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Predicting cell health phenotypes using 
image-based morphology profiling

ABSTRACT  Genetic and chemical perturbations impact diverse cellular phenotypes, includ-
ing multiple indicators of cell health. These readouts reveal toxicity and antitumorigenic 
effects relevant to drug discovery and personalized medicine. We developed two customized 
microscopy assays, one using four targeted reagents and the other three targeted reagents, 
to collectively measure 70 specific cell health phenotypes including proliferation, apoptosis, 
reactive oxygen species, DNA damage, and cell cycle stage. We then tested an approach to 
predict multiple cell health phenotypes using Cell Painting, an inexpensive and scalable 
image-based morphology assay. In matched CRISPR perturbations of three cancer cell lines, 
we collected both Cell Painting and cell health data. We found that simple machine learning 
algorithms can predict many cell health readouts directly from Cell Painting images, at less 
than half the cost. We hypothesized that these models can be applied to accurately predict 
cell health assay outcomes for any future or existing Cell Painting dataset. For Cell Painting 
images from a set of 1500+ compound perturbations across multiple doses, we validated 
predictions by orthogonal assay readouts. We provide a web app to browse predictions: 
http://broad.io/cell-health-app. Our approach can be used to add cell health annotations to 
Cell Painting datasets.

INTRODUCTION
Perturbing cells with specific genetic and chemical reagents in differ-
ent environmental contexts impacts cells in various ways (Kitano, 
2002). For example, certain perturbations impact cell health by 
stalling cells in specific cell cycle stages, increasing or decreasing pro-
liferation rate, or inducing cell death via specific pathways (Markowetz, 
2010; Szalai et al., 2019). Cell health is normally assessed by eye or 
measured by specifically targeted reagents, which are either focused 
on a single cell health parameter (e.g. ATP assays) or multiple in com-
bination via FACS-based or image-based analyses, which involves a 
manual gating approach, complicated staining procedures, and 
significant reagent cost. These traditional approaches limit the ability 
to scale to large perturbation libraries such as candidate compounds 
in academic and pharmaceutical screening centers.

Image-based profiling assays are increasingly being used to 
quantitatively study the morphological impact of chemical and 
genetic perturbations in various cell contexts (Caicedo et al., 2016; 
Scheeder et al., 2018). One unbiased assay, called Cell Painting, 
stains for various cellular compartments and organelles using 
nonspecific and inexpensive reagents (Gustafsdottir et al., 2013). 
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Cell Painting has been used to identify small-molecule mecha-
nisms of action, study the impact of overexpressing cancer 
mutations, and discover new bioactive mechanisms, among many 
other applications (Wawer et al., 2014; Rohban et al., 2017; 
Caicedo et al., 2018; Simm et al., 2018; Christoforow et al., 2019; 
Pahl and Sievers, 2019; Hughes et al., 2020). Additionally, Cell 
Painting can predict overall mammalian toxicity levels for environ-
mental chemicals (Nyffeler et al., 2020) and some of its derived 
morphology measurements are readily interpreted by cell 
biologists and relate to cell health (Bray et al., 2016). However, no 
single, inexpensive assay enables discovery of fine-grained cell 
health readouts that would provide researchers with a more 
complete understanding of perturbation mechanisms.

We hypothesized that we could predict many cell health read-
outs directly from the Cell Painting data, which are already available 
for hundreds of thousands of perturbations. This would enable the 
rapid and interpretable annotation of small molecules or genetic 
perturbations. To do this, we first developed two customized 
microscopy assays, which collectively report on 70 different cell 
health indicators via a total of seven reagents applied in two reagent 
panels. Collectively, we call these assays “Cell Health.”

To demonstrate proof of concept, we collected a small pilot 
dataset of 119 clustered regularly interspersed short palindromic 
repeats (CRISPR) knockout perturbations in three different cell lines 
using Cell Painting and Cell Health. We used the Cell Painting mor-
phology readouts to train 70 different regression models to predict 
each Cell Health indicator independently. We used simple machine 
learning methods instead of a deep learning approach because of 
our limited sample size of 119 perturbations and the inability to 
increase the sample size by linking single cell measurements across 
assays. We predicted certain readouts, such as the number of S 
phase cells, with high performance, while performance on other 
readouts, such as DNA damage in G2 phase cells, was low. We ap-
plied and validated these models on a separate set of existing Cell 
Painting images acquired from 1571 compound perturbations 
measured across six different doses from the Drug Repurposing 
Hub project (Corsello et al., 2017). We provide all predictions in an 
intuitive web-based application at http://broad.io/cell-health-app 
so that others can extend our work and explore cell health impacts 
of specific compounds.

RESULTS AND DISCUSSION
We collected Cell Painting images and targeted Cell Health read-
outs in three different cell lines (A549, ES2, and HCC44), each 
treated with 119 CRISPR perturbations targeting 59 genes and 
controls (Supplemental Table S1). We selected these genes to span 
multiple biological pathways and induce different morphological 
states. The seven reagents we included in the two Cell Health panels 
(Supplemental Table S2) include specific stains and antibodies such 
as Caspase 3/7 dye to target apoptotic cells and γH2Ax antibodies 
to measure DNA damage.

Applying biological knowledge of cell health-related pheno-
types and several manual gating strategies, we defined 70 different 
Cell Health readouts (Supplemental Table S3) based on signals from 
the seven reagents, plus nucleus morphology measurements from 
digital phase contrast (DPC) (Figure 1A; Supplemental Figures S1 
and S2). While these readouts are relatively easy to interpret, 
running two separate assays is not ideal for large-scale perturbation 
screening experiments.

We developed and applied a bioinformatics pipeline to process 
features extracted from Cell Painting images by CellProfiler software 
(Carpenter et al., 2006). The pipeline yields image-based profiles 

representing gene and guide perturbation signatures (Caicedo 
et al., 2017) (Figure 1B). We observed that 63% of guide profile 
replicates were distinguishable from negative controls; that is, they 
had stronger pairwise correlations than 95% of a null distribution 
defined by nonreplicate correlations (Supplemental Figure S3). This 
rate is consistent with previous Cell Painting studies of genetic 
perturbations (Rohban et al., 2017).

We developed an approach to use the inexpensive reagents 
from the multiplexed, high-throughput Cell Painting assay to predict 
Cell Health readouts (Figure 1C). We generated a single “consensus” 
signature for each guide perturbation across cell lines, producing 
357 signatures (3 cell lines × 119 CRISPR guides) with 952 morphol-
ogy measurements. We independently optimized 70 different 
elastic net linear regression models using consensus morphology 
profiles of Cell Painting data to predict each of the 70 Cell Health 
readouts independently (Figure 1C). The actual identity of the 
CRISPR guides was not relevant during training.

Predictive performance in a held-out test set (a balanced 15% of 
profiles not used in training) indicates high expected generalizability 
for many models (Figure 2; Supplemental Figure S4). Performance 
was better for nearly every model when trained with real data com-
pared with shuffled data, thus beating a random chance baseline 
(Supplemental Figure S5).

Many Cell Health readouts were predicted very well, including 
percentage of dead cells, number of S-phase cells, DNA damage in 
G1-phase cells, and percentage of apoptotic cells (Supplemental 
Figure S6A). However, other readouts such as DNA damage in poly-
nuclear cells and percentage of cells in late mitosis could not be 
predicted better than random (Supplemental Figure S6B). Models 
derived from different combinations of Cell Health reagents had 
variable performance, with DRAQ7, shape, and EdU models per-
forming the best (Supplemental Figure S7). Performance differences 
might result from random technical variation, small sample sizes for 
training models, different numbers of cells in certain Cell Health 
subpopulations (e.g., mitosis or polynuclear cells), fewer cells 
collected in the viability panel (see Materials and Methods), or the 
inability of Cell Painting reagents to capture certain phenotypes. 
We observed overall better predictivity in ES2 cells, which had the 
highest CRISPR infection efficiency (Supplemental Figure S8), 
suggesting that stronger perturbations provide better information 
for training and that training on additional data should provide 
further benefit.

Using a linear model for predictions enables interpretability. For 
example, inspecting the model for the Cell Health readout Live Cell 
Area reveals that it relies on cell and cytoplasm shape features from 
Cell Painting (Supplemental Figure S9). This is expected given that 
the Live Cell Area readout is derived from cell boundary measure-
ments from the DPC channel. In our approach, each regression 
model uses a combination of interpretable morphology features to 
make Cell Health phenotype predictions, unlike so-called “black 
box” deep learning feature extractors. Therefore, the specific com-
bination of Cell Painting features provides a potentially interpreta-
ble morphology signature representing the underlying cell health 
state.

Overall, many different feature classes were important for accu-
rate predictions (Figure 3; Supplemental Figure S10). Some features 
tended to strongly contribute across multiple Cell Health readouts. 
For example, particularly informative features include the radial dis-
tribution of the actin, golgi, and plasma membrane (AGP) channel in 
cells and DNA granularity in nuclei. This demonstrates that the Cell 
Painting assay captures complex cell health phenotypes using a rich 
variety of morphology feature types.
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We performed a series of analyses to determine certain param-
eters and options that are likely to improve models in the future. 
First, we performed a “cell line holdout” analysis, in which we 

trained models on two of three cell lines and predicted cell health 
readouts on the held out cell line. We observed that certain models 
including those based on viability, S phase, early mitotic, and death 

FIGURE 1:  Data processing and modeling approach. (a) Example images and workflow from the Cell Health assays. We 
apply a series of manual gating strategies (see Materials and Methods) to isolate cell subpopulations and to generate 
cell health readouts for each perturbation. (Top) In the “Cell Cycle” panel, in each nucleus we measure Hoechst, EdU, 
PH3, and gH2AX. (Bottom) In the “Viability” panel, we capture DPC images, measure Caspase 3/7, DRAQ7, and 
CellROX. (b) Example Cell Painting image across five channels, plus a merged representation across channels. The 
image is cropped from a larger image and shows ES2 cells. Scale bars are 20 µm. Below are the steps applied in an 
image-based profiling pipeline, after features have been extracted from each cell’s image. (c) Modeling approach where 
we fit 70 different regression models using CellProfiler features derived from Cell Painting images to predict Cell Health 
readouts. Model weights refer to the coefficients derived from each regression model.
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phenotypes could be moderately predicted in cell lines agnostic to 
training (Supplemental Figure S11). Not surprisingly, shape-based 
phenotypes could not be predicted in holdout cell lines, which 
emphasizes the limitations of transferring certain cell line intrinsic 
measurements across cell lines. We also performed a systematic 
feature removal analysis, in which we retrained cell health models 
after dropping features that are measured from specific groups, 
compartments, and channels. We observed that many models were 
robust to dropping entire feature classes during training (Supple-
mental Figure S12). This result demonstrates that many Cell Painting 
features are highly correlated, which might permit prediction 
“rescue” even if the directly implicated morphology features are not 
measured. Because of this, we urge caution when generating 
hypotheses regarding causal relationships between phenotypes 
and individual Cell Painting features. Last, we performed a sample 
size titration analysis in which we randomly removed an increasing 
number of samples from training. For the high- and mid-performing 
models we observed a consistent performance drop, suggest-
ing that increasing sample size would result in better overall perfor-
mance (Supplemental Figure S13).

Predictive models of cell health would be most useful if they 
could be trained once and successfully applied to datasets col-
lected separately from the experiment used for training. 
Otherwise one could not annotate existing datasets that lack 
parallel Cell Health results, and Cell Health assays would have to 
be run alongside each new dataset. We therefore applied our 
trained models to a large, publicly available Cell Painting 
dataset collected as part of the Drug Repurposing Hub project 
(Corsello et al., 2017). The data derive from A549 lung cancer 
cells treated with 1571 compound perturbations measured in six 
doses.

We first chose a high-performing model to validate. The number 
of live cells model captures the number of cells that are unstained 
by DRAQ7. We compared model predictions to orthogonal viability 
readouts from a third dataset: Publicly available PRISM assay 
readouts, which count barcoded cells after an incubation period 
(Yu et al., 2016). Despite measuring perturbations with slightly differ-
ent doses and fundamentally different ways to count live cells 
(Figure 4A), the predictions correlated with the assay readout 
(Spearman’s Rho = 0.35, p < 1 × 10–3; Figure 4B).

FIGURE 2:  Test set model performance of predicting 70 Cell Health readouts with independent regression models. 
Performance for each phenotype is shown, sorted by decreasing R2 performance. The bars are colored based on the 
primary measurement metadata (see Supplemental Table S3), and they represent performance aggregated across the 
three cell lines. The points represent cell line specific performance. Points falling below –1 are truncated to –1 on the 
x-axis. See Supplemental Figure S4 for a full depiction.
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We also chose to validate three additional models: ROS, G1 cell 
count, and Number of gH2AX spots in G1 cells. We observed that 
the two proteasome inhibitors (bortezomib and MG-132) in the 
Drug Repurposing Hub set yielded high ROS predictions (OR = 
76.7; p < 1 × 10–15) (Figure 4C). Proteasome inhibitors are known to 
induce ROS (Ling et al., 2003; Han and Park, 2010). As well, PLK 
inhibitors yielded low G1 cell counts (OR = 0.035; p = 3.9 × 10–8) 
(Figure 4C). The PLK inhibitor HM-214 showed an appropriate dose 
response (Figure 4D). PLK inhibitors block mitotic progression, thus 
reducing entry into the G1 cell cycle phase (Lee et al., 2014). Last, 
we observed that aurora kinase and tubulin inhibitors yielded a high 
Number of gH2AX spots in G1 cells predictions (OR = 11.3; p < 1 × 
10–15) (Figure 4E). In particular, we observed a strong dose re-
sponse for the aurora kinase inhibitor barasertib (AZD1152) (Figure 
4F). Aurora kinase and tubulin inhibitors cause prolonged mitotic 
arrest, which can lead to mitotic slippage, G1 arrest, DNA damage, 
and senescence (Orth et al., 2011; Cheng and Crasta, 2017; Tsuda 
et al., 2017).

We applied uniform manifold approximation (UMAP) to observe 
the underlying structure of the samples as captured by morphology 
data (McInnes et al., 2018). We observed that the UMAP space cap-
tures gradients in predicted G1 cell count (Supplemental Figure 
S14A) and in predicted ROS (Supplemental Figure S14B). We also 
observed similar gradients in the ground truth cell health readouts 
in the CRISPR Cell Painting profiles used for training cell health 
models (Supplemental Figure S15). Gradients in our data suggest 

that cell health phenotypes manifest in a continuum rather than in 
discrete states.

Last, we observed moderate technical artifacts in the Drug 
Repurposing Hub profiles, indicated by high DMSO profile disper-
sion in the Cell Painting UMAP space (Supplemental Figure S14C); 
this represents an opportunity to improve model predictions with 
new batch effect correction tools. Additionally, it is important to 
note that the expected performance of each Cell Health model can 
only be as good as the performance observed in the original test set 
(see Figure 2), and that all predictions require further experimental 
validation.

CONCLUSIONS
We have demonstrated feasibility that information in Cell Paint-
ing images can predict many different Cell Health indicators even 
when trained on a relatively small dataset. The results motivate 
collecting larger datasets for training, with more perturbations 
and multiple cell lines. These new datasets would enable the 
development of more expressive models, based on deep 
learning, that can be applied to single cells. Including orthogonal 
imaging markers of CRISPR infection would also enable us to 
isolate cells with expected morphologies. More data and better 
models would improve the performance and generalizability of 
Cell Health models and enable annotation of new and existing 
large-scale Cell Painting datasets with important mechanisms of 
cell health and toxicity.

FIGURE 3:  The importance of each class of Cell Painting features in predicting 70 Cell Health readouts. Each square 
represents the mean absolute value of model coefficients weighted by test set R2 across every model. The features are 
broken down by compartment (Cells, Cytoplasm, and Nuclei), channel (AGP, Nucleus, ER, Mito, Nucleolus/Cyto RNA), 
and feature group (AreaShape, Neighbors, Channel Colocalization, Texture, Radial Distribution, Intensity, and 
Granularity). The number of features in each group, across all channels, is indicated. For a complete description of all 
features, see the handbook: http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html. Dark gray 
squares indicate “not applicable,” meaning either that there are no features in the class or that the features did not 
survive an initial preprocessing step. Note that for improved visualization we multiplied the actual model coefficient 
value by 100.
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MATERIALS AND METHODS
CRISPR constructs used for knockout
We performed a CRISPR and CRISPR-associated protein 9 (Cas9) 
knockout experiment to perturb cells (CRISPR-Cas9). We 
designed guides to target 59 different genes with an average of 
two guides per gene (Supplemental Table S1). All sgRNAs were 
selected from the Avana library (Doench et al., 2016; Meyers 
et al., 2017) or by using CRISPick (https://broad.io/crispick; 
Hanna and Doench, 2020). Nevertheless, it is important to note 

that the identity of the CRISPR gene target is not used in training 
the machine learning models.

Cell lines
We performed CRISPR knockout in three different cell lines (A549, 
ES2, and HCC44). All cell lines used were stably expressing Cas9 
and were part of the Achilles project (Meyers et al., 2017). Prior to 
data collection, we confirmed cell line identity using single 
nucleotide polymorphism (SNP) profiling. We confirmed that all cell 

FIGURE 4:  Validating Cell Health models to Cell Painting data from The Drug Repurposing Hub. The models were not 
trained using the Drug Repurposing Hub data. (a) The results of the dose alignment between the PRISM assay and the 
Drug Repurposing Hub data. This view indicates that there was not a one-to-one matching between perturbation doses. 
(b) Comparing viability estimates from the PRISM assay to the predicted number of live cells in the Drug Repurposing 
Hub. The PRISM assay estimates viability by measuring barcoded A549 cells after an incubation period. (c) Drug 
Repurposing Hub profiles stratified by G1 cell count and ROS predictions. Bortezomib and MG-132 are proteasome 
inhibitors and are used as positive controls in the Drug Repurposing Hub set; DMSO is a negative control. We also 
highlight all PLK inhibitors in the dataset. (d) HMN-214 is an example of a PLK inhibitor that shows strong dose 
response for G1 cell count predictions. (e) Tubulin and aurora kinase inhibitors are predicted to have a high number of 
gH2AX spots in G1 cells compared to other compounds and controls. (f) Barasertib (AZD1152) is an aurora kinase 
inhibitor that is predicted to have a strong dose response for the number of gH2AX spots in G1 cells predictions.
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lines were mycoplasma negative by using MycoAlert Mycoplasma 
detection kits (Lonza, Walkersville, MD).

Lentiviral infection and plating
Virus was prepared in 96-well plates according to the published 
protocol (https://portals.broadinstitute.org/gpp/public/resources/
protocols). Before initiating the screen, we optimized the number of 
cells per well and polybrene concentration for each Cas9-express-
ing cell line. Ultimately, we plated A549, ES2, and HCC44 cells with 
starting densities of 350, 375, and 150 cells per well, respectively, in 
384-well black-wall, clear-bottom plates (Corning Costar). We also 
optimized sgRNA lentivirus volume to achieve 100% infection while 
maintaining low toxicity. For the screen, we spin-infected cells with 
4 µg/ml polybrene concentration at the optimized density and virus 
volume (Aguirre et al., 2016). Three parallel plates were seeded per 
cell line. On one plate, cells were treated with or without 2 µg/ml 
puromycin 24 h postinfection, and cell viability was determined 
using CellTiterGlo (Promega) after 96 h of selection to determine 
infection efficiency. The second and third plates were used for the 
Cell Health assays (cell cycle and viability).

Cell Painting: cell staining and image acquisition
We followed the traditional Cell Painting protocol to acquire the 
readouts (Bray et al., 2016). We treated the cells with CRISPR 
guide perturbations and incubated for 4 d. Following the incuba-
tion period, we fixed cells with 10 µl of 16% (wt/vol) methanol-free 
paraformaldehyde for a final concentration of 3.2% (vol/vol). We 
imaged cells with a PerkinElmer Opera Phenix confocal HCI micro-
scope at 20× magnification. We applied the standard panel of Cell 
Painting dyes to mark various cellular compartments: Hoechst 
33342 to mark DNA; Concanavalin A/Alexa 488 to mark endoplas-
mic reticulum (ER); SYTO 14 to mark the nucleoli; cytoplasmic 
RNA, Phalloidin/Alexa 568, and wheat-germ agglutinin/Alexa 555 
to mark actin cytoskeleton, golgi, and plasma membrane (AGP); 
and MitoTracker Deep Red/Alexa 647 to mark mitochondria (Bray 
et al., 2016). We collected nine images per well in five different 
channels for these different unbiased stains. In total, we collected 
138,226 pictures after quality control filtering, which includes five 
channels per site, nine sites per well, across nine 384-well plates. 
In total, this represents about 2 TB of images. We deposited raw 
and illumination-corrected images to the Image Data Resource 
(https://idr.openmicroscopy.org) under accession number idr0080 
(Williams et al., 2017).

Cell Painting: image processing
The next step in a Cell Painting protocol is to extract morphology 
features from the images that can be used as an unbiased systems 
biology measurement to describe how each perturbation impacts 
various cellular compartments in the assay. We built a CellProfiler 
image analysis and illumination correction pipeline (version 2.2.0) 
pipeline to extract these image-based features (McQuin et al., 
2018). We include the CellProfiler pipelines in our github repository. 
Using the CellProfiler pipeline, we first performed several 
adjustments to account for potential confounding factors such as 
background intensity and illumination correction. Next, we used our 
pipeline to segment cells, distinguish between nuclei and cyto-
plasm, and then measure specific features related to the various 
channels captured. We measured the fluorescence intensity, tex-
ture, granularity, density, location, and various other measurements 
for each single cell (see http://cellprofiler-manual.s3.amazonaws.
com/CellProfiler-3.0.0/index.html for more details). Following the 
image analysis pipeline, we obtain 8,964,210 cells and 1785 feature 

measurements across 9 different plates. We provide the raw output 
single-cell profiles as extracted from our CellProfiler pipeline on 
figshare (Way et al., 2019).

Cell Painting: image-based profiling
After the image analysis pipeline, the next step is to process the 
single-cell image-based features that are output of the CellProfiler 
pipeline. We used a standard approach (Caicedo et al., 2017) to 
process the single-cell profiles. First, we aggregated all single cells 
grouped by perturbation (effectively, by well) by computing the 
median value per morphology feature. This process takes all single 
cells and computes a single perturbation profile that is used to com-
pare all perturbations against each other downstream. Next, using 
the median and median absolute deviation of feature values from 
empty wells as the center and scale parameters respectively, we 
normalized all perturbation profiles by subtracting the center and 
dividing by the scale and did so for each plate independently. This 
normalization procedure transforms all features to exist on the same 
scale and enables the perturbation profiles to be compared across 
plates and batches.

We then applied a feature selection procedure to reduce noisy 
and retain the most informative features. We removed features with 
missing values in any profile, features with low variance, features with 
extreme outlier values, and blocklisted features. Extreme outlier 
features are defined by having measurements greater than 15 SD 
following normalization. The blocklisted features are generally unreli-
able features that are known to be noisy and have caused numerical 
issues in previous experiments (Way, 2019). We used pycytominer 
(https://github.com/cytomining/pycytominer) to perform the profil-
ing pipeline, which can be reproduced at https://github.com/
broadinstitute/cell-health.

Following these procedures we derived profiles for 357 perturba-
tions representing 119 guides measured across the three different 
cell lines. We also computed the perturbation consensus signatures 
of the Cell Painting data (see Materials and Methods: forming con-
sensus signatures). Our final Cell Painting dataset had 357 consensus 
profiles measured by 952 morphology features (357 × 952). These 
data are available on github https://github.com/broadinstitute/
cell-health/tree/master/1.generate-profiles/data/profiles.

Cell Health assays: cell staining and image acquisition
We treated all cells with a panel of specific reagents, each measur-
ing a different aspect of cell health (see Supplemental Table S2). The 
seven reagents include unbiased dyes, click chemistry, and specific 
antibody treatments. The reagents measure various aspects of cell 
health including proliferation, mitosis, DNA damage, reactive oxy-
gen species (ROS), and apoptosis timing. We collected a minimum 
of four replicates per treatment. Because many reagents fluoresce in 
different emission spectra, we applied the reagents in parallel. We 
applied a series of semimanual gating strategies to isolate specific 
cell health phenotypes in specific cell subsets (Supplemental Table 
S3). Together, we refer to the collection of measurements as the 
“Cell Health” assays.

More specifically, we collect the Cell Health assay data in a series 
of two distinct panels: cell cycle and viability. In the first panel we 
measure Hoechst, EdU, PH3, and gH2AX and use these measure-
ments to quantify cell cycle and DNA damage in specific cell cycle 
subsets. In the second panel, we measure viability phenotypes 
using Caspase 3/7, DRAQ7, CellRox, and DPC nucleus morphology 
measurements.

We acquired all cell images using an Opera Phenix HCI Instru-
ment (PerkinElmer) with a 20× water objective (a numerical aperture 



1002  |  G. P. Way et al.	 Molecular Biology of the Cell

of 1.0) in confocal mode. We acquired images in four channels using 
default excitation/emission combinations: for the blue channel 
(Hoechst) 405/435–480; for the green channel (Alexa 488 and 
CellEvent), 488/500–550; for the orange channel (Alexa 568 and 
CellRox Orange), 561/570–630; and for the far red channel (Alexa 
647 and DRAQ7), 640/650–760. We applied the Cell Health re-
agents for cell viability and for cell cycle in two separate plates.

The first set of plates (n = 3 replicate plates) measures cell cycle. 
We added 5-ethynyl-2′-deoxyuridine (EdU) in live cells for S phase 
cells to integrate. We then fixed the cells with 4% formaldehyde us-
ing standard approaches and detected EdU using Click-iT EdU Al-
exa Fluor 647 HCS Assay (ThermoFisher C10357) according to the 
vendor protocol. We then performed standard immunofluorescence 
staining with two antibodies: one targeting phosphohistone H3 
(PH3) to measure cells undergoing mitosis and one to identify DNA 
damage foci in nuclei via γH2Ax. We followed these PH3 and γH2Ax 
antibody treatments by secondary antibodies conjugated with Al-
exa 488 and Alexa 568, respectively. We added Hoecsht 33342 dye 
to stain nuclear DNA. For the cell cycle plate, we acquired nine 
fields of view per well.

The second set of plates (n = 3 replicate plates) measures cell 
viability. We added CellEvent Caspase-3/7 Green Detection Re-
agent (ThermoFisher), DRAQ7, and CellROX Orange Reagent 
(ThermoFisher) dyes to measure apoptotic cells, dead cells, and 
ROS, respectively. We acquired one field of view per well using 
green, orange, and far red fluorescence channels as well as bright-
field and DPC channels. The cells were incubated at 37°C.

Cell Health assays: image analysis
We developed and ran two distinct image analysis pipelines in Har-
mony software (version 4.1; PerkinElmer) for each of the Cell Health 
plates. Individually for each cell line assayed, and for both cell cycle 
and cell viability plates, we established a series of manual gating strat-
egies to identify distinct cell line subpopulations (see Figure 1A).

For the cell cycle plate, we performed nucleus segmentation using 
the Hoechst channel and discarded all nuclei that were at the field 
border. We identified cells in specific cell cycle stages using Hoechst, 
Alexa 488 (pH3), and Alexa 647 (EdU) intensities. We identified γH2AX 
spots within nuclei based on the Alexa 568 channel. These strategies 
are standard in the field (Aguirre et al., 2016). More specifically, we 
identified subpopulations based on the respective channel intensities 
and morphological properties for each nucleus as specified:

1.	 We stratified populations “polyploid,” “polynuclear (large not 
round nuclei),” and “cells selected for cell cycle” based on total 
intensity of the Hoechst channel (DNA content) and nucleus 
“roundness” measurements as output from the PerkinElmer Har-
mony software.

2.	 We identified four subpopulations within the “cells selected for 
cell cycle” population as follows:

a)	 “G1 cells:” selected based on low total Hoechst intensity and 
low green (pH3) and far red (EdU) channels. We excluded 
outlier nuclei with unusually high intensity of Hoechst max.

b)	 “G2 cells:” selected based on high total Hoechst intensity 
and low green (pH3) and far red (EdU) channels. We excluded 
outlier nuclei with unusually high intensity of Hoechst max.

c)	 “G2/M cells”: selected based on the same criteria as for G2, 
except we included nuclei with high green (pH3) mean.

d)	 “M cells”: selected based on high green (pH3) mean.

e)	 “S cells”: selected based on high mean far red (EdU) channel 
intensity.

3.	 We counted orange spots (γH2AX) representing DNA damage 
loci in each of the cell cycle subpopulations. We determined 
high γH2AX activity if there were more than three spots per 
nucleus.

For the cell viability plate, we performed cell segmentation 
based on the cumulative DPC channels. Again, we identified spe-
cific subpopulations based on the following channel intensities:

1.	 We separated “Dead Cells” and “Live Cells” based on max in-
tensity far red channel (DRAQ7).

a)	 We identified a “Dead Only Cells” subpopulation within the 
“Dead Cells” population by isolating cells without green 
(Caspase 3/7) signal.

2.	 We identified “Caspase Positive Cells” based on green (Caspase 
3/7) channel max intensity.

a)	 We distinguished two subpopulations in the “Caspase Positive 
Cells” named “Early Apoptotic Cells” and “Late Apoptotic 
Cells” based on low and high far red (DRAQ7) max signal in-
tensity, respectively.

3.	 We used the mean intensity of the CellROX Orange signal to 
measure ROS.

a)	 We excluded edge wells in the ROS analysis because of con-
sistent poor signal quality.

Additionally, we set these gates for each cell subpopulation 
using a set of random wells from each cell line and experiment inde-
pendently. We observed that the intensity measurements used to 
form the gates were consistent across wells and plates and generally 
formed distinct cell subpopulation clusters. After using the random 
wells to set the gates, we used the Harmony microscope software to 
apply the gates to the remaining wells and plates.

We also used CRISPR infection efficiency, which is measured in a 
separate assay for both cell cycle and viability imaging assays, as 
negative control features. In total, considering both plates and all 
cell subpopulations, we measured 70 different variables in the Cell 
Health Assay. To standardize plate-level differences, we normalized 
Cell Health readouts per plate by subtracting median values and 
dividing by the SD.

Forming consensus signatures
After acquiring the images and processing the data, we prepared 
the data further before input into our machine learning frame-
work. We generated consensus signatures for each perturbation 
using a moderated z-score (MODZ) procedure (Subramanian et 
al., 2017). Briefly, we calculated pairwise Spearman correlations 
between all replicates of a single perturbation and then com-
bined profiles by weighting their signature contribution by mean 
pairwise correlation to all other replicates. We applied this trans-
formation to both Cell Painting profiles and Cell Health assay 
measurements. We collected more replicates of the Cell Painting 
data than the Cell Health data. In total, we collected assay read-
outs from 357 common perturbations (119 CRISPR guides across 
three cell lines). In the Cell Painting data, we filtered and col-
lapsed 3456 morphology profiles to the common set of 357 con-
sensus profiles. In the Cell Health assays, we filtered and col-
lapsed 2302 well profile readouts to the common set of 357 
consensus readouts. We generated consensus signatures be-
cause there is no way to match replicate-level information across 
the assays. We applied UMAP (McInnes et al., 2018) to the con-
sensus profiles and visualized patterns of ground truth cell health 
measurements.
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Machine learning framework
We randomly split 15% of the consensus signatures into a separate 
test set. We balanced this stratification by cell line. We then used 
the remaining 85% to train all 70 cell health models. In total, we 
used 303 samples as the training set and 54 as the test set.

We elected to train elastic net regression models using sklearn 
(version 0.20.3) (Pedregosa et al., 2011; Zou and Hastie, 2005). We 
chose this model because it is quick to train, is easily interpretable, 
and will induce sparsity in selecting model features. We also trained 
classification models and binarized training and testing data by us-
ing > 1.5 SD away from the mean as positive examples. However, 
because the classification approach was unstable and sensitive 
to low sample sizes, we elected to move forward using 
only the regression models (see https://github.com/broadinstitute/
cell-health/issues/78). To identify optimal alpha and elastic net 
mixing parameters, we performed a grid search and fivefold 
cross-validation using the training set only. For each model indepen-
dently, we observed cross-validation performance across 9 different 
alpha parameters ([0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]) and 11 
different elastic net mixing parameters ([0.1, 0.12, 0.14, 0.16, 0.2, 
0.3, 0.4, 0.5, 0.7, 0.8, 0.9]). Alpha controls the regularization penalty 
term for all features, and the elastic net mixing parameter controls 
the trade-off between L1 and L2 regression where 0 = L1 and 1 = L2. 
Therefore, the closer the elastic net mixing parameter is to 0, the 
sparser the model. We optimized and trained 70 different elastic net 
regression models for each of the 70 Cell Health assay readouts 
independently.

We repeated this procedure and independently optimized 70 ad-
ditional models using randomly shuffled data. For the shuffling proce-
dure, we randomly shuffled the Cell Painting features independently 
per column before training. We use the shuffled model performance 
as a suitable baseline to compare real model performance.

Machine learning evaluation
We evaluated each of the 70 Cell Health regression models 
independently using R-squared statistics from sklearn version 0.20.3 
(Pedregosa et al., 2011). We calculated R-squared for the full training 
and testing partitions, in shuffled training and testing partitions, and 
for each cell line independently for all 70 models. The measurement 
can be interpreted as how well the models could predict the real Cell 
Health readout with values approaching one as perfect fits. It is best 
to compare test set performance in real versus shuffled data. The 
test set performance in real data simulates how models are expected 
to perform in data not used for model training. The shuffled perfor-
mance indicates if there is any expected performance inflation.

Machine learning robustness: investigating the impact of 
sample size
We performed an analysis in which we randomly dropped an in-
creasing amount of samples from the training set before model 
training. After dropping the predefined number of samples, we re-
trained all 70 cell health models and assessed performance on the 
original holdout test set. We performed this procedure 10 times 
with 10 unique random seeds to mirror a more realistic scenario of 
new data collection and to reduce the impact of outlier samples on 
model training.

Machine learning robustness: systematically removing 
feature classes
We performed an analysis in which we systematically dropped 
features measured in specific compartments (Nuclei, Cells, and 
Cytoplasm), specific channels (RNA, Mito, ER, DNA, and AGP), and 

specific feature groups (Texture, Radial Distribution, Neighbors, 
Intensity, Granularity, Correlation, and Area Shape) and retrained all 
models. We omitted one feature class and then independently 
optimized all 70 cell health models as described in the Machine 
learning framework results section above. We repeated this proce-
dure once per feature class.

Drug Repurposing Hub Cell Painting data: image-based 
profiling
A subset of the Drug Repurposing Hub compounds (n = 1571) 
(Corsello et al., 2017) were profiled using the Cell Painting assay 
across about six doses per compound. We processed this dataset 
using a standard image-based profiling pipeline to extract consen-
sus profiles per treatment. See https://github.com/broadinstitute/
lincs-cell-painting for complete details and instructions on how to 
reproduce. Briefly, we applied a CellProfiler image analysis pipeline 
to segment cells, adjusted for background intensity, and measured 
morphology features for three compartments: cells, cytoplasm, and 
nuclei. The output of this procedure was 136 SQLite files (one for 
each plate) representing unnormalized single-cell profiles. Next, we 
developed and applied an image-based profiling bioinformatics 
pipeline to generate treatment consensus profiles from the single-
cell measurements (Caicedo et al., 2017). The same image analysis 
pipeline and bioinformatics pipeline were used to process all the 
plates in the experiment.

In the pipeline, we first median-aggregated the single cells by 
feature to form well profiles and then, using the median and median 
absolute deviation of feature values from DMSO as the center and 
scale parameters, respectively, we normalized all perturbation 
profiles by subtracting the center and dividing by the scale and did 
so for each plate independently.

The plates in this dataset have 24 DMSO-treated wells and 
therefore represented a good alignment control to adjust for plate 
level differences. Each plate also has two positive controls (BRD-
K50691590 [Bortezomib] and BRD-K60230970 [MG-132]) at 
20 mmol/l with 12 replicates each for all plates. We visualized posi-
tive and negative control profiles in our UMAP space to determine 
the extent of technical artifacts present in our data. Following the 
z-score normalization, we combined all treatment replicates (∼6 per 
compound and dose pair) using MODZ consensus signatures. We 
generated consensus profiles for control replicates by well across 
plate maps. In total, this procedure resulted in 10,752 different treat-
ment profiles and 1788 normalized CellProfiler morphology 
features.

Drug Repurposing Hub Cell Painting data: predicting cell 
health readouts
We applied all Cell Health models to the 10,752 Drug Repurposing 
Hub consensus Cell Painting profiles. We simply applied the Cell 
Health trained models using the sklearn model.predict() method. 
Every feature measured in the CRISPR perturbation Cell Painting 
profiles were also measured in the Drug Repurposing Hub output. 
The result of the model application was 70 Cell Health readouts for 
all 10,752 treatments. We used these predictions for model 
validation with external data and for visualization in the web app 
scatter plots.

Assessing generalizability of cell health models applied to 
Drug Repurposing Hub data
We used our cell health webapp (https://broad.io/cell-health-app) 
to identify compounds with high predictions for three models with 
high or intermediate performance: ROS, Number of G1 cells, and 
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Number of gH2AX spots in G1 cells. For each model, we identified 
classes of compounds with consistently high scores, then tested for 
statistical enrichment: for proteasome inhibitors in the ROS model, 
PLK inhibitors in the Number of G1 cells model, and aurora kinase 
and tubulin inhibitors in the Number of gH2AX spots in G1 cells 
model. We used one-sided Fisher’s exact tests to quantify differ-
ences in expected proportions between high and low model predic-
tions. For each case, we determined high and low predictions based 
on the 50% quantile threshold for each model independently.

Drug Repurposing Hub Cell Painting data: visualization
We also applied UMAP to the 10,752 Drug Repurposing Hub Cell 
Painting profiles and extracted two lower dimensional representa-
tions. UMAP reduces the Cell Painting profiles to two features that 
capture the global structure of the input data. Prior to UMAP 
transformation, we applied a feature selection procedure to the 
Drug Repurposing Hub profiles. We removed features with low 
variance, features with missing values in any consensus profile, 
blocklisted features (Way, 2019), and features with extreme outlier 
values defined by greater than 15 SD following normalization. This 
procedure reduced the feature dimension from 1788 to 572. By 
reducing the number of features, we can be more confident that 
the major sources of variation are not biased by CellProfiler fea-
ture redundancies or by technical artifacts of sample processing.

Drug Repurposing Hub Cell Painting data: dose-response 
analysis
To model dose, we fit Hill equations (4 parameter log-logistic model) 
to all 1571 Drug Repurposing compounds consensus signatures 
transformed into each of the 70 different Cell Health model predic-
tions. Before input into the model, we zero-one transformed Cell 
Health predictions across doses for each compound independently. 
For most compounds, this normalization procedure happens for six 
data points (representing six doses per compound consensus signa-
ture) at a time. The zero-one procedure assigns a value of zero to the 
lowest value, one to the highest value, and scales each intermediate 
value accordingly. This procedure results in 109,970 different model 
fits. We used the drc R package (version 3.0-1) to fit all models (Ritz 
et al., 2015). We present all precomputed dose fit models to be 
explored at https://broad.io/cell-health-app.

Comparing viability predictions to an orthogonal readout
We downloaded the PRISM assay results (version 19Q4) from the 
Cancer Dependency Map website at https://depmap.org/portal/
download/ (Corsello et al., 2017). The PRISM assay measures viabil-
ity of multiple cell lines in a pooled format and deconvolutes results 
based on barcoded readouts (Yu et al., 2016). We focused on the 
A549 cell line and compounds that were measured in both the 
PRISM assay and the Drug Repurposing collection. The PRISM assay 
profiled 1382 of the 1571 Drug Repurposing Compounds. The 
PRISM assay also used slightly different doses than the Drug Repur-
posing Hub collection procedure. Therefore, to align doses, we con-
verted doses into dose ranks and report Spearman correlations be-
tween the two datasets (see Figure 4A).

Code and data availability
All data and code are publicly available. Analysis software to repro-
duce the full paper is available at https://github.com/broadinstitute/
cell-health/tree/v2.0 (Way et al., 2020). Raw and illumination-cor-
rected Cell Painting images are available in the Image Data Re-
source (accession number idr0080). Single cell morphology profiles 
derived from these images are available at the National Institutes of 

Health (NIH) Figshare at https://doi.org/10.35092/yhjc.9995672.v5. 
Processed Cell Painting profiles and raw and processed Cell Health 
readouts are also available at https://github.com/broadinstitute/
cell-health/tree/v2.0. Processing code and data for the Cell Painting 
Drug Repurposing Hub data is available at https://github.com/
broadinstitute/lincs-cell-painting/tree/v0.1. Cell Health predictions 
for the Drug Repurposing Hub compounds are available to explore 
at https://broad.io/cell-health-app.
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