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Abstract

Background: A common yet still manual task in basic biology research, high-
throughput drug screening and digital pathology is identifying the number, location,
and type of individual cells in images. Object detection methods can be useful for
identifying individual cells as well as their phenotype in one step. State-of-the-art
deep learning for object detection is poised to improve the accuracy and efficiency
of biological image analysis.

Results: We created Keras R-CNN to bring leading computational research to the
everyday practice of bioimage analysts. Keras R-CNN implements deep learning
object detection techniques using Keras and Tensorflow (https://github.com/
broadinstitute/keras-rcnn). We demonstrate the command line tool’s simplified
Application Programming Interface on two important biological problems, nucleus
detection and malaria stage classification, and show its potential for identifying and
classifying a large number of cells. For malaria stage classification, we compare
results with expert human annotators and find comparable performance.

Conclusions: Keras R-CNN is a Python package that performs automated cell
identification for both brightfield and fluorescence images and can process large
image sets. Both the package and image datasets are freely available on GitHub and
the Broad Bioimage Benchmark Collection.

Keywords: Deep learning, Keras, Convolutional networks, Malaria, Object detection

Background
Identifying individual cells in images is often a crucial task for basic biology research,

high-throughput drug screening and digital pathology. Traditional segmentation

methods (Fig. 1a) identify individual pixels that belong to each distinct object through

a carefully designed series of image processing steps, often involving watershed, dis-

tance transform, and intensity gradients. This approach requires algorithm selection

and parameter tuning (and thus time and expertise), is computationally expensive, and

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Hung et al. BMC Bioinformatics          (2020) 21:300 
https://doi.org/10.1186/s12859-020-03635-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03635-x&domain=pdf
http://orcid.org/0000-0003-1555-8261
mailto:anne@broadinstitute.org
mailto:anne@broadinstitute.org
https://github.com/broadinstitute/keras-rcnn
https://github.com/broadinstitute/keras-rcnn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


often fails to sufficiently handle noisy images, illumination fluctuations, and clumped

cells. In cases where phenotype classification is also needed, hundreds of classical mor-

phological features are extracted per cell, followed by a subsequent machine learning

step to classify each cell. User-friendly software exists for these steps [1–4], but it does

add significant effort to a typical workflow.

Deep learning holds tremendous promise to overcome these challenges by simplifying

workflows while also improving accuracy, at least in many contexts [5]. In particular,

deep learning-based object detection algorithms (Fig. 1b) examine the raw pixels of im-

ages and discover which features and combinations of features best describe each

phenotypic class of cells (based on examples provided by the researcher), with minimal

user configuration of mathematical parameters. They can conveniently identify cells as

well as their phenotype in one step. In contrast to segmentation, object detection algo-

rithms yield a bounding box around each cell. Treating cell identification as an object

detection problem rather than a pixel-level segmentation problem has several

Fig. 1 Overview of a traditional segmentation based pipeline and a deep learning based object detection
pipeline. a. Traditional segmentation based pipelines require the selection and tuning of multiple classical
image processing algorithms to produce a segmentation, where pixels associated with individual instances
(e.g. nuclei, or cells) receive unique “labels”, represented here as different colors. b. Deep learning-based
object detection pipelines require some example annotated images to be provided, and use neural networks
to learn a model that can produce bounding boxes around each object, which can be overlapping. If multiple
object classes are of interest (for example, multiple phenotypes), each bounding box is assigned a class. c. Code
to train an object detection model, written using Keras R-CNN’s API. d. Graphs of cell counts of each infected
type over time predicted on time course images. The time course set contains samples prepared at particular
hours between 0 and 44 h and has been designed to synchronize the parasites’ growth and to show
representation of all stages. The ground truth is based on Annotator 1, who annotated all images in the dataset
including the training data
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advantages, most notably that the annotation step is orders of magnitude faster. Draw-

ing bounding boxes (in essence, marking two points in space) is much faster than the

pixel level annotation that is needed for ground truth for training segmentation models,

and they allow overlapping objects to be easily distinguishable. Object detection algo-

rithms additionally do not need distinct steps to separate overlapping or touching cells

and require much less storage in terms of training data and results. For cases where

pixel-level segmentation is needed, object detection can be followed by post-processing

steps to define precise boundaries for each object.

Here, we present an open source Keras package for cell detection called Keras R-CNN, as

well as pre-trained deep learning models and new public datasets. Keras R-CNN is based on

the Faster Region-based Convolutional Neural Network (Faster R-CNN) [6] architecture,

which is currently the basis of many best-performing models for object detection. It was

among the top scoring in the 2018 Data Science Bowl public competition we co-organized

[7] and has already compared favorably with other deep learning architectures in perform-

ance and inference time [5, 8] (Supplementary Figure S6). Faster R-CNN takes an image as

input and generates bounding boxes and bounding box classifications [9]. Training involves

gathering appropriate data as ground truth, namely a set of images with known bounding

box coordinates and annotated labels annotated. Initially, a training procedure adapts the

model to a particular application by optimizing the weights in the network. Subsequently,

inference or prediction involves new images running through the trained model to produce

output bounding box coordinates and class probabilities. To test the accuracy of a trained

model for a given application, prediction is performed on a set of images that were not used

for training (and, importantly, were collected in a completely different experimental batch

than those used for training [10]). The predictions are compared to the known ground truth

annotations to characterize accuracy.

Implementation
Keras R-CNN is distinguished from other deep learning based object detection imple-

mentations like Facebook’s Detectron [11] or Tensorflow’s Object Detection API [12]

in several ways. First, Keras R-CNN can process an unlimited number of channels. Un-

like standard consumer photos’ red, green and blue (RGB) channels, biological imaging

assays often involve up to several dozen fluorescent labels in multispectral imaging.

The Keras R-CNN schema is designed for users to easily provide their own datasets; its

modular structure allows for flexibility and interoperability with Keras and the scientific

Python ecosystems including NumPy, and it is portable across platforms (Windows,

Mac, Linux) and devices. It also includes dataset augmentation through cropping, re-

scaling, and rotating; and efficient handling of large scale, densely annotated, and three

(or more)-dimensional datasets.

Keras R-CNN can train a model in just a few lines of code as compared to the hun-

dreds or even thousands required by other implementations (Fig. 1c). While not itself a

point-and-click tool, Keras R-CNN could serve as the foundation for a more accessible

software tool serving biologists and pathologists [13]. The use of Keras offers platform

and device portability while being abstract enough for the code to be understandable

and easily customizable. We also designed a human-readable schema for datasets (see

Supplemental Material), which is readily understood by non-experts in computer vision

so they can focus on solving biological problems.
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Results
We first demonstrated Keras R-CNN on a very common application: nucleus detection

(see Supplementary Figure S1). We used manually annotated fluorescent images show-

ing nuclei stained with Hoechst 33342 to highlight their DNA. The ~ 600 training im-

ages (~ 30,000 nuclei) were from the 2018 Data Science Bowl (DSB) dataset BBBC038

and the ~ 100 testing images (~ 10,000 nuclei) were from a subset of the human U2OS

cell dataset BBBC022 [14, 15]. We recently described instance segmentation of nuclei

[16]; here we instead address the problem of object detection, which yields bounding

boxes and whose accuracy is assessed by a different metric.

We found that the trained model achieved a mean average precision score of 82% at

an intersection-over-union (IoU) threshold of 0.5. For comparison, we also tested the

traditional approach of segmentation, using a CellProfiler [17] pipeline tuned to the

data, achieving a score of 81%. The resulting scores are very similar, indicating that, on

this relatively straightforward image analysis task, Keras R-CNN can perform as well as

classical image processing algorithms that have been parameter-tuned by experts.

We next tested a more complex case: detection of cells in blood smears of patients in-

fected with the human malaria parasite Plasmodium vivax in various stages, which re-

quires phenotype classification (Supplementary Figure 2A) in addition to object detection.

P. vivax causes a significant health burden in malaria endemic regions. Manual inspection

of blood smears by trained microscopists remains the gold standard of parasite detection

and stage determination because of its low cost and high flexibility. However, manual in-

spection and counting is tedious, requires resources to develop expertise, and is prone to

significant human variability as the phenotypic changes are very subtle.

We applied Keras R-CNN to classify different stages of P. vivax development, with

particular focus on trophozoites vs gametocytes. We collected 1364 images (~ 80,000

cells) from samples prepared by different groups: from Brazil, from Southeast Asia, and

ex-vivo cultured samples prepared as a time course [18] and made them publicly available

as BBBC041 (see Supplementary Table S1). We created these three datasets across sites to

increase reproducibility and robustness across different sample sets, preventing overfitting

to a single laboratory’s imaging and staining routine (Supplementary Figure 2C). We used

the time course images as our holdout set, and the others as training data.

We found that a trained Keras R-CNN model achieved a mean average precision

score of 78% at an IoU threshold of 0.5 (Supplementary Figure 1), much higher than an

expert-configured CellProfiler pipeline, which yielded 61%. Classical image processing

struggles with this task, which is much more challenging than nucleus detection be-

cause the malaria images are brightfield rather than the high signal-to-noise fluorescent

images in the nucleus detection case.

Because Keras R-CNN learns from expert-provided data, it is able to handle different

image modalities without hand tuning parameters.

Mean average precision only assesses the ability to locate cells; we also evaluated

phenotype classification. Classifying P. vivax stages is notoriously difficult, and often

experts disagree. We quantified the level and nature of disagreement by giving two ex-

pert annotators the same set of blood smear images; there is significant confusion (dis-

agreement) between them as well as a substantial number of cells each expert marked

as low confidence (“difficult”) (Supplementary Figure 2B). In particular, trophozoites

and gametocytes are prone to misclassification.
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In light of this, in addition to comparing our predictions directly with expert annota-

tions, we evaluated whether the results match the expected pattern for the time course

images. Given the P. vivax life cycle, the number of parasites in the ring stage should

decrease over time (until the parasites seed new cells and the cycle repeats), and the

number in later stages should increase over time, consistent with expert counts and

our results (Fig. 1d). We used diffusion pseudotime [19] to create an unsupervised

ordering of all the cells in the data set based on the features learned by the model, to

see if these features can capture the known progression of the various parasite stages;

previously, this sort of modeling has been used to show that deep learning features

are useful in capturing other chronological progressions such as cell cycle phase

(Supplementary Figure S3). The ordering of the cells matches the expected cell

progression, which suggests the learned features capture important and biologically

meaningful underlying cell information.

Conclusions
In summary, we find that state-of-the-art object detection with Keras R-CNN can be

accomplished with just ~ 20 lines of code and little computer vision expertise required.

As our aim was to implement an already-proven architecture, we did not focus here on

optimizing and assessing model accuracy; performance could also improve even further

given more annotated examples and better hyperparameter optimization. We

emphasize that annotated example cell images are required to train the system, but

many biologists may prefer marking bounding boxes rather than learning how to

choose, operate and tune classical segmentation algorithms. The models trained in this

work are freely available although tailored to specific applications; the open-source

framework makes training for other applications and datasets relatively straightforward.

We have also recently added additional architectures from the literature, such as

Feature Pyramid Network (FPN) [20] and Mask R-CNN [21].

Keras R-CNN’s popularity was unexpected for a pre-1.0 release. It presently has more

than 650 stars and forks on GitHub, making it one of the most popular codebases avail-

able on the Broad Institute GitHub organization. Machine learning based computer

vision algorithms have the potential to greatly improve the accuracy of image analysis

for biology and decrease reliance on human labor, by reducing manual image analysis

as well as time spent configuring automated algorithms. Keras R-CNN is therefore a

useful tool for performing automated cell identification for both brightfield and fluores-

cence images, and can serve as a foundation for future point-and-click software.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03635-x.

Additional file 1: Figure S1. Comparison of mean average precision curves for different IoU thresholds for Keras
R-CNN versus CellProfiler on the nuclei and malaria datasets. For nuclei, the mean average precision is 0.99 at a
threshold of 0.5 for Keras R-CNN. For malaria, the mean average precision is 0.78 at a threshold of 0.5 for Keras R-
CNN. Figure S2. Overview of P. vivax data and results. The samples contain two classes of uninfected cells (red
blood cells and leukocytes) and four classes of infected cells (gametocytes, rings, trophozoites, and schizonts) and
have a heavy imbalance: more than 95% of all cells are uninfected, roughly the distribution in patient blood. A. De-
piction of all relevant cell types found in human blood, including two types of uninfected cells and 4 types of in-
fected cells in the P. vivax life cycle. The cycle on the left shows asexual development. Gametocytes come from
sexual development and lead to transmission. B. Confusion matrix comparing annotations of two experts (colors
normalized so that rows sum to 1); the significant signal off-diagonal speaks to the challenge for experts to agree
upon the proper stage label for each cell. Experts were asked to identify relevant cells and label them as one of
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the cell types or difficult. C. Example of malaria-infected blood smear results. Red boxes are ground truth; blue
boxes are predictions produced by Keras R-CNN. Table S1. Malaria datasets. Figure S3. Results for P. falciparum.
Figure S4. Visualization of learned features and single-cell data. Diffusion pseudotime plots made from deep learn-
ing features with accompanying ground truth class information. The first row has plots of the first two diffusion co-
ordinates and the next row has plots of the second and third diffusion coordinates. Note: the model used to
generate these plots is slightly different than the final one run in the paper. Figure S5. Visualization of learned fea-
tures and single-cell data. t-SNE plot made from deep learning features colored by ground truth class information.
Note: the model used to generate these plots is slightly different than the final one run in the paper. Figure S6.
Inference time comparison across common object detection methods.
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