells during 
different stages of development have provided most of the qualita-
tive information we have on proplatelet morphology. However, the 
ability to perform qualitative analysis in a live-cell, label-free system, 
with a high-throughput capacity, has not been previously described. 
In addition, proplatelet formation can be a rare event in different 
classes of MKs (ie, murine bone marrow–derived versus fetal liver–
derived). Primary human MKs also produce significantly smaller and 
less elaborate proplatelet formations in culture. These rare events 
can often render the metric of “percent proplatelet production” 
uninformative and are often over/underinflated by current analysis 
methods. As such, an unbiased analysis platform capable of deliv-
ering raw outputs (ie, percentage of proplatelet-making MKs) with 
morphological scoring (normal extensions, diminished extensions, 
etc) would be invaluable for examining proplatelet formation.

We previously described a high-content, high-throughput assay, 
utilizing automated live-cell captures from the Incucyte ZOOM 
(Essen BioScience) to quantitate and measure proplatelet pro-
duction.12 While data analysis using our custom ImageJ pipeline 
enabled real-time detection of the rate and extent of proplatelet 

K E Y W O R D S
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Essentials

• Platelet production is difficult to quantify due to limita-
tions in live-cell image analysis methods.

• We describe a novel, label-free analysis method that 
uses supervised machine learning.

• We compared our analysis platform to manual counting 
by blinded experts to validate its accuracy.

• We describe new insights into drug-induced thrombocy-
topenia using high-content analysis.
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production, accurate image segmentation and identification of pro-
platelet branches belonging to individual cells remained a key bar-
rier to analyzing data. Furthermore, artificial inflation of proplatelet 
production due to high background as well as difficulties in batch 
processing have limited the ability to obtain high-throughput data. 
Here, we describe an improved workflow to analyze the biological 
mechanisms of platelet production using supervised machine learn-
ing algorithms in place of traditional, rule-based image analysis. We 
demonstrate that this image analysis approach can be used to cap-
ture and quantify the complex morphological features of MKs un-
dergoing proplatelet formation. Further, we demonstrate that this 
workflow can be applied to clinically relevant cases of drug-induced 
thrombocytopenia to help elucidate the cause of platelet production 
defects.

2  | METHODS

2.1 | MK culture and purification

Primary mouse MKs were derived from fetal liver cultures as pre-
viously described.9 Briefly, fetal livers were extracted from CD-1 
pregnant mice at day 13.5 of gestation. Homogenized fetal liver cells 
were then cultured in Dulbecco's Modified Eagle Media (DMEM) in 
the presence of recombinant murine thrombopoietin (TPO; 70 ng/
mL) for 4 days. On day 4, mature MKs were purified by a bovine 
serum albumin (BSA) density gradient. Primary human MKs were 
generated from cord blood CD34 + cells cultured in serum-free 
stem-cell medium containing 70 ng/mL TPO.13 Mature human MKs 
were purified by magnetic bead separation on day 11.

2.2 | Live cell imaging

Live cell imaging was performed using the Incucyte® System (Essen 
BioScience). MK cultures were adjusted to a cell density of 250 to 
500 cells/well and plated in 96 well plates (Opticlear, Greiner Bio-
One). Plates were maintained in an XL-3 incubation chamber at 
37°C incubator with 5% CO2. Wells were imaged using 10× and 
20× objectives in phase, for mouse and human MKs, respectively. 
Phase-contrast image frames were captured at 1-hour intervals from 
multiple 950 × 760–μm2 regions per well.

2.3 | Inhibitor studies

After maturation, MKs were treated with one of the following com-
pounds, for 15 minutes, and over the duration of 24-hour time-
lapse imaging, as described above: Panobinostat (1-10 μmol/L; 
Selleckchem), Valproic acid (1-10 μmol/L; Sigma-Aldrich), OTX015 
(1-10 μmol/L; Selleckchem), I-BET762 (1-10 μmol/L; Sigma-Aldrich), 
Puromycin (100 ng/mL; Sigma-Aldrich), Taxol (10 μmol/L; Sigma-
Aldrich), or vehicle control (0.1% dimethyl sulfoxide [DMSO]). 

Technical and biological replicates for each condition were per-
formed, as indicated in the corresponding figure legends.

2.4 | Analysis of MKs and proplatelet formation

Phase images were exported as 8-bit tiff stacks (frames over time) 
that captured stages of MK differentiation and proplatelet forma-
tion (Figure 1A). ilastik (version 1.3.0+) is an open-source tool for 
segmentation and classification of images based on pixel intensities. 
ilastik's autocontext workflow was used to expertly annotate and 
segment training images (Figure 1B).14,15 The first stage of train-
ing classified pixels as either background, cell background, white, 
black, and gray. A second layer of classifiers was then annotated to 
identify higher level objects as background, cell boundary, MK, and 
proplatelet. To avoid image overtraining, ilastik's probability maps 
were checked at each step, for every training image, to improve upon 
areas of ambiguity. We found that approximately 15 to 20 labels of 
each classifier, per image, at each stage, with a focus on variety and 
areas of ambiguity, gave optimal results.

After the two-stage pixel classification training in ilastik, proba-
bility maps of features were generated for each image (background, 
cell boundary, MK, and proplatelet, Figures 1B and 2A). These fea-
ture maps were then processed in a CellProfiler (version 3.0.0+) 
pipeline, which identified all cellular objects within an image. After 
running this pipeline, segmented images underwent a final round of 
training in CellProfiler Analyst (CPA, version 2.2.1) to create machine 
learning rules (in the form of a text file) for proplatelet structures. 
At this stage, 50 cells from each category (MK or proplatelet) were 
labeled by an expert as either positive or negative to improve rec-
ognition of complex proplatelet structures (Figure 2B). We classed 
proplatelet-forming cells as any MK lacking a round cell body (early 
stages of proplatelet formation) and/or displaying long, extended 
protrusions (Figure 2B). By forming this preliminary understanding 
of the cellular objects within the phase-contrast images, a final, fil-
tering CellProfiler pipeline, bolstered by the CPA-created text rules, 
was run to accurately segment genuine MKs and proplatelets. This 
pipeline screened the images by solidity (<0.8), and size (diameter/
major axis length/Zernike) exclusion metrics. Finally, the workflow 
was automated via Python programming, with the code, ilastik files, 
and CellProfiler pipelines located at https://github.com/broad insti 
tute/Itali ano-MK-Analysis.

A skeletonization pipeline was also developed to gain more in-
depth information of proplatelet structures. Sixteen-bit images of 
masked proplatelets (emanating protrusions from MK bodies that 
are identified by the MK pipeline), were analyzed through an ad-
ditional CellProfiler pipeline that converted identified mouse pro-
platelet objects into skeletonized structures (see Figure 5A). The 
skeletonized image was made up of nodes (vertices) linked by line 
segments (edges). The output provided tabulated information of sta-
tistical features of each skeletonized object, allowing quantitation of 
proplatelet lengths and in-depth visualization of spatial distributions 
over the differentiation timeline, within the well/image.

https://github.com/broadinstitute/Italiano-MK-Analysis
https://github.com/broadinstitute/Italiano-MK-Analysis
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3  | RESULTS

3.1 | Supervised machine learning algorithms 
accurately segment stages of MK maturation

We designed a supervised machine learning approach to accurately 
identify complex proplatelet objects in images. Mature MKs were 
imaged over a 24-hour period, during which they underwent several 
morphological changes as they transition to proplatelet production1 
(Figure 1A). Mature MKs are large, round cells, which elongate in 
an asymmetrical, irregular fashion, indicating the initiation of pro-
platelet production. Within the proplatelet structure, extensions/
protrusions form a complex web, with smaller beads or swellings 
also identifiable.

The image analysis pipeline (Figure 1B) begins with phase 
contrast images (single, 8-bit); two rounds of supervised ma-
chine learning in ilastik generated probability maps of cellular 
features. These are then processed in CellProfiler to identify a 
potential pool of MKs and proplatelet structures. To identify true 
MK and proplatelet objects, images underwent a second round 
of machine learning, at the object rather than pixel level, using 
CPA. The workflow produced segmented and overlaid images of 
the original raw phase image, allowing the monitoring of object 
classification accuracy throughout the stages of analysis. The 

workflow accurately identified structures of interest; an example 
processed test image is shown in Figure 2A. We quantitatively 
validated the workflow by testing its ability to distinguish 200 
cells from non-training images as positive (MKs with proplatelets) 
and negative (round MKs, Figure 2B). Accuracy was ~70% to 80% 
when compared to annotation by two independent, blinded ex-
perts (Figure 2C). Of note, expert annotation was also within this 
range, suggesting that the workflow accuracy is within the range 
of human variability.

3.2 | Supervised machine learning algorithms offer 
improved accuracy of detecting proplatelet structures 
compared to traditional data analysis methods

The supervised machine learning analysis platform was validated 
against two alternative methods of proplatelet quantification—
traditional rule-based image analysis using a previously devel-
oped ImageJ macro,12 and manual counting, which is the current 
gold standard of proplatelet analysis (Figure 3). Mature murine 
MKs were treated with either puromycin (100 ng/mL), a protein 
synthesis inhibitor known to reduce proplatelet production,16 or 
vehicle control, and imaged over 24 hours. In untreated control 
wells, proplatelet-making MKs accounted for approximately 30% 

F I G U R E  1   Development of a label-free proplatelet analysis platform using supervised machine learning. A, Phase contrast images show 
megakaryocytes (MKs) undergoing different stages of maturation and proplatelet formation over time. Round, mature MKs (red) undergo 
cytoskeletal transformation to begin producing proplatelets (green). Notable features of proplatelets include long cytoskeletal extensions 
(blue) and terminal swellings thought to be early platelets (yellow). B, Schematic of ilastik training (two-stage pixel classification) to segment 
MK classes. The software was trained using ilastik in which pixels were classified as background gray, background near cell, white pixels, 
gray pixel,s or black pixels. In a second stage, pixels were classified as background, cell boundary, cell, and protrusion. The probability maps 
generated were fed into CellProfiler, where overlays can be checked and undergo further CellProfiler Analyst rule creation. Scale bars are 
50 μm

B
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of MKs, often peaking between 10 and 15 hours. As expected, 
cultures treated with puromycin had a reduced number of pro-
platelet structures. Images were quantified using the new analy-
sis pipeline, ImageJ, and manual counting by three independent, 
blinded experts (Figure 3A). The proposed machine-learning–
based pipeline matched manual counts of percent proplatelet 
production most closely, indicating higher accuracy than the 
ImageJ macro, which is based on circularity and size exclusion 
rules.

In addition to the percentage of MKs making proplatelets, other 
values such as total area of MKs and proplatelets per image were 
generated using both CellProfiler and ImageJ analysis platforms. 
These values are useful in conjunction with percentages, as they 
reveal more detail about the structures being analyzed. Images an-
alyzed by ImageJ/traditional analysis showed a higher estimate of 
MK area and a lower estimate of proplatelet area than supervised 
machine learning algorithms (Figure 3B-C). This suggests that the 
source of the ImageJ macros’ overestimation of percentage of pro-
platelets stems from difficulties in accurately segmenting whole pro-
platelet objects.

3.3 | Shape and area metrics are more appropriate 
to assess human proplatelet production

Human, CD34 + cell-derived MKs were also validated using the su-
pervised machine learning analysis platform. Of note, human MKs are 
typically smaller and produce significantly fewer proplatelets with less 
elaborate extensions in culture than their murine fetal liver-derived 
counterparts9 (Figure 4A). The difference in morphology and rare oc-
currence of proplatelet production events poses particular challenges 
for automated data analysis techniques. Due to these differences in 
morphology, we created a separate pipeline in which workflow train-
ing was performed on human MKs. This yielded a similar degree of 
accuracy to the murine system (Figure 4B). Human MKs were then 
treated with either vehicle or puromycin (100 ng/mL) and imaged 
under the same conditions as the murine MKs, as described above. 
Supervised machine learning-based analysis estimated a similar per-
centage of proplatelet-producing MKs as ImageJ (approximately 5%), 
with the manual quantitation estimation being significantly lower 
than both (<5%; Figure 4C). However, when area parameters were 
analyzed, CellProfiler estimated an almost negligible number of pixels, 

F I G U R E  2   Supervised machine learning algorithms accurately segment stages of megakaryocyte (MK) maturation. A, 1: Representative 
input of an eight-bit single image, 2: The four probability maps generated by ilastik, and 3: The overlays generated by CellProfiler, showing 
accurate segmentation of round MKs (red) and proplatelet structures (green). Scale bars are 50 μm. B, The machine learning algorithms were 
internally validated within CellProfiler. Events were binned as positive (proplatelet-forming) or negative (non–proplatelet forming MKs) in 
CellProfiler Analyst. Two hundred cells were then manually classified/annotated and compared to the CellProfiler predictions. C, Confusion 
matrices were generated based on two independent expert annotators, showing percentages of the predicted versus true label
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consistent with the true small number of human proplatelet structures 
(Figure 4D). In contrast, ImageJ analysis provided a much higher area 
of proplatelets, further suggesting inaccuracies in identifying bona fide 
extensions (Figure 4D). We therefore suggest that proplatelet area, or 
more detailed shape metrics, are more relevant metrics for analyzing 
proplatelet formation from human MKs.

3.4 | Skeletonization pipeline allows high content 
analysis of proplatelet structures

To analyze proplatelet structures in greater detail, we developed an 
additional skeletonization pipeline. This extension of the proposed 
workflow creates skeletonized images of the proplatelets, thus al-
lowing us to monitor the biological significance of different mouse 
proplatelet morphologies and structures (Figure 5A). These “skele-
tonized” images are made of trunks (red), branches (green), and end-
point nodes (or vertices, blue), linked by “edges” or line structures 
(white). The edge and vertex information (combined with location 
values) generated from the skeletonization pipeline allowed quantifi-
cation of the number and length (in pixels) of proplatelet protrusions 
within a single proplatelet structure of interest (Figure 5C).

To identify which metrics would best reveal changes in the 
morphological structure of proplatelet objects, we performed an 
in-depth analysis of two previously determined, morphologically 
distinct proplatelet structures. Taxol, an anti-cancer drug known to 
stabilize microtubules, causes a distinct, reproducible proplatelet 

phenotype which is characterized by long, unbranched protrusions 
as opposed to multiple long protrusions that tangle together to form 
a complex web.17 Using the skeleton analysis, we identified sev-
eral features that can be used to create a profile of complex versus 
non-complex objects. Taxol-treated proplatelets had, on average, 
longer segmented branches, indicative of less complex, retracted 
protrusions. In contrast, normal proplatelets were characterized 
by a larger number of segmented branches, total proplatelet length 
within the objects, greater area, perimeter, radius, and higher solid-
ity value (Figure 5B-D). Two-tailed t-tests were performed on these 
seven metrics, with area (P = .0193), perimeter (P = .0424), radius 
(P = .0079), and solidity (P = .0055) showing significant differences 
between DMSO and Taxol.

3.5 | New insights into mechanisms of drug-induced 
thrombocytopenia using high-content MK analysis

Many drugs, especially chemotherapy agents, cause thrombocyto-
penia in patients, the mechanisms of which are largely unknown. To 
validate the clinical utility of our analysis platform, we tested several 
compounds, with known and unknown effects on proplatelet produc-
tion,18-20 to assess their impact on the ability of MKs to make plate-
lets (Table 1). Histone deacetylase (HDAC) inhibitors, panobinostat 
and valproic acid, and the bromodomain inhibitors, OTX015 and 
I-BET172, were incubated with mature, cultured MKs and imaged 
over 24 hours, for a total of n = 72 fields analyzed per inhibitor (over 

F I G U R E  3   Supervised machine learning offers improved accuracy of proplatelet quantitation compared to alternative image analysis 
methods. A, Comparative analysis of proplatelet (PPLT) production among CellProfiler, ImageJ, and manually counted images (n = 3 people) 
was performed to validate the platform against existing methods of quantification. Fetal-liver derived mouse megakaryocytes (MKs) were 
imaged live in culture over a period of 24 hours while they underwent proplatelet formation. Note both CellProfiler and manual counting 
show the number of proplatelet objects beginning at 0% at time 0, and peaking at under 50%, with a similar degree of variation. In contrast, 
analysis via a previously published investigator-coded ImageJ macro shows the same trend, however with an inflated estimation of the 
amount of proplatelet objects and a higher degree of variation. B, Area (pixels) of MK and (C) proplatelet objects were also compared to the 
values obtained via analysis with ImageJ. These data show ImageJ analysis estimated a higher MK area, suggesting CellProfiler may more 
accurately segment single cells. Data are mean ± standard deviation of n = 3 independent experiments
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three independent/biological repeats). Then, a profile of several met-
rics including proplatelet production, area, and number of masked pro-
trusions was compiled to reveal a detailed phenotype. We found that 
panobinostat decreased percent proplatelet formation (over time and 
at 20 hours), and the proplatelet structures that formed were smaller 
in area and had fewer masked protrusions (Figures 6A and S1A in sup-
porting information). In contrast, valproic acid did not significantly af-
fect percent proplatelet production, but did show a decrease in the 
number of masked protrusions, suggesting the proplatelet quality 
could be affected by this compound (Figures 6B and S1B). In addi-
tion, two bromodomain inhibitors currently undergoing clinical trials 
were tested in the assay. The compound OTX150 had a subtle ef-
fect on proplatelet formation, with a more drastic effect on masked 
protrusions and proplatelet area (Figures 6C and S1C). Similarly, the 
compound IBET-762 affected all parameters (Figures 6D and S1D). 
Together, these data (a) corroborate previously reported effects of 
HDAC inhibitors on proplatelets, (b) suggest that bromodomain inhibi-
tors may be associated with platelet production defects, and (c) sup-
port using the supervised-machine learning pipeline generated here to 

give a more comprehensive picture of the differential effects of drugs 
on proplatelet production.

4  | DISCUSSION

We present an automated, high-content framework for analyzing MKs 
and proplatelet production using supervised machine learning. In this 
unified platform, we have developed a novel workflow that identifies 
and quantitates MKs and proplatelets within label-free, phase-con-
trast images, based on distinguishing pixel-based features.21 This is 
evidenced by improved recognition of proplatelet objects compared to 
traditional rule-based image analysis (ImageJ macro). Further, we have 
also developed a qualitative proplatelet analysis, utilizing CellProfiler's 
skeletonization module combined with area and shape metrics. This 
advance in image analysis methodology for analyzing proplatelet pro-
duction will accelerate new findings in the field.

There have been several studies showcasing analysis plat-
forms for quantifying proplatelet production, including rule-based, 

F I G U R E  4   Supervised machine learning allows for analysis of human megakaryocyte (MKs). A, Representative phase contrast and 
CellProfiler overlaid images of human CD34 + derived MKs (MKs, red) and proplatelet (PPLT, green) structures. Note the smaller size of 
proplatelet branches formed from human MKs compared to murine fetal-liver–derived MKs, which has posed challenges for accurate 
detection using image analysis software. B, A confusion matrix showing validation of the human MK pipeline. C, Comparison of proplatelet 
quantification over time among CellProfiler, ImageJ, and manual counting (n = 3 people). D, Area (pixels) of MK and proplatelet objects were 
also compared to the values obtained via analysis with ImageJ. Scale bar is 50 μm. Data are mean ± standard deviation (shaded regions) of 
n = 3 independent experiments
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investigator-coded pipelines.10,12 A recent paper from Salzmann 
et al10 describes a CellProfiler-based pipeline to examine proplatelet 
formation using fluorescent labels in fixed MKs spread on fibrinogen. 
While fluorescence imaging has been used with other cell types, it 
presents challenges in MKs. Notably, it is difficult to resolve the thin 
bridges connecting beaded proplatelets by fluorescence. Further, due 
to the presence of multiple nuclei,22 MKs have a propensity to shed 
fluorescent labels as they undergo proplatelet production. Potential 

cytotoxicity and artifacts from overexpressing fluorescent proteins 
also compound issues with using fluorescent markers in proplatelet 
analysis. Furthermore, immunofluorescence approaches require cells 
to be fixed and adhered to a coverslip. Adherence of MKs on fibrinogen 
coated coverslips could bias results if there are differences in attach-
ment of round versus proplatelet-producing MKs. Furthermore, ad-
herent MKs tend to spread on substrates like fibrinogen and it can be 
difficult to differentiate between spreading and bona fide proplatelet 

F I G U R E  5   Supervised machine learning pipeline combined with skeletonization modules provides high-content proplatelet profiling. A 
skeletonization module was developed to allow deeper analysis of individual mouse proplatelet structures with different morphologies. A, 
representative images of a typical proplatelet structure versus Taxol-treated cells, including their corresponding skeletonized image. The 
skeletonized image is made of trunks (red), branches (green), and endpoints (or vertices, blue), linked by “edges” or line structures (white). 
B, A table comparing single cell metrics of the dimethyl sulfoxide (DMSO) and Taxol images in (A) obtained from the skeleton analysis and 
metadata from the proplatelet analysis pipeline. C, Quantitation of proplatelet skeleton from replicates of DMSO- versus Taxol-treated 
structures. The Taxol structures have increased average length of segments, reflecting the simplified skeletonized structure. Number of 
branches/masked protrusions is decreased with Taxol treatment, suggesting this is a more appropriate metric to detect complexity (n = 3). 
D, Quantitation of values that correlate with masked protrusions. Note area, perimeter, radius, and solidity are all decreased in the Taxol-
treated structure (n = 3)
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F I G U R E  6   Proplatelet profiling allows new insights into mechanisms of drug-induced thrombocytopenia. Mature fetal liver–derived 
megakaryocytes (MKs) were treated with a panel of inhibitors and were then screened for proplatelet (PPLT) production defects, using 
metrics from several analyses to create an individual profile for each inhibitor. PPLT production over time was assessed, along with percent 
PPLT production at 20 hours, number of masked protrusions within the PPLT objects, and average area of each PPLT object in Figure S1. 
Representative images for each condition at 20 hours are shown on the right, with one set of dimethyl sulfoxide-treated MKs used for 
control. Scale bar is 100 μm. A, Histone deacetylase (HDAC) inhibitor panobinostat affects both the number and quality of PPLT extensions. 
B, In contrast, valproic acid (also a HDAC inhibitor) was found to not significantly affect the number of MK-making PPLT, but did decrease 
the number of masked protrusions. The bromodomain inhibitors (C) OTX015 and (D) IBET-762 were also assessed and were found to impact 
both quality and quantity of PPLT formation. Data are mean ± standard error of the mean of n = 3 independent (biological) experiments; all 
conditions were performed in duplicate in each experiment
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production. Another advantage of our platform is the acquisition of 
kinetic data in live cells over 24 hours. Given that proplatelet forma-
tion is asynchronous, analysis of fixed cells only provides a limited 
snapshot of this process. Our platform will enable investigators to 
more easily measure the effect of perturbations (eg, small-molecule 
inhibitors) on proplatelet formation over a time course. As such, live-
cell label-free analysis of MKs over time is the optimal modality for 
examining and quantifying proplatelet production in vitro and has the 
potential to increase standardization between laboratories.

In this study, we performed a small-scale compound screen 
of inhibitors with known and unknown proplatelet defects. Drug-
induced thrombocytopenia is a major clinical problem that often be-
comes apparent only when compounds are already in clinical trials. 
It is most often caused by either immune-mediated destruction and 
clearance of circulating platelets or defects at the MK/proplatelet 
formation level. Compounds commonly used for cancer treatments, 
such as HDAC inhibitors, are often associated with thrombocytope-
nia, presumably due to their global effects on blood cells from multi-
ple lineages. We note that while Bartels et al18 studied the effect of 
valproic acid on MK maturation from precursors, they did not inves-
tigate proplatelet formation explicitly. In our experiments, we added 
inhibitors to mature MKs to determine their effect on proplatelet 
formation. We observed a decrease in masked protrusions consis-
tent with a modest defect in proplatelet formation. Had we added 
valproic acid to MKs at an earlier stage of development, it is possi-
ble that we would have observed a more severe defect in masked 
protrusions and proplatelet formation.18 Our analysis platform can 
be used to gain quantitative information on kinetics and percentage 
of proplatelet production, as well as qualitative information on pro-
platelet extensions and complexity. Morphological characterization 
of proplatelet structures might yield novel mechanistic insights into 
how platelets form, not just whether they form. An issue with the 
proplatelet structure analysis, in its current state, is the tendency 
for it to indiscriminately skeletonize all line-like structures that ema-
nate from detected megakaryocyte bodies. However, even with the 
presence of additional noise/false positives, the ability to quantitate 
major structure lengths is feasible, which affords the end user addi-
tional metrics from which to draw conclusions. This could serve as 
a high-throughput, high-content preclinical tool, which will mitigate 
the risk of patients developing thrombocytopenia, as well as help 
to gain mechanistic insight into proplatelet production defects. We 
note that there are other methods for assessing the effects of drugs 
on proplatelet production that attempt to more faithfully recapitu-
late the in vivo microenvironment of platelet production.23,24 While 
these microfluidic devices mimic physiological aspects of the bone 
marrow and blood vessel microenvironment, this is a low-through-
put method as one can only visualize a single chip at a time.

One of the main difficulties in creating an automated analysis 
of proplatelet structures is the complex morphological variations 
in MK shapes, and the complexity of branched, overlapping pro-
platelet structures. To define these features, we have used modu-
lar, machine-learning capable tools.21 Modeled after a pre-existing 
ImageJ macro12 designed to quantify real-time differentiation, we 

have extended our analytical capabilities by leveraging open-source 
Python algorithms. This implementation provides a high level of flex-
ibility that permits high-content and high-throughput quantification. 
However, despite many advances, there are still limitations which 
exist in our described method. Machine learning analyses are entirely 
reliant on an abundance of high-quality training data. In terms of 
image analysis, this necessitates that images are captured in a con-
sistent manner, exhibiting diverse and well-defined pixel characteris-
tics. Capturing rare, and anatomically convoluted, events (in the case 
of human proplatelet formation, and mouse megakaryocyte shape 
variation, respectively) remains challenging for algorithms as well as 
distinguishing between single and multiple complex proplatelet ob-
jects. These limitations, however, provide further rationale for using 
shape and area metrics, in conjunction with raw percentages, when 
analyzing proplatelet formation. In addition, images acquired from 
different machines will need to be retrained at the pixel level, thus in-
troducing a source of subjectivity and will require ongoing validation. 
However, both ilastik and CellProfiler offer multiple checkpoints for 
internal quality control—uncertainty values (ilastik), confusion matri-
ces (CellProfiler Analyst), and masked overlays of all objects within 
the image (CellProfiler). There are also limitations with certain drug 
treatments. For example, one unfortunate limitation with DMSO and 
puromycin treatments is that as MKs die in vitro, the cell body tends 
to remain static/non-diminishing when compared to cells that release 
their proplatelets, which disintegrate over time. So, as treated MKs 
(protruding, partially forming proplatelets) stay in the field of view, 
their count stays the same/increases, and will eventually overtake the 
viable/round/non–proplatelet-forming MKs. This is why ImageJ cal-
culates percentages that are >100%, while ilastik/CellProfiler fares a 
little better due to machine learning. The advantage of showing this 
data is to present the lesser degree of separation/error when compar-
ing our pipeline to manual counts; but machine learning still struggles 
at times with spread, yet dead cells. Regardless, the only true valida-
tion is direct visualization, and a strength of this platform is that every 
stage can be manually validated and tailored to suit individual needs. 
Future directions of this work will therefore focus on standardizing 
this platform to provide an objective and transparent method of 
quantifying proplatelet production, and additionally reducing incon-
sistencies among different laboratories.

5  | CONCLUSION

We have utilized open-source software to create a user-friendly, 
unbiased, accurate tool for measuring MK and proplatelet produc-
tion in live-cell label-free culture systems. The two-step supervised 
machine learning approach improves upon previously published 
methods of proplatelet quantification with improved accuracy, au-
tomation, flexibility, and high-content output. This advance in data 
analysis will help standardize proplatelet quantification in the field, 
increase researcher capability for analyzing proplatelet production, 
and potentially serve as a valuable clinical resource for investigating 
mechanisms of thrombocytopenia.
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