
In a drug development programme, evaluation of 
the efficacy and safety of all candidate compounds in 
humans, or even rodents, is ethically and practically 
unfeasible. Therefore, simpler model systems (cells, 
tissues and small model organisms) are used to map 
clinical efficacy and safety to a screening-​amenable 
molecular target, pathway or phenotype in the process 
of screening1 (Box 1). The design of a screening assay 
balances on the one hand practicality and affordability, 
allowing broad exploration of chemical space, and on 
the other hand biological relevance to the disorder being 
studied or to possible safety concerns. Thus, the output, 
or readout, of a screening assay is typically chosen to be 
one or a few readily interpretable features that reflect 
biology already understood to be relevant for efficacy or 
safety2. Multiple such assays are used to test thousands 
to millions of small molecules to identify and triage hits 
(that is, attractive molecular starting points). The assays 
are also then used to advance hits to more drug-​like 
leads and finally to optimize leads before preclinical 
development.

Profiling is an alternative strategy to screening. The 
word ‘profiling’ has two meanings: representing a sam-
ple by a profile (that is, a collection of features), and 
making predictions about a sample based on such a 
representation. Profiling aims to capture a wide variety 
of features, few or none of which may have previously 

validated relevance to a disease or potential treatment. 
It may, therefore, reveal unanticipated biology at play. 
Profiling often relies on the same or similar model sys-
tems as screening assays (for example, fluorescently 
stained cells), but profiling represents these model sys-
tems with a more comprehensive set of features3–5. More 
features can be powerful — for example, to uncover a 
previously unexpected mechanism of the disease or to 
provide sensitive quality control for the stability of an 
assay system — but they can also add unhelpful noise 
or be more difficult to interpret than a carefully selected 
screening feature.

Feature profiles can be constructed in many ways 
using many assay types6. Readouts can be generated 
from panels of separate assays; examples widely used in 
industry7 include cell viability across cell line panels8, 
enzymatic activity across a kinase panel9 and binding to 
a panel of safety-​relevant targets10. More cost-​efficient 
profiles can be acquired in a single multiplexed assay11 
by combining one of several kinds of high-​dimensional 
readout technologies with cell-​based model systems. 
Proteomic profiling and metabolomic profiling would be 
very powerful but are too low throughput due to their 
cost12–15. Increasingly affordable sequencing approaches 
enable transcriptional profiling16 to rival bead-​based 
alternatives17,18; they also underlie highly multiplexed 
cell viability assays19.

Proteomic profiling
Measuring the levels of a  
large number of proteins in  
a sample, sometimes including 
their post-​translationally 
modified forms.

Metabolomic profiling
Measuring the levels of a  
large number of metabolites  
in a sample.
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To date, image-​based profiling using automated micros-
copy is the least expensive of these high-​dimensional  
profiling techniques, and it inherently offers single-​cell 
resolution, which can capture important heterogene-
ous cell behaviours. Computer vision techniques have 
advanced dramatically in the past few years, enabling 
the extraction of a huge quantity of unbiased morpho-
logical information from images. Cell-​based microscopy 
assays have also advanced (Box 2), with assays such as 
Cell Painting inexpensively combining multiple stains 
in a robust assay yielding single-​cell profiles composed 
of thousands of features20. The few reported comparative 
analyses indicate that image-​based profiling may cap-
ture more biological information than high-​throughput 
transcriptional profiling21,22.

Profiling is not a widely deployed strategy at the pri-
mary screening phase in the pharmaceutical industry, 
where well-​validated, bespoke screening assays remain 
the preferred approach. However, profiling does play 
a role at other stages of the drug discovery process. 
In the discovery stages before screening — including 
target identification, target validation, phenotype 
discovery and assay development — up to thousands 
of compounds are profiled in exploratory assays that 
combine imaging, primary or induced pluripotent 
stem cell-​derived cells and/or genetic editing1,23,24. As 
a consequence, profiling in the early stages of drug 
discovery can reveal key biological readouts that can 
be used for the subsequent phase of screening at high  
throughput.

Image-​based profiling is also regularly applied 
downstream of screening to the hits that emerge from 
target-​based, pathway-​based or phenotypic screening 
and validation. It then functions as an unbiased second-
ary assay, applicable to hits from any screen and in any 
disorder. At minimum, profiling can organize hits into 
groups with biologically similar effects. At best, it can 
hint at a compound’s mechanism of action (MOA) and 
previously unsuspected off-​target activities. However, 

it requires a considerable interpretation effort to derive 
these actionable insights from phenotypic features. 
With conventional analytical approaches, this interpre-
tation step has been too onerous to scale up to screening 
full libraries.

Recently, machine-​learning models were trained to 
predict the outcomes of hundreds of assays from a set 
of existing high-​content images that were originally col-
lected at high throughput for an image-​based screen with 
a focused readout25. The study illustrated how machine 
learning can leverage side information — in this case, a 
large volume of assay activity labels. In another study, 
machine learning showed potential for image-​based 
lead optimization26. Both of these studies were led by 
researchers at large pharmaceutical companies and 
reveal a renewed interest in profiling-​inspired drug dis-
covery. Not coincidentally, both studies were enabled by 
machine learning.

A new wave of biotechnology companies, includ-
ing insitro and Recursion, are developing image-​based 
profiling strategies with the explicit intent to feed 
a machine-​learning effort27,28. They rely on moder-
ately sized libraries and unbiased image-​based profil-
ing for phenotype discovery and primary screening, 
rather than on extensive decks of compounds in more 
time-​consuming, customized assays. This enables 
more rapid exploration of hundreds of model systems 
that emulate disease states with genetic perturbations, 
even though some disease states may be less well rep-
resented in a generic cell system without customized 
assay readouts (Box 2). Machine learning is deployed to 
learn to map chemical, genetic or pathological pertur-
bations to their in vitro, in vivo or clinical effects and to 
transform raw profiles into a screening assay, reducing 
the need for expert-​crafted screening assays.

In this Review, we focus on applications of image- 
based profiling that are immediately applicable to the 
drug discovery process. We begin with a brief intro-
duction to image-​based profiling assays and analysis 
approaches and then discuss the status, successes and 
limitations of various pharmaceutical applications of this 
technology.

Image-​based profiling in a nutshell
Image-​based profiling does not require specialized 
equipment or reagents. All that is needed are images 
of biological samples that represent different cases 
(for example, categories of human patients) or treatment 
conditions (for example, chemical, genetic, time-​point or 
other perturbations of the biological system) (Fig. 1).

First, the biological samples are prepared. This is typi
cally done in arrayed multiwell plate format, although 
living cell microarrays and pooled imaging strategies 
are higher-​throughput options29. Next, the samples are  
subjected to treatment conditions of interest and 
incubated. The samples are imaged, typically after fix-
ation and staining, although one can instead conduct 
live, time-​lapse imaging30,31 and/or use label-​free tech-
niques such as those that predict a staining pattern from 
brightfield images using machine learning32,33.

The images are processed to extract features, which 
are aggregated into profiles. Methods for this step 

Box 1 | Approaches to screening

Screening is the workhorse of modern drug discovery; ‘screening’ describes testing 
many potential drugs in an assay that in some way detects an impact on a disease.  
A screening assay can detect engagement with a pre-​identified disease-​related protein, 
known as a target (in target-​based assays), or a predefined molecular output event such 
as phosphorylation, translocation or gene activation for a disease-​related pathway  
(in pathway-​based assays), or a change in a molecularly agnostic disease-​related 
phenotype (in phenotypic assays). Pathway-​based assays, while target agnostic, are as 
reductive as target-​based assays; they tend to be relatively simple, relying on a cultured 
cell line and one or a few prespecified molecular readouts. Molecularly agnostic 
phenotypic screens use a broader definition of phenotype; they aim to replicate the 
human disease state as closely as possible in an assay format that is nevertheless 
efficiently screenable. Some screens can be exceptionally complex, such as testing 
each compound’s ability to alter the function of 3D organoids derived from patient 
cells. Interest in phenotypic screens has fluctuated, driven initially by the expectation 
of improved validation in the clinic, but dampened by disappointment with the lack of 
evidence thereof1,23,24,164–167.

Designing a screenable assay involves selecting a combination of a model system, 
stimulus and readouts that aim to maximize clinical trial success. A popular guiding 
strategy in the industry called the ‘rule of three’, for example, specifies (1) designing  
the model system to best mimic the disease condition, (2) selecting a stimulus to produce  
a disease-​associated response and (3) choosing readouts as the most proximal quantifiable 
features that reflect the functional consequence of disease168.

Mechanism of action
(MOA). The description of how 
a compound interacts with a 
target and affects a biological 
system.

Side information
Further available 
measurements or metadata 
about samples that indirectly 
improve predictive 
performance.

Labels
Values for particular 
parameters in a given set of 
samples. For example, each 
compound in a dataset might 
have a mechanism of action 
label or a toxicity label.

Lead optimization
The process of narrowing down 
compounds after hit expansion 
to those with desired activity.

Brightfield images
Images captured from a 
sample without using any 
fluorescent illumination light.
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are developing rapidly, in particular moving from 
expert-​defined feature extraction to data-​driven deep 
learning34,35. Finally, the extracted profiles are analysed 
for biologically meaningful similarities and differences 
in a portion of the computational workflow that differs 
depending on which application has been chosen.

In essence, any set of images can be used for 
image-​based profiling (Box 2). The workflow described 
above requires adaptation depending on the samples, 
perturbations, stains and imaging modality used, but 
the overall strategy is the same. That said, profiling will 
be most powerful if each image contains a large num-
ber of instances (for example, cells or organisms) and a 
large amount of visible information about each instance 
(for example, high-​resolution images of multiple 
corresponding stains).

Analysis techniques evolve
Challenges in profile analysis. Thousands of features can 
be extracted from images, but not all are equally use-
ful for a given task. Different disease states or different 
compound mechanisms of action (MOAs) are best cap-
tured by reading out changes in distinct combinations of 
features, such as the shape and size of cell structures or 
the intensity and texture of various stains. An extensive 
image-​based profile encompasses many feature combi-
nations, overlapping or not, that together contain the 

information to document a broad spectrum of diseases 
and MOAs at once.

Notably, for a given goal, the presence of the relevant 
features is often not enough; we also need differential 
weighting: the amplification of features that are relevant 
to the goal and the suppression of features that are not. 
Importantly, the more extensive the profile, the more 
biological information it can potentially encode, but also 
the harder it is to extract the information for any given 
individual task from among irrelevant information. This 
phenomenon is referred to as the curse of dimensional-
ity: the masking of the task-​specific signal derived from 
comparatively few relevant features by the cumulative 
noise (related to technical variation) and confounding 
signal (related to unrelated biology) across the many 
other features. The problem can be addressed by com-
bining features by weighted aggregation and/or more 
powerful representations produced by machine learning, 
which can have various levels of supervision (Box 3). In a 
way, an assay developer applies feature weighting when 
exploring and optimizing biological models, reagents 
and readouts for a screening assay. Computationally 
extracting relevant information from feature weighting  
of a profile can be thought of as the virtual development of  
a profile-​based screening assay.

Early analysis techniques. Since the first proposals to 
leverage image-​based profiling for drug discovery36–38, 
the analysis of image-​based profiles has largely relied 
on unsophisticated unsupervised clustering of the 
profiles, including some profiles for well-known 
controls. Profiles are used to place each sample into a 
single, shared high-​dimensional representation space 
(panels a–c of the figure in Box 3) — also referred to as 
a (weighted) feature or phenotypic space — where the 
closeness between pairs of compounds corresponds to 
their profile similarity. ‘Shared’ here refers to adjusting 
all features in the same way, regardless of which samples 
or classes are being studied.

The nearest-​neighbour strategy is an approach to 
add an element of supervision. It predicts the biologi-
cal activity or MOA of a query compound on the basis 
of that of a reference compound with a suitably similar 
profile. The biggest advantage of the nearest-​neighbour 
approach is its information efficiency: in contrast to 
more advanced methods, it can be applied even if only 
a handful of reference compounds with existing anno-
tation are available. Nevertheless, like those advanced 
methods, the approach improves with more annotated 
references. Importantly, reference compounds must 
be sufficiently active, fairly selective and, of course, 
accurately annotated — which is not assured even for 
the current marketed pharmacopoeia. As a result, the 
nearest-​neighbour strategy has limited power.

Feature adjustment, transformation and normaliza-
tion techniques are recommended to increase signal-​ 
to-​noise ratios and thereby mitigate the curse of 
dimensionality39 (panel b of the figure in Box 3). These  
techniques, however, affect only the shared represen
tation space in which samples are placed. Hence, 
they do not remedy the vulnerability of unsupervised 
approaches to confounding signals from sample biases 

Supervision
In machine learning, 
supervised learning aims  
for the system to predict the 
correct answers for each input, 
on the basis of examples.  
By contrast, in unsupervised 
learning the goal is to learn 
useful representations of  
each sample such that the 
similarities and differences 
among them can be observed.

Box 2 | Assays for image-​based profiling

There are two approaches to choosing the staining conditions and biological model 
system for image-​based profiling: customized versus unbiased. In the customized 
approach, one chooses a model system and fluorescent markers that are thought to  
be associated with specific disease properties. The unbiased approach uses a more 
generic model system (for example, a particular cultured cell line) and a more general 
set of stains, regardless of the disease under study. Although customization tends to 
more reliably provide information relevant to a disorder, there is growing evidence  
that unbiased marker sets can detect changes in a substantial proportion of biological 
pathways, even in a single assay using a single cultured cell line22,25,59,87.

The most commonly used unbiased assay for image-​based profiling is Cell Painting20,104, 
whereby six inexpensive dyes are used to stain eight cell organelles and components, 
which are imaged in five channels that each capture fluorescent light of a particular 
wavelength. Developed by the laboratories of Stuart Schreiber and Anne Carpenter,  
the assay captures several thousand metrics for each imaged cell. Although alternatives 
exist169, most of the current publicly available image-​based profiling data were obtained 
by Cell Painting82,170.

Customized image-​based assays for profiling can range from a straightforward 
combination of stains for markers thought to be relevant to a disease to much higher 
complexity. For example, there are several techniques for performing multiple rounds 
of staining and destaining, which can yield dozens of channels/biomarkers detected 
per field of view171–174. Imaging mass cytometry also offers substantial multiplexing 
capacity, but requires expensive, slow instrumentation175,176. Multiplexed image profiles 
can also be created by combining readouts from multiple separate assays, each treated 
with a different fluorescent probe177, although preparing multiple wells per sample 
limits this approach to relatively small numbers of samples.

The vast majority of image-​based profiling is cell based for practical reasons, but 
animal-​based screening is possible and powerful, primarily in the worm Caenorhabditis 
elegans178 and zebrafish179. Most image-​based profiles use static images as input, but 
notable exceptions exist; successful studies include identifying antipsychotic-​like 
compounds in zebrafish behavioural assays69, identifying dynamic mitotic phenotypes31 
and detecting drug and growth surface response in time-​lapse imaging of neutrophil 
granulocytes from patients with asthma180. While standardizing on a single image-​based 
profiling assay such as Cell Painting allows profiles across experiments and research 
groups to be usefully shared, these examples demonstrate compelling reasons to choose 
alternative staining and imaging protocols and biological systems.
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or polypharmacology (Box 4) in the shared representation 
space. Classical feature selection methods reduce thou-
sands of raw features to hundreds according to feature 
correlation, but typically without a dramatic increase of 
discriminative power. The first step in the analysis of an 
image-​based profiling study is often a further reduction 
of the high-​dimensional phenotypic space to a 2D or 3D 
representation for visualization purposes using compu-
tational methods such as principal component analysis 
(PCA), t-​distributed stochastic neighbour embedding 
(t-​SNE), and uniform manifold approximation and pro-
jection (UMAP)40–42. Although such visualizations are a 
non-​optimal representation of the rich information of 
high-​dimensional profiles, they can provide a first sense 
of the similarity patterns in the experiment.

A substantial proportion of known bioactive com-
pounds yield a significant change in image-​based profiles:  
68% in one study using the Cell Painting assay22. Yet, 
due to the curse of dimensionality, a limited number of  
MOAs can be readily distinguished by the nearest- 
neighbour strategy: typically only one or two dozen 
form well-​delineated clusters, and rarely are new clus-
ters identified. The commonly observed clusters tend 
to represent compounds with disruptive mechanisms, 
such as histone deacetylase inhibition and microtubule 
interference. The ability of image-​based profiling to yield 
distinctive clusters of compounds for other, often sub-
tler mechanisms is limited and has not increased much 
over the years43. In a recent study where 15 reporter cell 
lines were evaluated, even after feature selection only 

20 of 83 MOA classes were readily distinguishable by 
image-​based profiles in the best single cell line, and  
41 were readily distinguishable, cumulatively across all 
15 cell lines44.

Machine learning: powering a new wave of image-​based 
profiling. Driven by the recent availability of ever-​
larger volumes of images, the field has begun to turn 
to machine learning, and specifically deep learning, to 
improve extraction of relevant signal from profiles45. 
In essence, a deep neural network is a concatenation of 
multiple layers, each trained to reweight and trans-
form data to achieve a goal, such as detecting objects 
in images or predicting the compound to which a cell 
has been exposed. An input layer introduces data such 
as image-​based profiles or raw images into the network. 
Each layer then reshapes the data as it flows through the 
network. Finally, the output layer exports the completely 
transformed data.

These techniques thus learn a more sophisticated 
representation than simple reweighting. Self-​supervised 
methods focus on information that can be learnt from 
different documentations of the same object (perturba-
tion, sample or cell type) (panel c of the figure in Box 3). 
For example, if the same microscopy field is documented 
with two views with different stains, a method can be 
trained to predict one view from the other; in the pro-
cess, it learns to filter out the noise in either view to leave 
only the robust signal46. Related methods train to dif-
ferentiate multiple cells from a single view or multiple 

Drugs or genetic
perturbations
(optional)

Healthy and
diseased patient
cell lines

High-throughput 
staining and imaging:
e.g. Cell Painting assay

Image analysis and
feature extraction

Downstream analysis:
mapping relationships

ER
Nucleolus
Nucleus
F-actin
Mitochondrion
Cytoplasmic RNA
Golgi apparatus
Plasma membrane

C
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Fig. 1 | Image-based profiling. a | Overview of the typical steps in the workflow for generating image-​based profiles  
from biological samples. b | Example images from the Cell Painting assay often used for image-​based profiling. It includes 
six stains labelling eight cellular components, which are imaged in five channels20. ER, endoplasmic reticulum.

Polypharmacology
The property of a compound 
whereby it interacts with more 
than a single target.

Neural network
A machine-​learning 
architecture whereby features 
of a sample (for example, 
image pixels or image-​derived 
metrics) are fed into a network 
of nodes, which collectively 
learn to produce the correct 
answer for that sample by each 
node adjusting its contribution 
(weight) to the final answer.
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views (that is, replicates) that document a specific per-
turbation (for example, chemical or genetic) from those 
documenting any other perturbations47,48. These 
machine-​learning methods require more substantial 
volumes of images for training but position all samples 
in a cleaner shared representation space than unsuper-
vised methods. The more samples that are included, the 
more mechanisms and biological processes this shared 
representation space will try to simultaneously capture, 
challenging the representation’s discriminatory power.

Like unsupervised or self-​supervised approaches, 
supervised methods require a large volume of images for 

training, but in addition they need training data, includ-
ing training data points with activity labels for prede-
fined tasks, and they benefit from side information. If 
large label sets are available that annotate compounds 
with their activities in validated assays, supervised meth-
ods can be trained, for example, to deconvolute the rel-
evant signal from raw images or image-​based profiles, 
including the output of self-​supervised methods25. In 
contrast to unsupervised or self-​supervised approaches, 
which learn a single representation space to position 
samples irrespectively of tasks of interest, the output 
layers of advanced supervised approaches produce  

Box 3 | Increasing discriminative ability in phenotypic space

Various computational strategies can improve results in image-​based profiling, shown here as a theoretical example for 
identifying the mechanisms of action (MOAs) for a set of compounds. Each tested sample (in this case, each compound) is 
represented as a dot in the phenotypic space, where distances between dots reflect the similarity of images of cells treated 
with the compounds. Even with the best strategies, many MOA classes will not be readily detectable or distinguishable.  
The strategies shown in panels a–c in the figure are useful to get a quick view of clusters of samples in a given dataset  
even if no sample annotations (for example, MOA labels) are available to indicate what each cluster represents. If these 
strategies are to be used to assign an MOA class to each sample, the approach would be called ‘semisupervised’, because 
after creation of this shared space, close proximity to compounds with known MOAs (if any) would be used to assign MOAs.

If raw features are extracted from images and placed into phenotypic space with no adjustment, samples do not typically 
form noticeable clusters (panel a). All features are equally weighted, such that those most relevant to the task at hand are 
typically drowned out by irrelevant, noisy or redundant features.

An unsupervised machine-​learning method can select the appropriate weights for each feature in order to emphasize 
important ones and suppress noisy or redundant ones (panel b). This process can be performed by techniques ranging from 
principal component analysis to autoencoders and is depicted as individual features becoming darker or lighter in the 
profiles shown below the scatterplot. This weighting typically allows classes of compounds with strong morphological 
phenotypes (pink and green, here) to be distinguished.

Self-​supervision strategies leverage redundant image information (for example, multiple replicates per perturbation, 
different channels for each microscopy view or multiple instances per cell type) to distil a robust signal (panel c). The 
phenotypic space of reweighted features learned by the network often yields a better discrimination of MOA classes.

When MOA annotations or assay activity values are available, the problem becomes supervised (panel d). Although one 
can learn a common (shared) representation using supervision (not shown), in practice this does not typically work well 
given the scale of MOA annotations available. Instead, here, for each MOA class, features in the profile are specifically 
weighted by training on samples with known activity in a corresponding assay. This can be especially helpful to handle 
polypharmacology; in our example, the blue and yellow-​green compounds are distinguishable from other compounds 
via individual models in panel d but not by any shared model (panel a, b or c). This could result from all compounds in 
the blue and yellow-​green classes having the MOA ‘X’, but half of these compounds may have an additional MOA, ‘Y’, 
whereas the other half have a different additional MOA, ‘Z’. Training separate models for MOAs ‘X’, ‘Y’ and ‘Z’ allows the 
features to be weighted so that each model ignores features associated with the other MOAs and more readily focuses on 
the targeted MOA.

a  Raw feature space b  Unsupervised c  Weakly supervised/
     self-supervised

d  Supervised, separate
      representations

Typical profile
for each class
of compounds

Unweighted
features

Weighted
features

Weighted
features

Weighted features,
trained for each
task separately

NoneAdditional
data sources
necessary:

None Annotation of which 
images document the 
same perturbation,
sample or cell type

Activity values in
validated assays or
annotations of MOA
class for each image

NaTure RevIeWS | Drug DIScovery

R e v i e w s

	  volume 20 | February 2021 | 149



a representation for each predefined task (panel d of the 
figure in Box 3).

Drug development companies are increasingly treat-
ing their existing data as a resource to be leveraged for 
machine learning. The promise of improved profile 
resolution through rich data and machine learning is 
currently rekindling industrial interest in phenotypic 
profiling. Although the pay-​off may be great, serious 
machine-​learning effort comes at a high cost, largely 
in terms of recruiting and retaining highly sought-​after 
experts and giving them the time and computational 
resources to build and maintain suitable software. 
Machine-​learning strategies also risk problems such 
as overfitting, technical artefacts or confounders in 
the data, and bias49,50 (Box 4). The ideal experimental 
set-​up is often cost-​prohibitive, and avoiding all pos-
sible confounding factors is impossible. Thus, practi-
cally speaking, practitioners must carefully design a 
combined experimental/data strategy that diminishes 
the risks; this requires deep understanding of the prob-
lem. One mitigant of machine-​learning confounders 
in drug discovery is that for many of the applications 
we will discuss, the goal is simply to triage compounds 
that will subsequently be tested thoroughly, such that 
false positives do not proceed. Nevertheless, in biomed-
icine, machine-​learning methods that are interpretable 
— that is, where one can learn what features of samples 
are being used in decision-​making — can sometimes 
ensure that technical artefacts are not the source of the 
signal and can provide insight into disease and drug  
mechanisms.

Profile-​based phenotype discovery and screening
It takes many months to years to develop a conventional 
image-​based assay for screening, even after years of 
basic research into the mechanisms of a disease. One 
time-​consuming step is hypothesizing and engineer-
ing one or a few relevant assay readouts, most often the 
staining of a molecule or other cell component. The time 
spent on this step can be dramatically reduced by using a 
generic staining approach such as Cell Painting (Box 2); 
applying image-​based profiling to such images typically 
yields more extensive feature sets than customized stain-
ing. In conventional image-​based assay development, 
researchers also spend considerable effort selecting 
suitable conditions for testing a drug’s impact on puta-
tive disease-​associated cell phenotypes, which might 
include the cell type and culture conditions, appropri-
ate stimuli and the duration of drug exposure. Here too, 
timelines can be cut by taking a more generic approach; 
for instance, one that relies on a simple cultured cell 
system and standardized assay conditions that are not 
customized to the diseases at hand. However, develop-
ing customized assay readouts with a careful selection 
of sample material, stimuli and time points may yield a 
higher probability of finding a disease-​relevant pheno-
type, perhaps justifying much longer assay development 
timelines. Furthermore, many disease programmes will 
involve highly customized assays in the long run as sec-
ondary assays, so one could argue these may as well be 
developed up front for primary screening unless their 
throughput is limiting.

Regardless of where an image-​based assay is on the 
spectrum from unbiased to customized, the typical steps 
to profile-​based phenotype discovery and screening 
(also known as signature discovery and signature-​based 
screening) are as follows.
•	 Prepare sets of biological samples that represent 

the disease state and the healthy state via strategies 
described in detail later in this section (Table 1).

•	 Capture image-​based profiles and attempt to identify 
any reproducible phenotypic difference between the 
diseased and healthy samples. This phenotypic differ-
ence will become the screening objective — that is, 
the phenotypic assay readout. This readout might be 
a single feature extracted from a single image channel 
(in essence, a conventional high-​content assay), or 
it might be a multifeature profile that discriminates 
between the diseased and healthy states. Machine 
learning and side information may be required to fil-
ter out confounding signals and noise. The discovery 
of novel phenotypes associated with a disease may 
itself yield new mechanistic insights into the disorder.

•	 Optionally, simplify the assay (for example, remove 
unnecessary fluorescent markers) to reduce its cost, 
or add markers that serve a useful triaging function 
for hits.

•	 Use the identified processed phenotype or profile to 
(a) test thousands to millions of chemicals for their 
ability to reverse the disease morphology to resem-
ble the healthy state or (b) virtually query an existing 
dataset of image-​based profiles from chemical per-
turbations of healthy cells to identify those whose 
perturbation yields the ‘opposite’ (anticorrelated) 

Box 4 | Inherent challenges in profiling

Apart from the curse of dimensionality (the masking of a signal of interest by the noise 
and confounding signal of other features in a profile), all high-​dimensional profiling 
methods, including imaging, face additional challenges.

Technical artefacts such as batch effects and plate layout effects typically make 
images from particular locations on a plate or from particular batches look more similar 
to each other than to images of the same sample in different plate locations or different 
batches181. Even different lineages of a given cultured cell line can be distinguished on 
the basis of image-​based profiles61. Although arguably the ability to detect technical 
artefacts speaks to the sensitivity of image-​based assays, how to best mitigate the 
effects remains unresolved.

When one is identifying disease phenotypes from patient samples, there is a risk  
of confounding by various genetic or sample biases that may not be relevant for  
the disease. For example, samples from diseased patients might have a different 
demographic balance or might be more affected by particular technical artefacts than 
controls, such that features associated with the disease samples lack true predictive 
power. It is difficult and expensive to carefully identify and control for all possible 
confounding factors, increase sample sizes and/or test separately obtained cohorts,  
so these present real risks.

For compounds, a unique challenge is polypharmacology (that is, the simultaneous 
engagement of a small molecule with multiple targets or processes). Historically, 
successful drugs have been thought to be highly specific in their activity, but it has 
become clear that polypharmacology is the rule rather than the exception, even for 
marketed drugs182,183. Polypharmacology results in profiles that convolve multiple 
signals, only one or two of which may be relevant for the intended activity, while  
the other signals may indicate favourable, unfavourable or undefined effects of the 
compound. Attempting to identify the mechanisms of a polypharmacological compound 
can be a challenge: at best, its profile shows strong similarity to the single most prominent 
mechanism it features; at worst, the profile becomes suspended in a poorly interpretable 
‘no-​man’s land’.
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phenotype, indicating a favourable impact on the 
same pathways as are impacted by the disease. 
In addition, compounds that produce the same  
(correlated) profile as the disease can potentially  
provide useful mechanistic information.

•	 Optionally, identify or validate novel targets for 
the disorder by (a) testing a genome-​scale set of 
genetic perturbations for their ability to modify the 
disease-​related phenotype or (b) virtually querying 
an existing genome-​scale dataset of image-​based 
profiles from genetic perturbations of healthy cells 
to identify or validate genes whose perturbation 
yields the same (correlated) or opposite (anticor-
related) phenotype. Novel, validated targets could 
then be fed into conventional target-​based drug 
discovery pipelines.

Identifying a disease-​associated phenotype. The first 
step, identifying a disease-​associated phenotype in 
images, is crucial51. Several strategies exist for identify-
ing a cellular disease state with a profile that differs from 
that of the healthy state (Table 1). First, patient-​derived 
cells are a physiologically relevant choice, assuming a 
sufficient number of independent patients are available 
to yield confidence that phenotypic differences are asso-
ciated with the disease rather than due to the inherent 
morphological variability of cell lines across patients. 
Caution must be exercised, as high-​dimensional pro-
files are prone to confounding factors (Box 4), whereby 
features that seemingly distinguish between healthy 
and diseased states may in fact reflect age, genetic, 
exposure or sample biases that are not relevant to the 
disease. Nevertheless, many reproducible image-​based 
phenotypes have been discovered, often inadvertently, 
as scientists stained and visually examined cells, typi-
cally using common markers such as organelle dyes. For 
example, unusual mitochondrial structure was identified 
in fibroblasts and lymphocytes from patients with bipo-
lar disorder52 and in fibroblasts from patients with Leigh 

syndrome53, and normal human fibroblasts can be differ-
entiated from Huntington disease fibroblasts using only 
tubulin staining54. Image-​based profiling offers a way 
to scale-​up and systematize this kind of serendipitous 
discovery.

A second approach to identifying a disease-​associated 
phenotype is especially suited to disorders caused by 
loss-​of-​function mutations in single genes. A gene’s 
expression is decreased using RNAi or CRISPR and 
then the morphological impact on cells is examined, 
taking care to identify off-​target effects55. This approach 
was used to detect an impact on cell structure (as 
detected by stains for DNA, actin and VE-​cadherin), 
which was obvious by eye, of RNAi knockdown of 
CCM2, the gene associated with the loss-​of-​function 
disorder cerebral cavernous malformation56. Through 
screening, the researchers identified small molecules 
that reverse the phenotype. Remarkably, compounds 
chosen by a computational analysis outperformed 
those chosen by eye in secondary physiological experi
ments. This study, conducted at the University of 
Utah, led to the launch of the biotechnology company 
Recursion. The company has since identified hundreds 
of disease-​associated image-​based phenotypes available 
for parallel screening and has placed four drugs into 
clinical trials. In a similar strategy, an academic research 
team took a comprehensive approach to investigate 
alleles from genome sequencing studies: in adipocytes 
differentiated in vitro, they ablated 125 genes associ-
ated with type 2 diabetes and clustered the resulting 
image-​based profiles, identifying novel lipodystrophy 
genes57. Another team mutated zebrafish orthologues 
near 132 schizophrenia-​associated alleles and created 
behavioural and brain structural image-​based profiles, 
prioritizing candidates for further study58.

A third approach to phenotype identification for 
screening, gene overexpression, is especially suited 
for testing alleles in protein-​coding regions of genes 
that are known or hypothesized to cause disorders. 
The mutant form of a given protein is exogenously 
expressed in cells, and its image-​based profile is com-
pared with that of cells overexpressing the wild-​type 
form59. Although overexpression may itself impact the 
cell’s structure and function, observing a differential 
signature between wild-​type and mutant overexpression 
yields a strong hypothesis for disease-​related impact. 
The Taipale laboratory at the University of Toronto is 
using this strategy for a set of monogenic disorders, 
with the twist that each disease-​associated protein is 
flag-​tagged so that disease-​associated changes in protein 
localization can be detected in addition to changes in cell 
morphology (M. Taipale and J. Lacoste, personal com-
munication). One could envision this strategy becom-
ing the routine next step after every sequencing study 
that yields long lists of hypothesized disease-​associated 
variants: generate appropriate genetic reagents for all 
alleles and test their image-​based impact in a suitable 
cell line. This approach might allow clustering of alleles 
into different functional groups, such that a subset of  
each group could be studied in more disease-​specific 
assays. Already, image-​based profiling of gene over
expression is showing promise in determining the impact 

Table 1 | Strategies for identifying a ‘disease state in a dish’

Strategy to create disease 
state

Disease state (example) Healthy state 
(example)

Patient-​derived cell lines Cells taken from patients with 
asthma

Cells from healthy 
volunteers

Gene knockdown or 
knockout

Cells with loss-​of-​function 
disease-​associated gene CCM2 
knocked down by RNAi or 
CRISPR

Mock-​treated 
control cells

Allele overexpression 
(optional: tag the protein 
of interest to examine its 
localization in addition to the 
cell’s overall morphology)

Cells overexpressing a variant 
associated with lung cancer

Cells over
expressing the 
wild-​type form

Cell lines engineered by 
gene-​editing techniques

Cells containing a non-​coding 
variant associated with 
schizophrenia, in its 
endogenous location

Mock-​treated 
control cells 
lacking the variant

Existing small molecules with 
known beneficial effects

Any cell-​based or 
organism-​based model system

Treatment with 
small molecules of 
known benefit for 
the disorder

NaTure RevIeWS | Drug DIScovery

R e v i e w s

	  volume 20 | February 2021 | 151



of so-​called variants of unknown significance in patient 
tumours (J. Caicedo and J. Boehm, personal communi-
cation), analogous to a prior successful mRNA profiling 
approach60.

A fourth strategy is to genetically modify cells, which,  
unlike overexpression, allows interrogation of both cod-
ing and non-​coding variants. For now, the single-​cell 
cloning procedures needed for gene editing techniques 
are too slow and inconsistent for large-​scale use, and 
lineage artefacts may confound accurate phenotype 
detection61. Nevertheless, the approach can work well  
for testing individual alleles. Recently a change in 
image-​based profile was detected for cancer cells 
genetically modified to express mutant focal adhesion 
kinase (FAK) versus its wild-​type form62. This genetic 
perturbation was intended to mimic pharmacological 
treatment targeted to FAK and simplify the pathway 
engagement while avoiding off-​target concerns with 
FAK small-​molecule inhibitors. The study authors then 
screened small molecules to identify putative synergistic 
combinations with FAK inhibitors, identifying histone 
deacetylase inhibitors as potential novel kinase inhibitor 
drug combinations for cancer. It may soon be feasible to 
rapidly and systematically genetically engineer cell lines 
containing disease-​associated alleles in their endogenous 
locations, which opens the door for this approach to be 
conducted more systematically. One can even engineer 
model organisms to carry human disease-​associated 
alleles to create ‘avatars’ for identifying image-​based 
phenotypes and subsequent testing of compounds63–67.

A fifth approach to identify a screenable phenotype 
is to identify changes in image-​based profiles associated 
with existing drugs for a particular disease of interest, 
then use those phenotypes to identify new candidate 
drugs and often their MOA as well. This approach has 
identified new behavioural phenotypes and potential 
therapeutics in zebrafish time-​lapse imaging using 
existing psychotropics68, antipsychotics69, appetite 
modulators70 and anaesthetics71 as the query com-
pounds. Image-​based profiling also revealed morpho-
logical changes associated with 61 structurally diverse 
free fatty acids, identifying those that are associated 
with lipotoxicity in insulin-​secreting pancreatic β-​cells 
(N. Wieder and A. Greka, personal communication).

These five strategies for identifying screenable 
phenotypes differ in terms of the ease of assay devel-
opment, the degree of customization required and how 
closely they reflect the human disease state. At one end 
of the spectrum, one can choose a single cell type and 
set of staining conditions to search for many disease 
phenotypes in parallel. In this case, the assay develop-
ment time for each disorder is zero, but many pheno-
types will be missed due to a lack of a suitable stain or 
appropriate biological conditions. Still, the simplicity, 
cost-​efficiency and scalability of the strategy make it 
an attractive approach: although customized follow-​up 
validation assays must still be created, they can be more 
expensive and of lower throughput, and they need to be 
made only for the subset of disorders showing promising 
hits. By contrast, there will be more chance of identify-
ing a phenotype for any particular disease if the assay is 
more specifically tailored to the disorder, although this 

increases the assay development time. For example, one 
could explore several healthy and diseased systems to 
be imaged, such as several cell lines, primary cell types, 
mixtures of co-​cultured cells or even differentiated cell  
cultures. In addition to more physiologically relevant 
cell/organism systems, stains can be customized to reflect 
several biological processes associated with the disorder. 
At the limit, these customizations end up as equivalent to 
conventional phenotypic assay development.

It should be noted that reversing disease-​associated 
phenotypes identified via the strategies described above 
will not always yield effective drugs. First, cultured cells 
do not reflect the full intricacies seen in a human organ-
ism; many disease mechanisms are not cell autonomous, 
and many drugs will have different effects in patients’ 
whole bodies, especially considering their different 
genetic backgrounds and environmental exposure. These 
limitations are shared with all biochemical or cell-​based 
drug screening methods and are fairly well appreciated. 
However, profile-​based phenotype discovery introduces 
additional concerns. For example, phenotypes detected 
as described above might be completely incidental to 
the phenotype that causes symptoms for patients, such 
that drugs reversing the phenotype are ineffective. Even 
worse, the detected phenotype might reflect the cells’ 
attempt to mitigate the impact of the disease pertur-
bation, such that drugs reversing the phenotype would 
aggravate the condition in patients. Nevertheless, the 
speed that profiling offers allows extra time to rule out 
these kinds of problems.

The drug industry as a whole has begun to adopt 
image-​based profiling to inform target identification and 
validation, phenotype discovery and assay development 
before screening. However, for screening itself, wher-
ever possible, the industry tends to prefer a customized 
assay focused on a molecularly defined target or pathway 
that adequately reproduces the profile-​based findings. 
Focused assays facilitate determining structure–activity 
relationships (SARs), selecting mechanistically inspired 
biomarkers of efficacy and identifying on-​target lia-
bilities that correlate with desired on-​target activity. 
Moreover, contrary to expectations, compounds identi-
fied in early mRNA and image profile-​based phenotypic 
screening efforts do not seem to have been validated in 
animal models more often than compounds identified 
in more straightforward target or pathway-​based screen-
ing approaches — although, admittedly, no systematic 
analysis has been reported to date. Large pharmaceutical 
companies also tend to focus on selected disease areas, 
and in those areas they prefer to maximize the chances 
of success by screening large compound libraries, which 
can be more efficiently accommodated in streamlined 
customized assays, especially if profiling will neverthe-
less eventually be used in follow-​up assays. However, 
thousands of diseases fall out of industry scope. As a 
result, biotechnology start-​ups (Recursion and insitro, 
most notably27) are exploring this space. As mentioned 
in the introduction, they rely on profile-​based pheno-
typic screening of smaller libraries in generic assays to 
more efficiently evaluate the potential of compound 
intervention across that less frequently studied disease 
spectrum.
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Lead generation
In the drug discovery process, screening is followed by 
lead generation, in which hundreds of screening hits 
are narrowed down to just a few lead candidates. The 
various applications of image-​based profiling for lead 
generation can use either unbiased assays (which could 
be systematically applied across disease areas) or cus-
tomized assays with relevant biomarkers (which can be 
tailored to particular disease areas) as described in the 
previous section and Box 2.

Hit expansion, lead optimization and SAR studies. 
During lead generation, two complementary activities —  
hit expansion and lead optimization — are pursued to 
triage and modify compounds for the most favourable 
attributes for further drug development. Conventionally, 
lead generation is guided by several individual assays, 
including the primary screening assay. These typically 
have simple and rapid readouts, reflecting single effects 
of molecules, such as enzyme activity, reporter expres-
sion, aggregation of a target protein or cell viability. 
Image-​based profiling can be a tractable path for lead 
optimization, because it is quick, is sensitive and covers 
a broad, though not comprehensive, range of biology. 
Rather than relying on multiple assay readouts to select 
compounds with desired qualities, image-​based profil-
ing presents the possibility of selecting compounds with 
several desired qualities using a single assay72. Moreover, 
image-​based profiling can quickly and comprehensively 
establish relationships among hits into biological clus-
ters, independently of compound structure, providing 
direction for prioritization37,73,74. In addition, hits can be 
triaged quickly across disease-​specific cell types with dif-
ferent genetic backgrounds using the same image-​based 
profiling assay to assess the efficacy of compounds75,76.

Recently, several SAR studies applied image-​based 
profiling using Cell Painting to assess the biological 
activity of newly synthesized compounds and build 
diversity sets for focused libraries77–80. The quick deploy-
ment and richness of the readouts enabled researchers 
to efficiently examine the effects of compound modifica-
tions across a wide range of biological activity. The unbi-
ased assay proved to be sensitive enough to distinguish 
the effects of stereochemistry on activity. Furthermore, 
because an unbiased image-​based profiling assay covers 
such a broad spectrum of activity, modifications that 
act on different mechanisms can be identified78,79 — an 
advantage over conventional SAR studies.

Because these readouts reflect the consequences 
of molecular modifications for biological activity, this 
approach can be used to examine biological activity of 
hits from targeted screening, provided the cellular model 
system contains the molecular target in a biologically 
relevant context. Importantly, one must confirm that 
observed effects are indeed the result of target modifi-
cation by the test compound and not the result of cellular 
adaptation via an alternative mechanism or polypharma-
cology. Furthermore, and more challenging, is the possi-
bility of no observed response. The absence of a response 
may not be due to the absence of a target or target binding, 
but could be due to complex cellular pharmacology —  
a combination of compound concentration, duration of 

treatment and cellular metabolism — which yields an 
observable morphological profile similar to no-​treatment  
controls.

In this context, it is helpful to understand the rela-
tive association of image-​based features with the desired 
phenotype or with off-​target activities. However, this 
interpretation step is still a challenge beyond simplis-
tic cases in which a small number of image-​based fea-
tures are strongly affected and easily interpretable, such 
as a change in protein localization. Although it has yet 
to be demonstrated for lead optimization, machine 
learning is emerging as a powerful tool to deconvo-
lute multiplexed profiles of studied hits into virtual 
assays for distinct biological activities (as described in 
the next section), which can be favourable, neutral or 
unfavourable. Whether translated into interpretable 
activities by nearest-​reference or by more advanced 
machine-​learning approaches, the rich information 
in image-​based profiles for newly synthesized com-
pounds can be used to track the incremental effects 
of subsequent compound modifications during lead 
optimization.

Predicting assay activity. Compared with traditional hit 
expansion approaches, machine learning offers some 
attractive alternatives that make use of unbiased image 
data and provide an advantage over conventional SAR 
studies. By nature, image-​based prediction can gener-
ate hits that are structurally diverse because predictions 
are based on activity in a biological system rather than 
chemical structure. Also, being inherently multiplexed, 
image-​based methods are potentially capable of predict-
ing the activity of hit compounds in assays unrelated to 
the assay that generated the image-​based profiles.

This hypothesis was verified by a multi-​institution 
team using image-​based profiles from Janssen to suc-
cessfully predict the activity of structurally diverse hit 
compounds in screening assays. In two validation stud-
ies, the strategy yielded a 60-​fold to 250-​fold increase in 
hit rates compared with the original screening assays25. 
Using the program CellProfiler to perform classical 
image segmentation and feature extraction, they lever-
aged supervised machine learning to predict the activ-
ity of a large set of compounds in given assays, based 
on archived imaging data on those compounds in an 
unrelated assay. Building on this research, a later team 
constructed a novel network architecture, GapNet, to 
predict ChEMBL-​derived81 compound annotations for 
a 30,000-​compound Cell Painting dataset82: 32% of the 
assays could be well predicted83. In addition to the prac-
tical implication — that many expensive screens might 
be replaced effectively with a computational prediction 
step — this result also indicates that a substantial pro-
portion of biological pathways of interest are captured 
in a single imaging assay. Furthermore, by combining 
image profiles with compound structural information, 
machine learning was able to predict active chemical 
structures de novo26.

If these machine-​learning strategies work well in 
practice, one could envision the sizes of primary screens 
being so substantially reduced in the future as to funda-
mentally change the typical drug discovery process, with 

Hit expansion
The selection of compounds 
that were not tested in the 
primary screen, to broaden  
the diversity of the chemical 
space for hit selection. 
Compounds are selected  
on the basis of similarities  
in structure or biological 
activity to candidate hits.

SAR studies
An iterative process for lead 
optimization in which assays 
are applied to determine the 
effect of successive structural 
modifications to a compound 
on activity.
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heavier reliance on computational predictions rather 
than experimentation in early stages.

Predicting toxicity. Identifying a compound’s liabilities 
during lead generation is as important as assessing its 
efficacy; roughly 17% of phase III trial failures are due 
to safety concerns84. A simple cell-​based assay such as 
Cell Painting, which could readily be scaled to an entire 
million-​compound collection, is appealing for toxicity 
prediction given widespread enthusiasm for reducing 
the use of intact animals for testing both pharmaceuticals 
and environmental chemicals85,86.

Recently, a team at the US Environmental Protection 
Agency used image-​based profiles from the Cell Painting 
assay to characterize selected chemicals’ bioactivity and 
toxicity87. One nuance of toxicity testing is that the 
dose at which effects are seen is paramount to discern-
ing whether the compound will be toxic in humans. 
By comparing the toxic concentration thresholds for 
each chemical generated with other methods with 
thresholds generated with image-​based profiling, the 
team concluded that image-​based profiling is a viable, 
cost-​effective alternative for chemical safety assessments. 
Image-​based profiling of full dose–response curves for 
large-​scale chemical libraries (for example, six dose 
points for millions of compounds) would require sig-
nificant investment, but subsets of doses or subsets of 
compounds are readily feasible. Cell Painting’s ability 
to predict various specific cell health assay readouts 
that provide mechanistic information, such as stalling 
in various cell cycle states88, provides further motiva-
tion for the collection of large-​scale Cell Painting data 
on compounds for pharmaceutical, agricultural and 
environmental use.

Other methods combine image-​based profiling with 
machine learning to identify the MOAs of toxicants 
in different types of cells. Image-​based features can 
predict nephrotoxicity of drugs, chemicals and toxi-
cants targeting human renal proximal tubular cells89. 
A high-​throughput in vitro phenotypic profiling for 
toxicity prediction (HIPPTox) system predicted pulmo-
notoxicity more accurately than cell viability assays in 
human lung cell lines90. Image-​based profiling identi-
fied rosmarinic acid as a candidate with cardioprotec-
tive effects against the toxicity of doxorubicin91. This 
approach also revealed the toxic effects of bisphenol A 
and its analogues on a testicular cell co-​culture model 
by simultaneously measuring multiple adverse end 
points such as changes to nuclear morphology and 
cytoskeletal structure92.

Identifying the MOA
Elucidating the MOA of a drug provides a deeper 
understanding of its biological activity68,93–96, increases 
its chances of clinical approval and enables the design of 
novel drugs97, and provides insights into the potential to 
separate unfavourable effects from favourable effects if 
they are driven by different targets98.

Identifying the MOA and/or targets of a hit or lead 
presents a major challenge, particularly for candidates 
arising from phenotypic rather than target-​based screens. 
No single experimental technology can definitively 

identify a compound’s MOA. Instead, the most likely 
MOA is often inferred from a combination of several 
complementary methods99. Proteomics approaches 
can be used to identify unknown protein targets after 
pull-​down with a tagged compound or if an untagged 
compound shifts the target’s stability100. Assay panels can 
readily identify the engagement of a compound with a 
set of predefined targets such as kinases, but only a frac-
tion of the druggable proteome can be queried in this 
way, and every assay has its limitations. Finally, pheno
typic profiling, including image-​based profiling, can 
also contribute to MOA identification, as we describe 
in this section.

There are three broad categories of image-​based pro-
filing approaches to determining the MOA. The first 
approach, known as guilt-​by-​association with annotated 
compounds, involves comparing image-​based profiles 
of compounds with unknown MOAs with those of 
well-​annotated compounds to identify neighbours101. 
In this approach, image-​based profiles are clustered 
according to the assumption that drugs with similar 
MOAs generate similar phenotypic signatures102. This 
strategy has been successfully implemented across stud-
ies spanning more than a decade73,75,102–106. However, as 
described in the section Analysis techniques evolve, 
image-​based profiles and classical methods have effec-
tively grouped compounds for many classes of MOAs 
but are ineffective for other classes, and polypharma-
cology is confounding. Nevertheless, there are many 
examples of novel MOA discoveries being made by this 
route, including identifying novel inhibitory activity of 
silmitasertib107, the MOA of autoquin (an autophagy 
inhibitor with a non-​protein target)108, the translation 
inhibition of phenomycin109, the activity of synthesized 
pseudo-​natural products, pyranofuropryridones, which 
remained inactive in other common assays110, and useful 
components of natural products111–114.

We expect that in coming years this guilt-​by- 
association strategy will become increasingly sophisti-
cated by leveraging advancements in machine learning, 
availability of more extensive reference annotation, inte-
gration with other data sources and optimization of cell 
lines. As the choice of cell line informs MOA prediction 
accuracy21, effort has been made towards engineering 
reporter cell lines43 and identifying cell line-​invariant 
features115. Others have interrogated genetic hetero-
geneity, finding distinct morphological responses to 
serotonin modulators across breast cancer cell lines116. 
The integration of image and transcriptome data into 
ensemble approaches has shown promise to improve 
MOA determination for synthetic small molecules, nat-
ural products and identified bioactive metabolites21,117. 
Image-​based profiles of cells treated with natural prod-
ucts have also been combined with mass spectral fea-
tures of the same natural products to discover a novel 
family that causes endoplasmic reticulum stress118. 
If image-​based and other profile types carry comple-
mentary information, then creating and integrating 
both kinds of profiles will be useful; if they are instead 
largely redundant, then researchers could acquire only 
one modality and build translators to convert one type 
of profile to the other119.
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In the second approach, known as guilt-​by-​association 
with perturbed genes, the image-​based profile of the 
drug is matched to that of cells perturbed with a spe-
cific genetic reagent, thereby yielding a hypothesis 
for the drug’s target and MOA120. As pioneered with 
yeast mutants121–123, this approach has shown success 
in cell-​based, image-​based profiling experiments, 
although it is not yet widely used. Genetic perturbation 
can be achieved by a variety of techniques. Historically, 
perturbation by small interfering RNA (siRNA) has 
been most common124–126, although seed effects can be 
confounding127. Another strategy is to use CRISPR–Cas9 
(ref.128) to knock out genes of interest as it is less suscep-
tible to undesirable and confounding off-​target effects 
of siRNA55,129. Overexpressing genes is another option 
that can yield distinctive image-​based profiles59, which 
in theory could be matched to a chemical’s image-​based 
profile. Most chemical compounds inhibit a protein’s 
function, but it is currently unclear whether matching a 
suppressed gene more effectively determines the MOA 
as opposed to looking for a profile that is anticorrelated 
to that of an overexpressed gene.

The third approach, which is based on rescue experi
ments, might be more accurate than the similarity- 
matching strategies described above, but would require 
new, large-​scale experiments for each query molecule 
rather than a simple computational matching exercise. In 
a rescue experiment to determine the MOA, cells treated 
with a given drug that induces a particular image-​based 
profile would be treated with genetic perturbations to 
identify any that can reverse the profile, such that the 
cells resemble untreated cells. There are currently no 
published examples of this approach, although pooled 
optical profiling puts this type of experiment closer 
to reality by offering the capability to test hundreds to 
thousands of genetic reagents in parallel29.

As mentioned in the section Analysis techniques 
evolve, most image-​based MOA prediction studies 
use a nearest-​neighbour approach. This procedure 
assumes that each drug has a single MOA, but it is now 
well appreciated that few chemicals impact only a sin-
gle protein within a cell. Instead, polypharmacology, 
including off-​target effects, is commonly seen (Box 4). 
One or two of these targets may be relevant in the 
context of the disease of interest, but others may also 
be reflected in the unweighted profile and obscure the 
profiles resulting from the targets of interest. For cer-
tain MOAs, particularly those with a strong and broad 
impact on cellular morphology, clusters of compounds 
are easily identified with straightforward methods130 
but such methods fail for many MOA classes. Hence 
there is a need for MOA determination methods that 
account for polypharmacology. Deep learning-​based 
approaches have been developed25,83 that are inher-
ently well suited for tackling this problem, as they can 
produce MOA-​specific, reweighted image-​based pro-
files, thereby deconvoluting the complex phenotypes 
arising from polypharmacology44. We are only begin-
ning to scratch the surface of image-​based profiling of 
single perturbations, but testing pairs of reagents has 
begun for limited sets of small molecules131 and genetic 
perturbations132. Larger such datasets should lead to a 

better understanding of how to identify and deconvolute 
polypharmacology in profiles. Regardless of how MOA 
hypotheses arise, ideally more than one structurally dif-
ferent and accurately annotated compound targeting the 
same target/pathway will be available to lend evidence 
to a hypothesis.

Beyond drug discovery
Outside the scope of this Review are many other suc-
cesses of image-​based profiling applied to a wide variety 
of important biological phenomena and cellular struc-
tures, including identifying relevant genes via functional 
genomics and studying cell responses to growth topol-
ogies and differentiation factors133–138. Although identi-
fying biomarkers of disease or drug response can be a 
first step towards drug discovery and a helpful aid in 
clinical trials, we do not cover in this Review the tre-
mendous strides that have been made in image-​based 
diagnostics, in some cases by using deep learning on 
unlabelled samples to create label-​free diagnostics139. 
Examples range from suggesting a diagnosis140 to 
predicting patient outcomes141–143 or even molecular 
phenotypes144,145. Lastly, we do not cover interventional, 
personalized medicine applications here, where patient 
samples are treated with various potential therapies and 
imaging is used to measure responses. Examples include 
the image-​based profiling of the response of a bacterial 
strain isolated from a patient to various antibiotics146, 
of organoids derived from a patient with cystic fibrosis 
to drugs147 and of tumour cells or organoids to various 
chemotherapies148–150.

Future directions
We fully expect advancements in the field of image-​based 
profiling — both computational and biological — will 
progress rapidly in the next 5 years as the approach gains 
attention.

On the computational side, deep learning is already  
beginning to accelerate drug discovery by tackling 
diverse problems in the process151, and image-​based pro-
filing will be among the major beneficiaries of advance-
ments in computer vision and predictive algorithms152–154. 
Deep learning can process raw microscopy images to 
produce representations that are better suited for down-
stream analysis and interpretation; cells or cellular sub-
structures can be identified more accurately155,156, and 
improved image-​based descriptors can be derived dur-
ing feature extraction157. Deep learning may therefore 
eventually replace classical image processing and feature 
extraction algorithms, such as those in the currently 
most commonly used software program, CellProfiler158, 
or one of its commercial counterparts. Deep networks 
have been trained for the interpretation of image-​based 
profiles: they can recognize the biological states of 
imaged cells159 or predict the biological activities in val-
idated assays for imaged compounds25. Convolutional 
neural networks can also integrate bespoke feature 
extraction and interpretive tasks in a single process160. 
Emerging anecdotal evidence suggests that pro-
vided with enough activity labels, these single-​step, 
end-​to-​end networks have a predictive performance 
superior to that of conventional feature extraction  
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and profiling. This may stem from deep learning’s 
ability to learn specialized composite image features 
beyond the ones predefined by feature extraction soft-
ware. Alternatively, it may reflect an implicit encoding 
of the heterogeneity of single cells within a microscopy 
image134. Capturing single-​cell heterogeneity after 
feature extraction has indeed been found to improve 
image-​based phenotypic clustering161. Finally, the flexi-
ble architecture of neural networks enables information 
to flow in from alternative data sources and formats, as 
input, or as side information.

On the biology side, drug discovery scientists are 
adopting increasingly complex model systems for 
their image-​based profiling, such as differentiated 
cell types, tissues, organoids and whole model organ-
isms. These assay systems may more routinely become 
higher-​resolution and multidimensional systems, includ-
ing 3D and time-​lapse image capture. Sequencing-​based 
barcoding methods are enabling larger-​scale genetic 
perturbation libraries to be profiled by imaging29. We 
also expect that data generation and machine-​learning 
approaches will become increasingly intertwined. For 
example, networks can learn to predict fluorescence 
patterns from transmitted light images33 when provided 
with enough training pairs. This may in the future enable 
cost-​efficient label-​free image capture.

The ability to make broad activity predictions on the 
basis of microscopy screen images that were originally 
collected for a single mechanism of interest25 has cre-
ated an appetite to combine similar approaches with 
the richer profiles from multiplexed generic staining 
protocols such as Cell Painting83. Biotechnology and 
pharmaceutical companies are already investing in gen-
erating purpose-​built image sets that document genetic 
and compound-​induced perturbations. This investment 
occurs in proprietary settings, but also in the context of 
public–private partnerships involving multiple pharma-
ceutical companies, which will ultimately boost the avail-
ability of such datasets in the public domain27. It remains 
to be seen whether image-​based profiles have reproduci-
bility problems as recently suggested for mRNA profiles 
in the largest single-​site public dataset162, and whether 
machine-​learning approaches can reconcile image-​based 
profiles across experimental batches and data generation 
sites. Nevertheless, we hope that increased availability of 
high-​quality queryable image datasets163 paired with side 
information on imaged compounds, genetic perturba-
tions or disease models will in turn inspire the design of 
yet more powerful machine-​learning methods, driving 
a virtuous circle of discovery.
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