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On the correlation 
between material‑induced cell 
shape and phenotypical response 
of human mesenchymal stem cells
Aliaksei S. Vasilevich1, Steven Vermeulen1,2, Marloes Kamphuis2, Nadia Roumans2, 
Said Eroumé2, Dennie G. A. J. Hebels2, Jeroen van de Peppel3, Rika Reihs2, Nick R. M. Beijer2, 
Aurélie Carlier2, Anne E. Carpenter4, Shantanu Singh4 & Jan de Boer1*

Learning rules by which cell shape impacts cell function would enable control of cell physiology and 
fate in medical applications, particularly, on the interface of cells and material of the implants. We 
defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) 
to 2176 randomly generated surface topographies by probing basic functions such as migration, 
proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. 
Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell 
shape and physiological response and selected seven cell shapes to describe the molecular mechanism 
leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, 
molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with 
limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent 
quiescence, whereas cells with large filopodia are related to activation of early response genes and 
inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes 
that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will 
allow designing implants that can actively regulate cellular, molecular signalling through cell shape. 
Here we are proposing an approach to tackle this question.

Cells adapt to new situations by perceiving information, and transforming it into changes in their gene and 
protein expression repertoire1. Typical examples are diffusible morphogens2 that control stem cell differentiation 
during development and regeneration3,4, UV exposure resulting in the synthesis of pigment skin melanocytes5, 
lack of oxygen initiating the HIF1 mediated hypoxia response6 and shear forces in blood vessels regulating 
endothelial cell physiology7. Adaptation to the environment can also materialize as change in cell shape8. Elon-
gated multinuclear muscle cells are particularly well suited to exert stretching forces9, whereas the globular shape 
of lipid cells is optimized for volume-efficient fat storage10.

Cell shape thus follows cell function, but is cell shape also important to control cell function? Does cell func-
tion follow cell shape? Loss of physiological cell shape is sometimes accompanied by pathology11. For instance, 
in tendinopathies loss of extracellular matrix integrity in tendon and ligaments is preceded by a change from 
the typically elongated tenocyte to a more rounded shape12. Similarly, cancer cell malignancy is often preceded 
by a change in cell morphology13, suggesting that shape changes may be the cause rather than the consequence 
of the functional change. Experimental evidence for “function follows shape” comes from in vitro experiments 
where cell shape can be controlled using micropatterning techniques. Basic cellular decisions such as differentia-
tion, apoptosis or metabolic rate can be controlled by merely controlling cell shape14, suggesting that cell shapes 
generate signals which are transduced into the nucleus and result in changes in gene and protein expression15.
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An important source of cell shape signaling is the actin cytoskeleton which changes upon shape change, lead-
ing to changes in transcriptional activity of transcription factors such as MRTF, SRF, YAP and EGR16–18. However, 
nature has more mechanosensitive proteins in store. Stretch-activated ion channels open upon stretching of the 
plasma membrane resulting in the influx of ions which trigger several signalling cascades19, for example Zhang 
et al. previously provided evidence that potassium ion channel can be a key player to control MSC proliferation20. 
Many proteins contain mechanosensitive protein domains, e.g. the focal adhesion protein talin21, and some 
proteins contain a so-called BAR domain which is able to sense the curvature of a membrane and transduce that 
into a signal22. The generation of cell signalling events under the control of shape can be clustered under the term 
mechanotransduction23, and an open question in this field is how many different mechanobiological signals can 
be picked up by how many molecular circuits. The analogy is that of the canonical signalling pathways, where 
a dozen well-described families of diffusible molecules (hormones, metabolites, etc.) bind to and activate their 
cognate families of receptors and initiate signalling cascades.

We aim to identify how many mechanobiological pathways exist and how they are activated by cell shape 
parameters. How specific are the mechanobiological pathways and can we correlate shape features to gene expres-
sion and changes in phenotype? To answer these questions, we24 and others25 have used surface topography to 
control cell shape and direct cell function, because shape mediated control can be applied to functionalize the 
surface of medical devices. In this study, we have generated a library of topography-induced cell shapes and 
were able to correlate shape induced cell signalling to several different phenotypes, including molecular and 
morphological. We used bone marrow-derived mesenchymal stem cells as a conventional cell model system. 
These cells are multipotent, their progeny has very distinct differences in cell shape and there is ample evidence 
for shape-directed differentiation.

Results
Cell shape diversity can be captured by feature‑based clustering of a library of cell shapes.  To 
systematically explore the relation between cell shape and phenotypic response, we exposed human bone mar-
row-derived mesenchymal stem cells (MSC) to a library of 2176 unique topographies (TopoChip) and observed 
a plethora of different cell shapes26 which were distinct from the MSCs cultured on the flat substrate (Fig. 1a,b). 
For example, we observed cells with an elongated narrow cell body without any protrusions which resemble the 
shape of tenocytes (Fig. 1b, bottom-right cell) or had the cuboidal shape typical for bone lining cells; still, others 
appeared neuronal. Thus, topographies can induce cell shapes, some of which reminisce different mesenchymal 
cells in vivo.

To capture shape diversity, we generated a morphological fingerprint for each cell on each topography using 
11 shape descriptors including Area, Perimeter, Eccentricity and Form Factor27 (Supplementary Tables 1, 2). We 
pruned the cell database to remove outliers and imaging artefacts and focused on topographies that consistently 
induce the same cell shape (Supplementary Materials and Methods). The resulting selection of 851 cell shapes was 
plotted by Principal Components Analysis (PCA, Fig. 1c), which reduces data dimensionality and allows identify-
ing cells with similar shapes. We observed a continuum of cell shapes with some densely and sparsely occupied 
areas, demonstrating that some shape features are more abundant in our shape collection than others. This was 
confirmed by hierarchical clustering, where the tree structure displays four distinct branches, which are further 
divided until it reaches single cell shapes (Fig. 1d). For further phenotypic experiments, we sampled the medoid 
surfaces from 28 clusters, which together span the whole range of shape feature range, and reproduced them 
on 12 mm polystyrene disks. Visual inspection of the MSCs again shows a large diversity of cell shape, which 
is further highlighted by their cell shape fingerprints (Fig. 1e). The 28 surfaces are thus representing cell shape 
diversity induced by the TopoChip library (Fig. 1f) and further permits well plate compatible biological assays.

Shape features of mesenchymal stem cells correlate to their phenotypic response.  Cell shape 
is related to cell function28–30, so we probed the relation between cell shape features and a series of basic cell 
phenotypes, i.e. proliferation, apoptosis, protein biosynthesis, migration and differentiation, in MSCs exposed 
to the 28 groups of topographically-patterned surfaces and to flat control surfaces. We found that topographies 
induced profound differences in all phenotypic assays, demonstrating that basic cell biological processes are 
influenced by surface topographical cues. For instance, we observed a big difference in the rate of proliferation, 
ranging from 12 to 59% of EdU-positive cells, between the low and high scoring surfaces (Fig. 2a). Differentia-
tion was also affected, with, e.g. a six-fold difference in lipid production under adipogenic conditions between 
the lowest and the highest performing surface (Fig. 2b). None of the surfaces exclusively affected one biological 
property, yet a comparison of the magnitude of the phenotypic response showed that each surface induces a 
distinct phenotypic fingerprint (Fig. 2c, Supplementary Fig. 1). This is further illustrated in Fig. 2d, in which we 
clustered the surfaces based on phenotypic response. Flat surfaces formed a distinct cluster, demonstrating that 
cells on topographies share part of their phenotypic response which is different from the behaviour of cells on a 
flat surface (Fig. 2d). A cluster was formed by surfaces 2063 and 1130, located between the flat surface and the 
other topographies. Interestingly, the topographies on these surfaces are composed of sparsely located pillars, 
which resemble the flat surface, inducing relatively similar cell shape and similar phenotypic scores.

We assume that the phenotypic fingerprint is the result of the specific combination of multiple cellular 
signals induced by the topographies, some of which are directly related to cell shape, but others may not. For 
instance, it is conceivable that the direct effect of topography on nuclear shape influences gene expression and 
thus phenotype31, whereas we did not include nuclear shape features in our analysis. To assess the hypothesis that 
phenotypic responses are directly related to cell shape, we constructed computational models using the Lasso 
algorithm in which cell shape features were correlated to each specific phenotype.
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The most accurate computational model was able to predict alkaline phosphatase (ALP) expression, a marker 
for osteogenic differentiation, with high accuracy (goodness of fit of 0.82, Fig. 2e). The shape parameters Form-
Factor and Minor Axis length positively correlate with ALP expression, whereas Extent showed a negative 
correlation (Fig. 2f). Thus, a typical ALP positive cell has an elongated, irregular shape with many protrusions, 
which is consistent with previous work26 (Fig. 3a).

The second most accurate computational model predicted protein biosynthesis with goodness of fit 0.68, in 
which Area shows a positive correlation, whereas Euler Number (the number of the “holes” in the object, which 
can appear when the cell is forming a protrusion around a pillar), negatively correlates to protein synthesis (Sup-
plementary Fig. 2). We were also able to produce predictive models for cell proliferation (goodness of fit 0.63) 
and adipogenesis (0.37) but were unable to construct a model to predict apoptosis and migration (Fig. 2g). This 
suggests that parameters other than explored shape descriptors are responsible for differences in those readouts.

To summarise, surfaces selected based on the diverse cell shapes also induced diverse cell response in func-
tional assays. Investigated cell shape descriptors could partially model the phenotypic variance. Different shape 
features account for different phenotypes, this suggests that shape affects the phenotype through various molecu-
lar mechanisms.

Topographies induce distinct but overlapping gene expression profiles in MSCs.  To assess the 
landscape of genes under the control of surface topography, we exposed MSCs to seven topographies that span 
the phenotypic space and to flat control surfaces and assessed the transcriptome after 24 h. We observed between 
46 to 258 differentially expressed genes with a fold-change > 1.5 as compared to flat (Fig. 3b). Each topography 
induced a unique fingerprint at the gene expression level (Fig. 3c), but with various degrees of overlap. Differ-
ential gene expression data was used to identify molecular pathways which were activated. Lists of Differentially 
Expressed Genes (DEGs) per topography were queried in the Connectivity Map (CMap)32, a library of gene 

Figure 1.   Clustering of cell shape diversity (a) Surface topography as a model system to investigate cell shape-
induced cells response. TCP: tissue culture polystyrene. The schematic was prepared in the Inkscape 0.92.4. (b) 
The montage image that represents the diverse cell of hMSCs seeded on different topographies and flat surface 
(upper, left). Nuclei were stained with DAPI (magenta), actin was stained with phalloidin (cyan) The collage 
was prepared in the GIMP v 2.10.14. (c) Principal components analysis of all cell shapes on the TopoChip. 
The first two principal components are shown. Note that no noticeable clusters are observed. (d) Cluster gram 
representing a clustering of TopoChip cell shape data. Blue and yellow colours distinguish different clusters. (e) 
Heatmap representing the median values of cell shape features on the chosen medoid topographies (f) tSNE 
(t-distributed stochastic neighbor embedding) visualization of the obtained clusters. Cells shape silhouettes on 
28 selected surfaces are represented.
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expression signatures induced by chemical compounds or genetic interference (perturbants), and connectivity 
scores between the topography-induced DEGs and Connectivity Map DEGs were retrieved. We focused on per-
turbant classes (PCL), which are groups of signatures in which members belong to the same gene family or are 
targeted by the same compound (Fig. 4a). Some PCLs were shared by most topographies such as perturbants that 
induce Cell cycle inhibition gain of function or known inhibitors such as JAK inhibitor and IKK inhibitors, dem-
onstrating that some signaling events are always induced when an MSC encounters a topography. In agreement 

Figure 2 .   Profiling of phenotypic responses of hMSCs to topographies. (a) Ranking of surfaces based on the 
percentage of EdU staining. hMSCs were starved for 24 h, seeded on topographies overnight, and EdU was 
added 48 h prior to fixation. The bar represents mean of up to 3 replicas; error bar represents standard deviation. 
(b) Ranking of surfaces based on area covered by lipids. hMSCs were cultured on topographies in adipogenic 
medium for three weeks, and lipids were stained with Oil red O. Bar represents mean of up to 3 replicas, error 
bar represents standard deviation. Surface number 0 represents hMSCs on a flat surface in control media. (c) 
Heatmap represents the performance of the 28 selected topographies in 6 functional assays. (d) Clustering of the 
surfaces based on the readout in the phenotypic assays. Surfaces highlighted with black colour were selected for 
microarray analysis. On top, goodness of Fit R2 values reported. (e) Performance of the Lasso regression model 
on predicting ALP induction based on the 11 cell shape features. (f) Cell shape features that are important for 
predicting ALP induction. (g) Importance of the features for predicting the outcome of the phenotypic assays 
obtained with Lasso model.
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with this, proliferation is impaired on all topographies relative to flat. Other PCLs were present in only one or a 
few topographical gene lists such as LIM class homeoboxes GOF or glycogan synthase kinase inhibitor, suggesting 
that some topographies induce distinctive signaling events.

To investigate how the DEGs collaborate to elicit a phenotypic response, we selected all DEGs absolute value 
with fold change > 1.9 from all seven topographies and created a gene network (Fig. 4b). Genes, represented 
by nodes, are connected by edges based on binary protein interactions described in public resources (such as 
KEGG, Reactome, and WikiPathways) using ConsensusPathDB software33. 51 out of 91 genes were placed in this 
topography-induced gene network, suggesting an extensive overlap in functionality. Based on Gene Ontology 
and manual literature research, we noticed three main clusters of cellular processes, i.e. related to actin, p53 and 
NF-ƙB signaling, respectively. Further literature research revealed that many DEGs in our network are specifi-
cally expressed during the transition from the G2 to M phase of the cell cycle (e.g. Aurora Kinase and CDC20) 
and are repressed in cells grown on topographies. We noticed a significant overlap in topographical DEGs and 
those associated with the p53/DREAM complex, which regulates quiescence (Supplementary Fig. 3). We previ-
ously reported on topography-induced quiescence as a typical topography-induced phenotype34. Whether actin, 
NF-kB and proliferation are in the same signalling network or represent separate signalling pathways induced 
by different cell shapes remains to be investigated.

Shape‑dependent phenotypic responses show a strong association with specific genes.  To 
determine the relation between gene expression, cell shape and phenotype, we calculated pairwise Spearman 
correlations between cell shape descriptors, gene expression, and phenotype score levels on all topographies. 
Many genes correlate to shape features such as Solidity and Perimeter (Fig. 5a), whereas far fewer genes corre-
late to Compactness or EulerNumber. We also noted that relatively few genes correlated with protein synthesis 
(Fig. 5b), ALP expression was positively correlated with many genes, and Adipogenesis negatively correlated 
with gene expression. We were particularly interested in situations where the Gene-Shape-Phenotype triad of 
correlations was robust and consistent (Fig. 6a). For example, Spearman correlation between VCAM-1 gene 
expression and hMSC proliferation was − 0.75 (Fig. 6b), and at the same time, Spearman correlation between 
cell Area and proliferation was − 0.71 (Fig. 6d), as the result the Spearman correlation between Cells Area and 

Figure 3.   Gene expression on selected topographies. (a) Polar Bar plot that represents the level of ALP 
expression on different topographies, ordered from lowest to highest. On top, representative cell shapes 
silhouettes of the hMSCS cultured on the surface topographies are shown. (b) A number of differentially 
expressed genes per topography. For identification of differentially expressed genes (DEGs), we used data 
from a flat surface as a reference. (c) Heatmap represents a unique gene expression signature of cells on each 
topography. To express surface-specific DEGs Fold Change (FC) values were scaled by subtracting mean and 
dividing by sd of DEG FC for seven surfaces. (standard scaling approach).
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VCAM-1 was 0.71 (Fig. 6f). This implies that topographies that promote large cell areas are associated with a 
high level of proliferation and the expression of the VCAM-1 gene. Another clear example is the strong cor-
relation between expression of the transforming growth factor receptor 2 (TGFBR2), ALP protein expression 
and Extent with Spearman correlation values, correspondingly, − 0.96, 0.67, − 0.75 (Fig. 6c,e,g). Interestingly, a 
strong association between ALP protein levels and TGFBR2 are reported in the literature35. Similar to what we 
found here, in a previous study we discovered a strong association between the amount of protrusions and ALP 
protein level26.

Browsing the list of 59 unique genes with an absolute correlation value above 0.5 contains 124 combinations 
and contains many interesting correlations that connect cell shape with phenotype and potentially causal gene 
(available as Supplementary Information). To further corroborate this, we uploaded the Gene-Shape Correlation 

Figure 4.   Network of genes and cell biological processes regulated on seven distinct topographical surfaces. 
(a) Gene expression in hMSCs on seven different topographies was compared to hMSCs on a flat surface and 
differentially expressed genes were compared in the Connectivity Map, a gene expression database with more 
than 1 million profiles. All processes that have absolute score value above 99 at least for one condition are 
depicted, with 0 low and 100 as high similarity. Biological processes have been ranked based on the number 
of topographies that can affect the process (specificity). (b) Gene expression in hMSCs on seven different 
topographies was compared to hMSCs on a flat surface, and 437 differentially expressed genes with an adjusted 
p-value of less than 0.05 were detected. The list was uploaded in ConsensusPathDB, which retrieves correlations 
between genes and proteins from a number of databases. Circular nodes in the graph represent the genes; 
rectangles are genes retrieved from a transcription factor database, thus transcriptional control. Edges represent 
reported relationships. The yellow and grey shading represent two clusters of genes with published involvement 
in actin related-processes and p53 respectively, based on literature study. Each circular node is a pie chart 
indicating in which topographies the gene is differentially expressed. . The image was prepared in the Inkscape 
0.92.4, the network was drawn in the CytoScape v.3.5.166.

Figure 5.   Correlation of gene expression to shape features or phenotype. Spearman calculated for all different 
samples a combined in 1 plot in which the distribution of outcomes can be observed. Violin plot representing 
the distribution of genes’ Spearman correlation to either a shape feature (a) or a phenotype (b). Each gene was 
plotted against the respective feature and correlation presented as a Spearman score. Solidity has many high and 
low scoring correlation values, meaning that Solidity correlates strongly with gene expression. Most Spearman 
score for Euler number is close to zero, meaning that few genes’ expression strongly correlate to this feature.
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list into Cmap and retrieved the PCLs (Fig. 7a,b). Surprisingly no PCL signatures above absolute value 0.99 were 
associated with Area. In contrast, Minor Axis length has the largest number of associated signatures. Moreover, 
we have observed that PCLs HIF activator, CDK inhibitor and Cell Cycle Inhibition GOF were the most common 
signatures with the highest score. Interestingly, ATPase inhibitor was exclusively linked to shape parameter Euler 
Number, which was the most important for the prediction of the protein biosynthesis. At the same time, Euler 
Number has a very strong signature of the PCL Protein Synthesis Inhibitor. This example demonstrates that we 
can independently connect gene signalling and outcome in the phenotypic assay via cell shape features.

Comparison of different databases reveals a list of universal shape related genes.  To investi-
gate the broader relevance of our list of cell shape-correlated genes, we compared its overlap with two other data 
sets. In one study, whole transcriptome gene expression and related cell shape changes were induced by chemical 
compounds36. In a second study, cell shapes were under the control of adhesive islands, and gene expression was 
assessed37. Overlap of all topographically-induced genes, 437 in total, and the two other gene sets yielded a list 
of only 12 genes (Fig. 8a) and all the genes showed a strong Pearson correlation cell shape features (Fig. 8b). Of 
the 12 genes found to be shape-predictable in all three studies, Minor Axis Length and Compactness correlated 
to eleven of them; Extent correlated to seven of them. As expected, Cell Orientation did not correlate to gene 
expression (Fig. 8c). The above results demonstrate that filtering genes based on correlation to cell shape descrip-
tors is a powerful method to find associations between gene expression, cell shape, and phenotype and that genes 
on the list of 275 genes can be considered as candidate genes directly influenced by cell shape. Indeed, of the 
twelve genes, seven have previously been directly linked to changes in cell shape:

•	 BIRC5 (Yap transcriptional target)38,
•	 EGR139,
•	 FOS40,
•	 VGLL4 (YAP/TAZ inhibitor)41,
•	 ALDOA42,
•	 SQSTM1 (cytoskeleton remodeling via autophagy)43.

Figure 6.   Correlation between shape feature-gene expression and outcome in the phenotypic assay. (a) Gene 
expression, cell shape and phenotypic data from hMSCs grown on the seven selected surfaces were compared by 
Spearman correlation between the 11 shape features, 437 genes and six phenotypes. Top three correlations per 
unique combination Shape parameter- phenotypic assay with the highest positive or negative values are shown. 
(b–g) Shows corresponding scatter plots with raw data.
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Three additional genes,

•	 CDK144,
•	 GADD45B45 and
•	 CCNB246.

have been associated with proliferation. CDC 20 linked to both cell shape (Rho Signaling Protein)47, and 
cells proliferation48.

Discussion and conclusion
The molecular mechanisms connecting cell shape to basic cell functions and phenotype maintenance are impor-
tant and yet remain largely unknown. Using high content imaging, transcriptomics and machine learning we 
were able to identify strong relationships between cell shape, molecular signalling and cellular phenotype.

In order to correlate the datasets (imaging, phenotypical assays and transcriptomics), all experiments were 
performed with cells from one donor and at one passage number because both parameters are known to affect 
the quantitative response of MSCs, as we have described in earlier work49,50. It is, therefore, likely that the ranking 
of the features described in this manuscript will be different when investigated in cells from different donors. 
Validation of specific parts of the data set is underway and was already achieved with the TGBFR2-EGR1 tran-
scriptional response, which was observed in a different human MSC cell line and even in cells of different origin 
such as skin and muscle51. We also want to emphasize that differences in the transcriptomics response to external 
stimuli are obvious, as we have described earlier in a cohort of 62 donors, but we also observed a strikingly strong 
quantitative similarity between donors52.

Some signal transduction pathways are particularly strongly correlated to topography-induced changes in 
cell shape. Changes in cell cycle-related signalling, and in the JAK, IKK and HIF pathways were observed in cells 
grown on most topographies. Other molecular signalling signatures were more specific, such as SRC, ATPase 
inhibition and Glycogen synthesis kinase which were affected in MSCs grown on specific topographies. This 
confirms earlier findings by Nassiri and McCall who identified signatures of DNA damage and proliferation 
signalling changes in cell shape36, and work of Jael et al. who noticed changes in NF-kB53.

Figure 7.   Cell biological processes related to cell shape features. (a) Spearman correlation was calculated 
between gene expression and cell shape features. Genes with absolute Spearman correlation above 0.5 per 
condition (either per phenotype or per cell features) were used as input in the Connectivity Map, a gene 
expression database with more than 1 million profiles. All processes that have absolute score value above 99 
at least for one condition are depicted, with 0 low and 100 as a high similarity. Biological processes have been 
ranked based on the number of conditions that can affect the process (specificity). (b) Number of genes that 
were used for the analysis per shape feature.
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A classical mechano-transduction pathway which responds to changes in surface topography54 but also mate-
rial stiffness55 and extracellular matrix remodeling links integrins to proteins in focal adhesions such as talin 
and vinculin, which subsequently affects Rho-ROCK signaling, actin remodeling and thus leading to activation 
of the YAP/TAZ transcription factor and downstream genes56. In a recently published manuscript51, we show 
that surface topographies from our TopoChip library are able to stimulate TGFbeta signaling, leading to the 
transcriptional activation of the scleraxis gene. Under these circumstances, TGFbeta2 signaling can be mitigated 
by blocking Rho/ROCK and actin mediated signaling. On the other hand, small molecules that activate PKC, 
which is also associated with actin remodeling, can mimic the synergistic effect of topographies on TGFbeta2 
induced signaling. In the current manuscript, we note that PCK is one of the small molecules whose gene expres-
sion profiles correlate to that of the cell shape features Extend, Solidity and Minor Axis. Additional evidence for 
the role of the integrin/Rho-ROCK-actin pathway is seen in Fig. 4b, where we see a distinct actin-associated 
network of genes with genes such as FOS, EGR1 and ACTG1, all of which are SRF target genes. SRF and MRTF-
A are transcription factors whose activity can be directly regulated by actin. These observations suggest that at 
least part of the transcriptional response is related to signaling that relates to the integrin/Rho-ROCK/actin axis. 
Striking, we do not see a YAP signaling signature either in GO analysis or the CMap data.

Moreover morphological change of MSC was tightly associated with phenotypic functions, particularly in 
immunomodulation. Morphologically changes of MSCs are related to cell skeletal re-arrangement, that is tightly 
involved in cytokine stimulus i.e. INF-r stimuli57, TNF-a stimuli58, Rap1/NFkb signaling59, the formation of tun-
nelling nanotubes (TNT), and mitochondrial transfer60.

Further support for the relevance of the genes and pathways discovered here in shape-related cell signalling 
comes from the overlap of 12 genes between our data set and those of two independent shape-related transcrip-
tomics studies, and the known role of these genes. Thus, our systematic approach allowed us to confirm previous 
findings and to identify many novel unreported signatures. The data we have produced and publicly shared can 
be regarded as the first compendium of shape-gene expression and will likely lead to many new discoveries. 
The correlations can also be used to guide bio-instructive surfaces. For instance, more genes are affected by cell 
shape features such as Solidity and Extent then, for example, Compactness and some shape features are strongly 

Figure 8.   Genes related to shape are enriched in shape-based transcriptomics data sets. (a) Venn diagram 
representing the overlap between genes differentially expressed on different adhesive islands, genes related 
to chemically induced shape changes and the 437 shape-based genes differentially expressed on the seven 
topographies with a fold change above 1.5. (b) Filtering of the shape-specific genes based on the Spearman 
correlation score between the gene and at least on of the cell shape parameters. The red line and Y-axis at the 
left represents a number of selected shape-related genes with specified Spearman correlation threshold value 
(X-axis). Y-axis on the right represents the total number of genes that have Spearman correlation value above 
the specified threshold (X-axis). (c) Heatmap that represents the correlation value between shape specific genes 
and shape parameters. All Spearman correlations with an absolute value below 0.4 are depicted for clarity.
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correlated with certain signalling pathways. Thus, cell shape features can be used to manipulate cells’ molecular 
signatures with bio-active precision.

In this manuscript, we obtained proof of principle for the correlation between image-based cell features 
and cell signalling and 11 basic cell shape features. There is likely an opportunity for mechanistic information 
within cell organelle shape and associated correlations with phenotype. Although a thorough investigation of this 
was beyond the scope of this work, we did discover a strong negative correlation between nuclear area and the 
expression of histone H3, suggesting a link between nuclear shape and epigenetic regulation (data not shown). 
The approach can be taken much further and feed into the creation of large-scale computational models which 
describe biomaterial surface design, cell shape and cell phenotype. This approach is referred to as Quantitative 
Structure–Activity Relationships (QSAR) and is widely used to model the biological activity of pharmaceutical 
compounds61. It allows predicting the biological effect of untested compounds and thus narrowing down the 
search space.

To improve our shape-based models, we need more data which can be obtained by, e.g. upscaling the number 
of topographies from 28 in this manuscript to thousands, more extensive phenotypic characterisation of the 
cells for instance by using Cell Painting protocols (Bray et al. Nat Protocols) or other stains that display relevant 
biological processes and more extensive transcriptomics analysis on different cell types. As a start, data obtained 
in our project is freely available via our cBIT62 repository and can already be used to design a biomaterial that 
inhibits cell proliferation, for example, to reduce growth of the fibrosis tissue on the interface of the tissue-
implant. The gene signatures related to cell shape and their underlying topographies can be used to browse the 
Connectivity Map database for genetic signatures that resemble the effect of small molecule or RNAi-induced 
gene signatures32. This brings new opportunities to research the molecular pathways underlying shape-induced 
phenotypes. To accelerate the field of biomaterial engineering, this database should link information not only 
of topography design but also other material properties such as stiffness, ligand density, and any other relevant 
biomaterial properties. Based on systematic banking and mining of biomaterials, cell phenotype and transcrip-
tomics data, we foresee a universal tool that will help understand and engineer the interface between cells and 
biomaterials. The work presented in this study outlines a method to search the large design space that links 
material properties to cell phenotype.

Materials and methods
Cell culture.  In this study we used human mesenchymal stem cells (hMSCs) from donor (d016), undergoing 
a total hip replacement. hMSCs were isolated from bone marrow after obtaining written informed consent from 
the patient. Ethical approval for using the bone marrow sample was obtained from the ethical advisory board of 
the Medisch Spectrum Twente, Enschede. All methods were carried out in accordance with local and relevant 
guidelines and regulations52. Cells were cultured in basic medium (αMEM medium (Gibco, 22-571-038) sup-
plemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich batch number 013M3396) at 37 °C in a humid 
atmosphere with 5% CO2, unless stated differently. In all experiments, we used hMSCs at passage number four. 
Before cells seeding, surfaces were sterilized with 70% ethanol (Boom, 84010059.5000) and wetted in the basic 
medium during at least 2  h. We have previously systematically characterized in  vitro lineage differentiation 
capacity, gene expression signature and in vivo capacity for ectopic bone formation of this donor (16) cells52.

Table 1 summarize duration of the functional experiments, which are explained below.

Adipogenesis.  To induce adipogenesis, hMSCs (d016) were cultured for 3 weeks in adipogenic medium 
(DMEM (Gibco, 41-965-062), 100 U/ml penicillin plus 100 mg/ml streptomycin (Gibco, 15140-122), 10% fetal 
bovine serum (FBS) (Sigma-Aldrich batch number 013M3396), 0.2 mM indomethacin (Sigma-Aldrich, 57413), 
0.5  mM IBMX (Sigma-Aldrich, I5879), 10–6  M dexamethasone (Sigma-Aldrich, D8893), 10 ug/ml insulin 
(human, Sigma-Aldrich, I9278). Cells were seeded in three replicas at density 15,000 cells/cm2 in 24 well plates, 
in basic medium. When the cells reached confluency on a flat surface, the culture medium was changed to adi-
pogenic medium for 21 days, the medium was refreshed twice a week. To visualize lipids formation, cells were 
stained with oil red o (Sigma-Aldrich, O0625) as described before63. Briefly, cells were fixed with 10% formalin 
(Sigma-Aldrich, 501128) for 30 min at room temperature, rinsed with distilled water and washed with 60% 
isopropanol (VWR, 20922.364). The sample was stained for 5 min in freshly filtered oil red o solution (stock: 
500 mg oil red o (Sigma-Aldrich, O0625), 99 ml isopropanol, 1 ml distilled water; stain: 15 ml stock plus 10 ml 
distilled water).

Table 1.   Duration of experimental conditions for functional experiments.

Functional experiment Duration of experimental conditions

Adipogenesis 3 weeks

ALP induction 7 days

Cell proliferation 48 h

Apoptosis 66 h

Migration 66 h

Protein synthesis 90 min
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ALP induction.  hMSCs (d016) were seeded on topographies at density 15,000 cells/cm2 in 96 well plates and 
cultured for 7 days in mineralization medium (basic medium supplemented with 2 mM l-glutamine (Gibco, 
25030), 0.2  mM ascorbic acid (Sigma-Aldrich, A8960), 100  U/ml penicillin plus 100  mg/ml streptomycin 
(Gibco, 15140-122), 10–8 M dexamethasone (Sigma-Aldrich, D8893) plus 0.01 M β-glycerol phosphate (Sigma-
Aldrich, 50020). Every surface had three replicas. The medium was changed every two days. Afterwards, cells 
were fixed with 4% Paraformaldehyde (PFA) (VWR, 30525), ALP was stained with immunofluorescent dye as 
described below.

Cell proliferation.  hMSCSc (d016) were starved for 24 h in αMEM (Gibco, 22-571-038) medium without 
FBS to synchronize their cell cycles. Then cells were trypsinized with trypsin–EDTA (0.05%) (Fisher Scientific, 
25300054), trypsin was neutralized with the basic medium. Cells were seeded at a density of 10,000 cells/cm2 in 
triplicates and cultured in the presence of 1% FBS (Sigma-Aldrich batch number 013M3396). Cells were allowed 
to adhere overnight and afterwards, cells were cultured for 48 h with 10 μM EdU component (Click-iT Plus EdU 
Alexa Fluor 594 Imaging Kit, Thermo Fischer Scientific) in the media. Next, incorporated EdU was imaged as 
described in the kit manual (Click-iT Plus EdU Alexa Fluo 594 Imaging Kit, Thermo Fischer Scientific).

Protein synthesis.  To assess global protein synthesis on the topographies we looked at global protein 
expression by virtue of l-methionine analogue incorporation. We seeded hMSCs (d016) in triplicates at den-
sity 20,000 cells/cm2 on topographies in 96 well plates in basic medium and let them adhere for 24 h. Later, 
the medium was replaced with DMEM high glucose, no l-glutamine, no l-methionine, no l-cystine, (Thermo 
Fischer Scientific, 21013024) supplemented with 580 mg/l l-glutamine (Thermo Fisher Scientific, 25,030,081), 
and 63 mg/l l-Cystine dihydrochloride (Sigma-Aldrich, C6727-25G). Prior cells fixation we added l-homopro-
pargylglycine, l-methionine analogue (Thermo Fischer Scientific) for 1.5 h. We further stained incorporated 
l-homopropargylglycine as described in the kit manual (Click-iT HPG Alexa Fluor Protein Synthesis Assay Kits, 
Thermo Fischer Scientific).

Apoptosis.  hMSCs (d016) were stained with dye for live cells, CellTracker Green CMFDA (Thermo Fischer 
Scientific, 11570166). During the next step, cells were seeded on topographies for 24 h in a basic medium at 
density 10,000 cells/cm2 in 96 well plates. Next, we added a staurosporine (Abcam, ab120056), a protein kinase 
inhibitor, in the concentration of 0.5 μM and 250 ng/ml of annexin V (kind gift of Dr Leon J. Schurgers, Depart-
ment of Biochemistry, University Maastricht) with a red fluorescent tag to detect apoptosis. To facilitate annexin 
V binding, the medium was supplemented with additional 0.7 mM of CaCl2 (VWR, 10043-52-4). Cells were 
monitored in an environmental chamber, where the temperature was maintained at 37 °C in a humid atmos-
phere with 5% CO2, during 66 h, 16 images per well were captured every 25 min. Imaging was acquired on Nikon 
Ti Eclipse epifluorescent inverted microscope.

Live imaging.  hMSCs (d016) were stained with dye for live cells, CellTracker Green CMFDA (Thermo Fis-
cher Scientific, 11570166). Afterwards, cells were seeded on topographies for 24 h in a basic medium at density 
10,000 cells/cm2 in 96 well plates. Cells were monitored in an environmental chamber, where the temperature 
was maintained at 37 °C in a humid atmosphere with 5% CO2, during 66 h. 16 images per well were captured 
every 25 min. Imaging was acquired on Nikon Ti Eclipse epifluorescent inverted microscope.

Staining and imaging.  Cells were fixed with 4% PFA (VWR, 30525) for ten minutes; next, samples were 
permeabilized with 0.01% Triton X-100 (VWR, 437002A) for 10  min with following blocking step in 0.5% 
bovine serum albumin (VWR, 421501J) at room temperature for 30 min. Samples were incubated with primary 
antibodies against ALP (RnD, mab1-148) overnight at 4 °C in 1:100 dilution. Labeling with secondary antibodies 
conjugated to fluorochrome Alexa Fluor 647 goat anti-mouse IgG (Thermo Fisher Scientific, A21236) in dilution 
1:300 and Alexa Fluor 568 Phalloidin (Thermo Fisher Scientific, A12380) in dilution 1:200 was made during 1 h 
at room temperature, Next, after washing with PBS nuclear staining with 1:1,000 Hoechst 33342, trihydrochlo-
ride, trihydrate (Thermo Fischer, H1399) was done. Finally, the topographies were mounted on glass-bottom 
24 well plates (Mobitec, 5231) or fluorocarbon-bottom 96 well plates (Mobitec, 5241) with ProLong Diamond 
antifade mountant (Thermo Fischer Scientific, P36965) after 2 PBS (VWR, E404-200TABS) washes. Imaging 
was acquired on Nikon Ti Eclipse epifluorescent inverted microscope.

Assessing cellular morphology with the cell painting assay.  hMSCs (d016) were seeded on topog-
raphies for 24 h in basic medium at density 10,000 cells/cm2 in 24 well plates. Following the protocol of Bray 
et al., 30 min prior cells fixation 500 nM of MitoTracker deep red FM (Invitrogen, M22426) was added to cells. 
Afterwards, cells were washed with HBSS (Fisher Scientific, 11540476) and fixed with 4% PFA (VWR, 30525) 
for 20 min at room temperature. Samples were permeabilized with 0.1% Triton 100 (VWR, 437002A) for 10 min 
with the following washing with HBSS (Fisher Scientific, 11540476). We further added wheat germ agglutinin 
Alexa Fluor 594 conjugate (Invitrogen, W11262) at concentration 5 µg/ml, concanavalin A, Alexa Fluor 488 con-
jugate (Invitrogen, C11252) at concentration 50 µg/ml, SYTO 14 green fluorescent nucleic acid stain (Invitrogen, 
S7576) at concentration 10 µM, 1:40 Alexa Fluor 568 Phalloidin (Thermo Fischer Scientific, A12380) and 1:2,000 
Hoechst 33342, trihydrochloride, trihydrate (Thermo Fischer, H1399) for 30 min. Finally, the topographies were 
mounted on glass-bottom 24 well plates (Mobitec) with ProLong Diamond Antifade Mountant (Thermo Fischer 
Scientific, P36965) after 2 PBS washes.
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Transcriptional profiling.  hMSCs (d016) were seeded on selected topographies for 24 h in a basic medium 
at a density of 15,000 cells/cm2 in 24 well plates in triplicate. Total RNA was isolated using the Nucleospin RNA 
isolation kit (Macherey–Nagel). Next, 100 ng of RNA was used to synthesize cRNA, following the instructions 
of the Illumina TotalPrep RNA amplification kit, and both RNA and cRNA quality was verified on a Bioanalyzer 
2100 (Agilent Technologies).

Illumina HT‐12 v4 expression Beadchips were used for microarray transcriptomics analysis. Briefly, 750 ng of 
cRNA was hybridized on the array overnight followed by washing and blocking. Next, by addition of streptavidin 
Cy‐3, a fluorescent signal was developed and arrays were scanned on an Illumina Beadarray reader. Raw intensity 
values were corrected for background signal in BeadStudio (Illumina). Further data processing and statistical test-
ing were performed using the online portal ArrayAnalysis (https​://array​analy​sis.org/)64. Probe‐level raw intensity 
values were quantile normalized and transformed using variance stabilization (VSN). To reduce the number of 
false positives, a detection threshold of 0.01 was used. A linear modelling approach with empirical Bayesian 
methods, as implemented in the R Limma package65, was applied to look for differential expression of the result-
ing probe‐level expression values. A false discovery rate (FDR) correction of the p-values was applied using the 
Benjamini and Hochberg method. Genes were considered differentially expressed at a corrected p‐value < 0.05.

Pathway over‐representation analysis was performed using the ConsensusPathDB (CPDB) tool (https​://cpdb.
molge​n.mpg.de/), which provides a comprehensive pathway analysis covering most public resources of gene 
and protein interactions32. As input for the analysis, the set of differentially expressed genes mentioned above 
was used. To improve the statistical evaluation of the pathways, a background list containing all measured genes 
was also used in the calculations. Pathways with an FDR‐corrected p‐value < 0.05 were considered significant.

A protein network analysis was carried out in two steps. CPDB contains an induced network module, which 
uses the protein–protein interactions described in a large number of public resources, to build a network based 
on a list of input genes or proteins. As a first step, a network was generated using the same list of differentially 
expressed genes as used above in the pathway analysis, using a z‐score threshold of 20. Only binary protein 
interactions of low, medium and high confidence were selected. Furthermore, the addition of intermediate genes 
to the network was allowed in order to improve inter‐gene connectivity. In the second step, in order to better 
understand how this CPDB network may be regulated, the network was imported into CytoScape v.3.5.166 and 
the plugin CyTargetLinker was used to extend the network by adding transcription factors from the transcription 
factor target database TFe (Transcription Factor encyclopedia). TFe is a small-scale manual literature curation 
project containing 1531 human transcription factor-target interactions.

Selection of surfaces and clustering.  To be able to find cell shapes that were repeatedly induced by 
topography and remove any imaging artefacts or biological variation we performed the following filtering steps. 
Among other outlier detection tools we used, so called, 1.5 interquartile range (IQR) rule. It works as follow-
ing: calculate 1st and 3rd quantile of the data (value of the first 25% and 75% of ordered data, correspondingly), 
difference between 3rd and 1st quantiles is IQR, all the data points that lie outside of the following range: 1st 
quantile − 1.5 × IQR, 3rd quantile + 1.5 × IQR, considered being outlines. First, we removed replicas based on 
cell density. We performed this on a per-surface basis, to avoid removal of the surfaces with a unique response. 
Replicas with too low or to high cell number were discarded using the 1.5 IQR rule. Afterwards, we removed 
cells that were outliers in terms of area and perimeter. Outliers were removed sequentially, first based on area and 
then based on perimeter values using the 1.5 IQR rule. We further employed Moutlier package in R67 to remove 
outliers based on cell shapes. This approach allows finding outliers by using information from multiple features 
simultaneously. We did this by looking at the distribution of cell shapes in a 5-dimensional shape space and then 
removing outliers using the Mahalanobis-based outlier detection. These 5 shape features were selected from 11 
features that have correlation index less than 0.7 between each other. Finally, for each surface, we retained only 
those replicates that were of good quality, those that were reproducible. The reproducibility was measured using 
the correlation of cell shapes between replicas. We excluded replicas that have correlation index less than 0.5, in 
comparison to all the replicas. Next, we summarized cell shape features per surface by taking median features of 
all the cells. Afterwards, we removed redundant surfaces, those that were highly correlated (Pearson correlation 
index above 0.95) to each other based on cell shape features. To reduce the dimensionality of the data further, we 
performed principal components analysis. We have chosen first seven principal components that captured the 
most variations of the data. We further used hierarchical clustering analysis with Ward linkage to find clusters of 
cell shapes. A distance matrix was calculated with Euclidean distances.

Image and data analysis.  Open-source software Cell Profiler 2.1 (CP) was used for image analysis27. In 
order to perform automated image analysis in CP, a robust pipeline able to recognize different cell features was 
built.

Training the model.  We employed Lasso regression model from Glmnet package in R68 to find cell shape 
features that can predict the response of the phenotypic assays. The model was trained with Leave One Out Cross 
validation approach. We assessed the performance of the model by reporting the Pearson correlation index (r) 
between predicted and observed values on the training data. To show the goodness of fit we also reported R2. The 
hyperparameter lambda was optimized separately for every model. Cells on flat control surfaces were excluded 
because of their distinct response, in comparison to the rest of topographies, which would bias the model.

Connectivity map analysis.  List of genes was uploaded into Connectivity Map (Subramanian, Narayan, 
et al. 2017), a library of gene expression signatures induced by chemical compounds or genetic interference and 
a connectivity score between the topography-induced DEGs and Connectivity Map DEGs were retrieved. We 

https://arrayanalysis.org/
https://cpdb.molgen.mpg.de/
https://cpdb.molgen.mpg.de/


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18988  | https://doi.org/10.1038/s41598-020-76019-z

www.nature.com/scientificreports/

focused on perturbant classes (PCL), which are groups of signatures in which members belong to the same gene 
family or are targeted by the same compound. To find cell shape signatures we have uploaded genes that have 
absolute correlation value above 0.5. Where genes with positive correlation values were loaded as “upregulated 
genes” and genes with negative correlation values were loaded as “downregulated genes. The results were further 
exported to csv file and visualized in R.

TopoChip and enlarged surfaces fabrication.  The complete design of the TopoChip is described in 
detail elsewhere24. The TopoChip and enlarged surfaces were fabricated as described previously69. Briefly, a chro-
mium mask for photolithography was constructed that contains the design for either the TopoChip or the topog-
raphies on expanded surfaces. Subsequently, through standard lithography and deep reactive etching, inverse 
structures of the topographies were generated on a silicon wafer. This mould was then utilized to make a positive 
mould in poly(dimethylsiloxane) (PDMS). Subsequently, a second negative mould in OrmoStamp hybrid poly-
mer (micro resist technology Gmbh) was generated from the PDMS mould. This mould serves as the template 
for hot embossing the topographies in 190 µm thick PS films by applying 140 °C and 10 bar for 5 min. Before 
cell culture, PS films containing the topographical imprints were O2-plasma treated to enhance cell attachment.

Statistical analyses and data visualization.  Statistical analysis was performed in R ver. 3.2.570, graphs 
were generated in R package ggplot271 and cowplot72. To determine a fold difference in the phenotypical assays, 
we have used original units as was measured by image analysis. To quantify the rank of the surfaces were sorted 
them based on the measured value.
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