
OPINION ARTICLE

Developing open-source software for bioimage analysis:

opportunities and challenges [version 1; peer review: 2

approved]

Florian Levet 1,2, Anne E. Carpenter 3, Kevin W. Eliceiri 4, Anna Kreshuk5,
Peter Bankhead 6, Robert Haase 7

1Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, 33000, France
2Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, 33000, France
3Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
4Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
5European Molecular Biology Laboratory, Heidelberg, Germany
6Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
7DFG Cluster of Excellence “Physics of Life”, TU Dresden, Dresden, Germany

First published: 19 Apr 2021, 10:302
https://doi.org/10.12688/f1000research.52531.1
Latest published: 19 Apr 2021, 10:302
https://doi.org/10.12688/f1000research.52531.1

v1

Abstract
Fast-paced innovations in imaging have resulted in single systems
producing exponential amounts of data to be analyzed.
Computational methods developed in computer science labs have
proven to be crucial for analyzing these data in an unbiased and
efficient manner, reaching a prominent role in most microscopy
studies. Still, their use usually requires expertise in bioimage analysis,
and their accessibility for life scientists has therefore become a
bottleneck.
Open-source software for bioimage analysis has developed to
disseminate these computational methods to a wider audience, and to
life scientists in particular. In recent years, the influence of many
open-source tools has grown tremendously, helping tens of
thousands of life scientists in the process. As creators of successful
open-source bioimage analysis software, we here discuss the
motivations that can initiate development of a new tool, the common
challenges faced, and the characteristics required for achieving
success.

Keywords
Open-source, software, bioimage analysis, life science

This article is included in the NEUBIAS - the

Bioimage Analysts Network gateway.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 1
19 Apr 2021 report report

Loïc A. Royer , Chan Zuckerberg Biohub,

San Francisco, USA

1.

Nico Stuurman , University of California,

San Francisco, San Francisco, USA

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

https://f1000research.com/articles/10-302/v1
https://f1000research.com/articles/10-302/v1
https://orcid.org/0000-0002-4009-6225
https://orcid.org/0000-0003-1555-8261
https://orcid.org/0000-0001-8678-670X
https://orcid.org/0000-0003-4851-8813
https://orcid.org/0000-0001-5949-2327
https://doi.org/10.12688/f1000research.52531.1
https://doi.org/10.12688/f1000research.52531.1
https://f1000research.com/gateways/neubias
https://f1000research.com/gateways/neubias
https://f1000research.com/gateways/neubias
https://f1000research.com/articles/10-302/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-9991-9724
https://orcid.org/0000-0002-6179-8613
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.52531.1&domain=pdf&date_stamp=2021-04-19

Corresponding author: Florian Levet (florian.levet@u-bordeaux.fr)
Author roles: Levet F: Conceptualization, Investigation, Project Administration, Supervision, Visualization, Writing – Original Draft
Preparation, Writing – Review & Editing; Carpenter AE: Conceptualization, Writing – Original Draft Preparation, Writing – Review &
Editing; Eliceiri KW: Conceptualization, Writing – Review & Editing; Kreshuk A: Conceptualization, Writing – Review & Editing; Bankhead
P: Conceptualization, Writing – Review & Editing; Haase R: Conceptualization, Writing – Original Draft Preparation, Writing – Review &
Editing
Competing interests: No competing interests were disclosed.
Grant information: FL acknowledges support by the Institut National de la Santé et de la Recherche Médicale (Inserm). AEC and KWE
acknowledge support of the National Institutes of Health (NIH P41 GM135019). P.B. acknowledges support by grant number 2019-
207148 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. R.H. acknowledges support
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC2068 - Cluster
of Excellence Physics of Life of TU Dresden.
Copyright: © 2021 Levet F et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Levet F, Carpenter AE, Eliceiri KW et al. Developing open-source software for bioimage analysis:
opportunities and challenges [version 1; peer review: 2 approved] F1000Research 2021, 10:302
https://doi.org/10.12688/f1000research.52531.1
First published: 19 Apr 2021, 10:302 https://doi.org/10.12688/f1000research.52531.1

This article is included in the Research on

Research, Policy & Culture gateway.

Page 2 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

mailto:florian.levet@u-bordeaux.fr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.52531.1
https://doi.org/10.12688/f1000research.52531.1
https://f1000research.com/gateways/research_on_research
https://f1000research.com/gateways/research_on_research
https://f1000research.com/gateways/research_on_research

Introduction
Modern imaging techniques1–5 have brought microscopy into a computationally-intensive era by capturing biological
systems at a level of spatial and temporal resolution never achieved before.6 A modern imaging system can easily
generate terabytes of data for a single acquisition, and it is not uncommon for a biological study to involve dozens of
samples from several different conditions. This massive amount of data has driven the adoption of new computational
methods at all steps involved in imaging, whether it be for image acquisition,7,8 restoration,9 data storage10 or real-time
processing.11 Bioimage analysis has therefore become a crucial step integrating data science techniques into life science.
Yet, the multiplicity of computational solutions has shifted the bottleneck: many of these solutions require substantial
computational expertise and customization, limiting their use among many life scientists.

This expertise issue has been partly addressed by the emergence of specialists known as bioimage analysts. Originating
from diverse backgrounds, such as computer science, microscopy and life sciences, they exhibit an overall understanding
of many steps involved in life science experiments, spanning from biology to microscopy and analysis.12 Acting as
bridge-builders between life scientists and computer scientists, bioimage analysts develop skills to identify and adapt the
best available computational solutions to a specific biological problem. Often employed in core facilities, their task is to
deliver tools and workflows to end users - typically in biology or biophysics oriented labs - which go beyond service
provision into experimentation and innovative technology development.13 Depending on the analysis task, a workflow
can require several tools, often split amongmultiple software libraries and even programming languages, to be identified,
combined, customized and optimized to properly address a specific scientific question. However, many biologists still do
not have access to core facilities employing such bioimage analysts and lack the in-depth knowledge, experience, and
time required to develop, validate and apply such sophisticated workflows.

Thus, an important challenge is to directly provide life scientists with comprehensive, fully-featured and easy-to-use tools
for domain-specific quantitative measurements that they can execute themselves. This development effort has been taken
on by a subset of bioimage analysts, usually computer scientists by training, who develop open-source software platforms
to improve the accessibility of computational methods for both “power users” and biologists with very little computa-
tional training. The resulting open source image analysis platforms have achieved great success and had a long-lasting
impact on life science: the ability to access analysis methods’ source code have accelerated their adoption, improved
reproducibility and facilitated the combination and implementation of new methods. Nevertheless, anyone seeking to
develop biology-oriented open-source software platforms faces numerous challenges in terms of packaging, documen-
tation, maintenance, reproducibility and funding. In this opinion paper, we intend to discuss these aspects in a way that
will be beneficial both for developers and users. Developers will be exposed to minimally required motivations that
justify the creation of a new open-source tool, as well as best practices to follow during development. Users will be
introduced to some of the challenges faced by developers, hopefully leading to a better understanding of the open-source
bioimage analysis ecosystem, and how they might personally contribute to the development and support of the software
tools they need.

Choosing the software’s scope and audience
The development of a new bioimage analysis software platform is often motivated by the desire to answer a specific
unmet biological question. However, bringing a broadly useful tool to users is a substantial commitment that typically
requires many person-years of work (Table 1). It is important that this is undertaken with an understanding of the
specific challenges and opportunities, to reduce the risk of a promising project later being abandoned and leaving users
unsupported. A crucial first question is to define the scope and intended audience for the software.

At one end of the spectrum, one can simply write the minimum code necessary to address a biological question, and
provide scripts alongside the paper publishing the results. This is a perfectly acceptable route and should be considered for
cases where the image analysis solution is heavily customized to the problem and thus of limited use to others, or where
there is no strong prospects of future support, maintenance, and development. We should applaud efforts to still make
code available, for reproducibility reasons, even when it is neither polished nor broadly useful.14

At the other end of the spectrum, one can launch an entirely new software effort around the code needed for a particular
project, expanding this to serve a broader audience over time. Here, a crucial consideration is whether there is a plausible
strategy for future support, maintenance, and development in the long term, especially if the software is widely adopted
and therefore becomes relied upon by a community of scientists. A successful project may grow far beyond the initial
expectations of the creator, and as this happens the nature of the required work tends to change (Figure 1). In the words of
Kurt Vonnegut, “[a] nother flaw in the human character is that everybody wants to build and nobody wants to do
maintenance” - or, perhaps more relevant in this context, nobody wants to fund maintenance.16

Page 3 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

An intermediate position is to develop a plugin or extension for an existing platform. Extensibility has been key to the
success of software projects such as ImageJ,17 Fiji,18 Icy19 andCellProfiler,20with the result thatmany novel algorithms are
developed as plugins for these platforms. One example is the CLIJ library, which brings manifold implementations
of accelerated image processing algorithms as plugins to platforms such as ImageJ and Icy.11 This strategy not only reduces
effort for the developer, who can focus primarily on developing new functionality beyond that already available, but also
reduces the effort required by users to become familiarwith entirely new softwares. For this reason,we advocate developing
plugins or adapting existing solutions wherever possible. This has the added benefit of improving the robustness of the core
software: reusing components results in more thorough testing and therefore fewer undiscovered bugs.

Table 1. Size, impact and timeline of a selection of open-source tools.

Type Total lines
of code

Commits
in 2020

Citations
in 2020

Development
time since
project started
(in months)

Timeline
(start-end)

JACoP15 Plugin 2,400 3 358 8 [2005-ongoing]

SR-Tesseler/
PoCA

Software 100,800 1 56 75 [2012-ongoing]

clij/clij2/
assistant

Library 100,000 2,500 12 20 [2018-ongoing]

QuPath Software 110,000 570 655 60 [2016-ongoing]

ilastik Software 155,000 910 442 200 [2011-ongoing]

CellProfiler Software 280,770 492 1,740 216 [2003-ongoing]

Bio-Formats Library 1,502,214 573 245 180 [2006-ongoing]

ImageJ/FIJI Software 2,024,516 2,934 44,400 432 [1997-ongoing]

OMERO Software 2,171,241 3,667 361 420 [2003-ongoing]

IDR Repository 16,517,904 1,756 76 180 [2016-ongoing]

Figure 1. Lifetime of an open-source software. Created to solve a biological analysis need, the tool is released
and published. As it is adopted by new users, the developer begins to spend time on user support and maintenance,
while still managing to add new methods. Finally, as the number of users continues to grow, the developer is over-
whelmed with user support and maintenance. As this stage, securing funding for new dedicated developers is crucial.

Page 4 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

Nevertheless, new open source bioimaging software applications are sometimes needed as the computational and
biological landscape changes over time. If a major gap is identified, as was the case for supporting and visualizing
multidimensional image data,21,22 then developing a new software platform can be the best way to serve the community
and lead to great success. Indeed, if the software is user-friendly andwell packaged, its adoption by the community can be
swift.23–28

When launching a new software project, our experience is to carefully consider the boundaries of the audience to be
served. As maintenance is an ongoing tax against future software developments (not to mention research progress, which
is often necessary for funding the software), it is important to not be overly ambitious by attempting to create software
that addresses too many distinct problems simultaneously. For example, in the CellProfiler project, we aimed to serve
the community needing modular, automated pipelines, and left interactive manual analysis and image visualization
tools to ImageJ, which was well-developed in these features. We also left a gap for very large-format images such as
for pathology, which would have been difficult to support well given its underlying infrastructure; QuPath was later
developed specifically to meet this need from the ground up.23 Likewise, Single-Molecule Localization microscopy was
not well served by generic bioimage analysis platforms, because it produces point clouds rather than conventional
images; the Tesseler-suite25,29 and its successor PoCA30 were created to meet this need. In another example, ilastik31 was
developed with the aim of providing interactive machine learning tools, intentionally leaving pre- and post-processing
steps to Fiji and CellProfiler. OMERO has always remained largely focused on image storage and organization.32

Defining the scope in this way prevents a project from being spread too thin and serving no audience very well.
Furthermore, interoperability between software using open standards makes it possible to gain the benefits of combining
applications.

Another choice to consider is whether to serve point-and-click users versus those who are comfortable writing code
themselves; some software serves both ends of this spectrum well, but again defining the audience proactively ensures
that developer time is not spread too thin meeting those needs. The skills and effort required to design an intuitive and
responsive graphical user interface are quite distinct from those needed to devise new image analysis algorithms, and are
therefore understandably not always a core focus. Furthermore, while a developer who chooses to concentrate on user-
friendliness may find that their software is more widely adopted, this can be a double-edged sword in that it may
dramatically increase demand for support, make delivering new functionalitymore onerous, and reduce the time available
to focus on new projects or publications (Figure 2). Some developers consider these costs justified because they can
increase the impact of their work, but ultimately it is a decision that needs to be made: even highly-technical software is a
creative endeavor through which developers can express their own interests and values.

Programming language
The choice of programming language is a core decision that has long-term impact. It is usually a trade-off between the
developer’s preference and experience versus external factors, such as an entity enforcing the use of a particular language
to ensure compatibility between their tools, the need to use specific libraries, or the desire to interoperate with existing
tools.

Traditionally, software platforms were usually developed in C/C++ or Java, but the last decade has seen the rapid
emergence of Python in the scientific landscape. C/C++ can offer excellent performance and is still the dominant

Figure 2. Developers' time (in person-units annually) devoted to user support, new development and main-
tenance for tools presented in Table 1. These charts only take into account paid staff developers.

Page 5 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

language in Computer Graphics, an important point when one wants to transfer this research to bioimage analysis tools,
but portability can be an issue because tools developed in C/C++ need to be compiled for every targeted operating system.
In contrast, Java applications are portable and can be executed on all major platforms, without the need for recompilation.
Java applications can also readily use the image processing ecosystem around ImageJ17 and Bio-Formats for image file
reading/writing;33 together these advantages help explainwhy somany bioimage analysis platforms have been developed
in Java. Finally, recent years have seen an important increase in the number of workflows and tools developed in Python.
Python has become the language of choice for data science and can be self-learned by non-computer scientists. Combined
with its numerous available scientific libraries, Python represents a solution that is well-suited for developing new
analysis methods using both image processing and machine learning techniques.

Each language has its pros and cons, and bridges exist to allow communication between tools developed in different
languages. Nevertheless, working across programming languages makes development and distribution of software more
difficult, introducing a challenge that can be hard to bear for small-sized research groups.

Communities
Most bioimage analysis software platforms start with a single developer and a single user, who are often the same person.
Over time many more users and developers can be attracted into a rich and healthy community. There are many ways to
support open software that do not require writing code. Often, the most valuable contributions can be from experienced
users providing examples, writing documentation, answering questions for their peers and creating online resources, and
testing new release candidates.

In open source projects, the developer community can include individuals from all over the world whomodify or develop
newmethods and ask the authorizedmaintainers tomerge their workwithin the tool’s official code. This can be extremely
beneficial, enhancing the software and broadening its scope. In widely used projects the maintainers can, however,
become overwhelmed by requests, which risk pulling the project in different directions without dedicated engineers
determining the future vision. There is also a risk that the creator of a successful application can feel reduced to an
administrative role as their project grows, with their time being taken up by reviewing the contributions of others and
answering user questions instead of solving problems and writing code themselves, with diminishing recognition for this
essential work. Software designed for point-and-click users will by nature have fewer coding contributors than libraries
designed for computationalists’ use. Ultimately, this shows the necessity for bioimage analysis tools to have both funded
developers dedicated to handling the core software and pluginmechanisms allowing individuals to develop newmethods
without modifying the core code.

The bioimage analysis community is extremely welcoming and friendly. The Scientific Community Image Forum
(https://forum.image.sc/),34 has rapidly emerged as an essential entry point in the field, and is the preferred place for
any bioimage analysis related question. It is already the primary designated discussion point for more than 40 open
source tools/libraries. One of its characteristics is that it is extremely easy for a new open-source bioimage analysis tool
or library to be included as a community partner. Because of its wide audience, it can tremendously benefit developers
by (i) facilitating the discovery and recognition of their tools and, (ii) alleviating the burden of answering new users'
questions, both because other users of the software can pitch in and because answers remain publicly available and
searchable. Finally, the forum creates a network of developers in which often-isolated developers can get help for
technical issues.

Packaging
Maximizing the impact of a new tool towards life scientists usually requires a well-designed Graphical User Interface
(GUI) that allows users to interact with the software platform. As mentioned above, this can require considerable effort
from the developer. Scientific image data are extremely variable, with the result that analysis often involves customi-
zation. It can be extremely challenging to provide a balance between user-friendliness, flexibility and extensibility within
a GUI. A technical compromise can be to provide core functionality through a point-and-click interface supplemented by
scripting for power users.

An easy and comprehensible installation process is just as important for adoption. For installation, traditionally, platforms
developed in compiled languages (C/C++ or Java) are shipped with 1-click installers, the easiest solution possible, but
requiring significant expertise from the developer. For the user, the best scenario is when all dependencies are directly
included in the installer or are automatically downloaded. If they are not included, the user will have to install them
separately, a potential source of issues and a support burden for the developer. Interpreted languages such as Python have
slightly shifted this common process as scripts/apps can be bundled as packages and easily installed using package-
management systems such as pip. In practice, dependencies or version issues are not uncommon, and installing

Page 6 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

https://forum.image.sc/

Python modules may still require some level of expertise. Python scripts can also be bundled in web-based interactive
computational environments (such as Jupyter Notebooks). To ensure simplicity, we advocate providing 1-click installers
for bioimage analysis tools where feasible, supporting all three popular operating systems.

The time-consuming nature of packaging highlights another advantage of developing plugins for existing platforms: they
already provide standardized GUI elements and installers that are familiar to users. Furthermore, if developers from
different tools share efforts in improving and maintaining a pre-existing GUI, long-term adoption by a larger community
can be achieved.

Version control and quality assurance
The development process of scientific software includes two more important elements: Firstly, version control is good
scientific practice, allowing developers to maintain their code in a modern fashion while tracing changes and contribu-
tions. The git platform (https://git-scm.com/) is most commonly used for version control. Furthermore, releases should be
tagged and archived to allow reproducing scientific results produced with a given release of a scientific software later
on. Secondly, automatic and manual quality assurance procedures should be established in scientific software projects to
minimize potential issues introduced when code changes. Software is nowadays highly complex and developers cannot
foresee if a change may cause issues in code that depends on the modified function. Continuous integration systems can
help by executing pre-defined automated tests that alert developers in case nightly builds fail because tests do not run or
produce a change in outputs. Both version control and continuous integration are indisputable requirements for any
software that aims to attract external contributions. Nevertheless, the best automated test system cannot replace manual
testing, which should occur for critical core libraries or major releases to end users. Effort for such manual tests can be
shared within the community. In our experience, power users of scientific software can be easily motivated to test a
release candidate or beta version of a software because they enjoy exploring the newly introduced features and providing
feedback to developers. For guiding testers during this process and to support developers who program tools that depend
on a given software, release notes are highly recommended to inform the community about recent changes and what to
take care of when upgrading to a newly released software version.

Documentation
Software projects aiming to bring services and solutions to a broad audience require special emphasis on documentation:
beyond a publication that mostly serves as an announcement of major software features, there are four kinds of modern
software documentation:35 1) learning-oriented tutorials targeting beginners and introducing them to basic principles of a
given software or software library; 2) goal oriented guides documenting typical use cases of a software, inwhich users can
learn a new tool; 3) understanding-oriented discussions benefiting developers who might, especially in open-source
projects, become contributors to extend and maintain a given software project; and 4) information-oriented reference
manuals serving as a glossary of functionality, for example as a searchable database of individual functions to explore
features and read their concise description.

Documentation should not be seen as the final step before launching a new software. It is rather a continuous process,
particularly when new features are added. Furthermore, user feedback about the documentation can ultimately also lead to
updates in the software. Software features that are intuitive to the developers might be complicated to explain in the user
guide while writing the corresponding documentation, triggering a rethinking of how the feature is offered to the user and
changing the GUI or the underlying algorithm. This will improve user experience and the documentation.

Finally, newly released bioimage analysis tools should always be provided with example datasets, for example included
in the installer or uploaded on online platforms, such as Zenodo (https://zenodo.org), chosen to illustrate some specific
features. Additionally, complete protocols for processing these example data sets should be provided, for example via
online platforms such as Protocols.io (https://protocols.io). This decreases the likelihood that users trying a new tool for
the first time will experience a crash or incomprehensible analysis result. Instead, running the desired analysis method on
an example dataset will help them understand how others analyze data of similar kind to theirs.

Interoperability
The term interoperability describes how different software can be combined in common workflows or substitute each
other. Interoperability is mostly achieved through two levels: (i) external interoperability by the use of common file
formats or libraries, and (ii) internal interoperability through a pluginmechanism. For constructingworkflows efficiently,
both internal and external interoperability have advantages and disadvantages: if possible, new software should adopt
both to maximize interoperability.

If a software stores processing results in common file formats such as text (txt), comma-separated values (csv) or
common image file formats, it can be considered as interoperable with other software that processes such files. Software

Page 7 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

https://git-scm.com/
https://zenodo.org
https://protocols.io

that introduces unique, proprietary and/or closed-source file formats for handling data introduces a barrier and is not
interoperable with other software. Much effort has been devoted by the bioimage community to promote external
interoperability. For instance, Bio-Formats33 is a software library for reading proprietary microscopy formats and
converting to open standardized formats. These efforts are also resulting in community efforts towards new open
formats.36,37

On a higher level, internal interoperability can be achieved by plugin mechanisms to ensure that within a given
software application, modules from various origins can communicate with each other. Software such as ImageJ17/Fiji,18

CellProfiler,20 KNIME,38 or Icy19 are known in the image data science field as platforms that are extensible using plugin
architectures. Such interoperability can be beneficial to all software tools involved and drive innovation. A case in point is
KNIME, which wanted to add image processing functionalities to its features set and decided against developing their
own from scratch. Instead, they directly used ImageJ's functionalities and, in the process, helped improve both tools.39,40

Noticeably, an important project enabling interoperability is SciJava (http://scijava.org) originally developed as part of
the ImageJ ecosystem but then adopted by others;39 it provides an overview of available Java libraries for scientific
computing including file format import support and data visualization.21

Licensing
Licensing is an aspect of open-source software platforms that is often overlooked by developers in spite of its importance.
More often than not, the license is eventually chosen when the source code is released, whereas it should be defined from
the start. Licensing is essential because it defines how others are able to use the source code of a given project.

In most countries, selecting no license at all results in copyright by the author, all rights reserved, completely working
against the very notion of open-source. This prevents code reusability because it would be unsafe to use copyrighted code.

A helpful resource in selecting a license is the Open Source Initiative (https://opensource.org/), which maintains a list of
approved open source licenses. Basically, they can be divided in three categories: strong copyleft, weak copyleft, and
permissive licenses. Strong copyleft licenses (GPLv2, GPLv3, AGPL, etc.) grant permission to use, modify, and
redistribute code as long as the original license remains intact for both the original project AND any project using
any code of the original project. Although at first glance this sounds like the most open possible choice, there is a catch: a
project with a strong copyleft license will force any subsequent project using part of its code to be under the same copyleft
license and prevents the developer from using code from projects without this same license. In contrast, weak copyleft
licenses (LGPL, MPL 2.0, etc.) do not extend their protection across linkage boundaries. This essentially means that,
while the original project and its modifications will retain the weak copyleft license, any code linking to it will be allowed
to use a different license (even proprietary code). Finally, permissive licenses (BSD, Apache 2.0, MIT, etc.) usually only
retain the attribution restriction: any derived project will require statements giving credits to the original one while still
being able to use, modify and distribute it, even commercially. Several of us felt quite protective of code at the beginning
of our projects, thinking that a permissive license would risk our ability to maintain a unique grant-fundable project, but
over time we have seen the benefits of our code bases being used to accelerate science however they are used by others.

Publication
A project’s release may include executable software, code, documentation and tutorials; another milestone of an open-
source software platform is its publication. For projects launched to solve a particular biological question, the best-case
scenario is when the tool is ready to be released before the collaborators' biology study. In this case, a technical paper
can present the tool and its new method without jeopardizing the biology publication; separate publication may even
strengthen both.

Problems may arise when the biology paper is ready first and the software must be mentioned or described in it. Indeed,
most journals are driven towards novelty, and presenting a tool that “only” provides a broader access to already published
methods is often considered lacking novelty. This also holds true for plugins and is detrimental to putting efforts in
making computational methods truly usable. And while several journals41 may consider papers describing open-source
software, managing to publish these tools in high-impact journals is highly challenging. Editors can struggle to predict the
potential value and usability of a tool, especially for recent ones that have yet to reach a sizable audience. Nevertheless, we
have detailed in this paper characteristics expected from a successful project; these criteria may help editors and reviewers
in their assessments.

Academic labs mainly use short-term contracts. This implies that any successful open-source tool that managed
to achieve long-term sustainability will hire several developers along the course of its life. As a consequence, one
publication occurring at an early stage of a project will not accurately capture the whole picture of involved developers.

Page 8 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

http://scijava.org
https://opensource.org/

Still, they all deserve recognition for their work and finding a way to reward them is essential. One solution is to write a
new article with an updated list of authors when a new version of the project, with significant changes, is released. An
ideal solutionwould be that the journal that first published the project would consider for peer-review this new paper, with
criteria such as improved user-experience, new visualizations and methods added, etc.

Finally, twomain indicators are, for better or worse, used by institutions and funding agencies to evaluate an open-source
project: the reputation/impact factor of the journal in which the project is published and its number of citations. Therefore,
properly citing bioimage analysis is of utmost importance for ensuring their long-term sustainability. For that reason,
users should cite all tools used, whether for visualization, analysis or manipulation. When a plugin of a generic bioimage
analysis platform is used, both the platform- and plugin-related papers should be cited. It is currently estimated that
software tools are properly cited less than half of the time.42

Funding
Software maintenance and support is rarely glamorous, but is one of the most cost-effective ways to impact science:
the efforts of a small number of individuals can dramatically improve the efficiency and accuracy of analysis performed
by thousands of researchers, helping to maximize the value of data across many studies. However, traditional research
funding agencies foster innovation, and thus, typically development of new methods and tools, as opposed to
maintenance. This model arose and may have been sensible for technologies other than software, which are often
adopted by companies after the proof-of-principle - developed with the research funding - is successfully demonstrated.
Open-source software platforms are in a strategically suboptimal position when it comes to applying for funding in this
context, because novelty is rarely the goal - indeed, robustness and standardization are usually more desirable. Thus,
software maintenance and long-term support can often not be funded using research grants.

However, in recent years, exceptions have arisen: The German Research Foundation (DFG) offered funding specifically
for “Research Software Sustainability”,43 the U.S. Chan Zuckerberg Initiative (CZI) has begun supporting open-source
software for science generally and for bioimaging specifically44 and the National Institutes of Health (NIH) in the United
States funded the Center for Open Bio-image Analysis (COBA) (https://openbioimageanalysis.org/). Likewise, the
European Cooperation in Science and Technology (COST) enabled forming the Network of European Bio-Image
Analysts (NEUBIAS), which enables interdisciplinary exchange between developers and end-users on a high level
leading tomany collaborations and new projects in the context of open-source software for biological image data science.
While the mentioned funding programs offered opportunities to scientific software-focused communities, it remains
challenging as an individual research group to apply for funding to turn a software-focused research project into a
community-driven open-source project which is maintained long-term and serves important needs of the scientific
community.Wewould therefore advocatemore funding agencies to follow the footsteps of CZI, NIH andDFG and create
programs tailored for funding maintenance and continuous development of open source tools, since they have become
crucial to most biology related research.

Summary
In just a few decades, computational methods have radically transformed the way biological images are analyzed. From
tedious manual quantification, life scientists now have access to an overwhelming array of automatic and unbiased
analysis tools. In this context, open source software has played a key role, offering cutting-edge analysis methods to a
wide audience. The value of open source is not simply that the software is typically free of financial cost: by disclosing the
source code under a recognized license, open source software enables transparency, reproducibility, standardization, and
a foundation that can be built upon by others. All these aspects are increasingly important as most funding agencies move
towards Open Research.

Despite the great success achieved bymany open source tools, developing new software from scratch should not be taken
lightly. To prevent overlap with established tools, it is crucial to identify a major gap in the current landscape. The true
costs of development and maintenance should be considered, and a careful long-term sustainability plan developed. If
none of these conditions are met, we advocate for developing plugins to existing generic platforms, as this strongly
alleviates both the maintenance issue, the activation barrier for users and the method’s overall accessibility.

If the strategy is still to develop a new tool, a few best practices should be implemented from the beginning. First,
documentation should not be an afterthought, written at the time of the project’s release; it is a crucial ongoing process that
should closely follow current developments. Second, version control should be embraced as it helps research reproduc-
ibility by allowing easy tagging of releases, brings intrinsic organization to a project and ensures that all contributions can
be recognized. Third, any new project should select its license during its inception as it will have a profound impact on the

Page 9 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

https://openbioimageanalysis.org/

way its code will be reusable. Fourth, GUI elements should be carefully designed to improve the project’s usability, when
the audience suits it.

In spite of all these challenges, developing open source bioimage analysis software can be highly rewarding. The
opportunity to durably impact a life science field by filling an analysis gap, and therefore to reach awhole new community,
is a worthy motivation. Unfortunately, even the most successful open source tools still struggle to obtain funding for
maintenance and continuous development. There is a clear mismatch between these difficulties and the influence of those
tools that help thousands of life scientists shaping their data into quantitative measures. For that reason, we hope that
funding open source tools will become easier in the future.

Data availability
No data is associated with this article.

Acknowledgements
This publication was supported by COST Action NEUBIAS (CA15124), funded by COST (European Cooperation in
Science and Technology).

References

1. Huisken J, Stainier DYR: Selective plane illumination microscopy
techniques in developmental biology. Development. 15-Jun-2009;
136(12). The Company of Biologists Ltd, pp. 1963–1975.
PubMed Abstract|Publisher Full Text|Free Full Text

2. Liu Z, Lavis LD, Betzig E: Imaging live-cell dynamics and structure
at the single-molecule level. Mol Cell. May 2015; 58(4): 644–659.
PubMed Abstract|Publisher Full Text

3. Sahl SJ, Hell SW, Jakobs S: Fluorescence nanoscopy in cell biology.
Nat Rev Mol Cell Biol. Sep. 2017; 18(11): 685–701.
PubMed Abstract|Publisher Full Text

4. Khater IM, Nabi IR, Hamarneh G: A Review of Super-Resolution
Single-Molecule Localization Microscopy Cluster Analysis and
Quantification Methods. Patterns. 2020; 1(3): p. 100038.
PubMed Abstract|Publisher Full Text|Free Full Text

5. Girkin JM, Carvalho MT: The light-sheet microscopy revolution.
J Optics (UK) 01-May-2018; 20(5). IOP Publishing Ltd, p. 053002.
Publisher Full Text

6. Ouyang W, Zimmer C: The imaging tsunami: Computational
opportunities and challenges. Curr Opi Syst Biol. 01-Aug-2017;
vol. 4. Elsevier Ltd, pp. 105–113.
Publisher Full Text

7. Waithe D, Brown JM, Reglinski K, et al.:Object detection networks
and augmented reality for cellular detection in fluorescence
microscopy. J Cell Biol. Oct. 2020; 219(10).
PubMed Abstract|Publisher Full Text|Free Full Text

8. Pinkard H, Phillips Z, Babakhani A, et al. : Deep learning for single-
shot autofocus microscopy. Optica. 2019; 6(6), p. 794.
Publisher Full Text

9. Weigert M, et al.: Content-aware image restoration: pushing the
limits of fluorescencemicroscopy.Nat Methods.Dec. 2018; 15(12):
1090–1097.
PubMed Abstract|Publisher Full Text

10. Cheeseman BL, Günther U, Gonciarz K, et al. : Adaptive particle
representation of fluorescence microscopy images. Nat
Commun. 2018; 9(1), p. 5160.
PubMed Abstract|Publisher Full Text|Free Full Text

11. Haase R, et al. : CLIJ: GPU-accelerated image processing for
everyone. Nat Methods. 01-Jan-2020; 17(1). Nature Research,
pp. 5–6.
PubMed Abstract|Publisher Full Text

12. Memorandum of Understanding for the implementation of the
COST Action. ‘A new Network of European BioImage Analysts to
advance life science imaging’ (NEUBIAS) CA15124,” 2015.

13. Lippens S, et al. : One step ahead. EMBO Rep. Apr. 2019; 20(4),
p. e48017.
Publisher Full Text

14. BarnesN:Publish your computer code: It is goodenough.Nature.
14-Oct-2010; 467(7317). Nature Publishing Group, p. 753.
PubMed Abstract|Publisher Full Text

15. Bolte S, Cordelières FP: A guided tour into subcellular
colocalization analysis in light microscopy. J Microsc.
01-Dec-2006; 224(3). Blackwell Publishing Ltd, pp. 213–232.
PubMed Abstract|Publisher Full Text

16. Carpenter AE, Kamentsky L, Eliceiri KW: A call for bioimaging
software usability. Nat Methods. 28-Jul-2012; 9(7). Nature
Publishing Group, pp. 666–670.
PubMed Abstract|Publisher Full Text|Free Full Text

17. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ:
25 years of image analysis. Nat. Methods. 2012; 9(7): 671–675.
PubMed Abstract|Publisher Full Text|Free Full Text

18. Schindelin J, et al. : Fiji: An open-source platform for biological-
image analysis. Nat. Methods 28-Jul-2012; 9(7). Nature Publishing
Group, pp. 676–682.
PubMed Abstract|Publisher Full Text|Free Full Text

19. De Chaumont F, et al. : Icy: An open bioimage informatics
platform for extended reproducible research. Nat Methods.
28-Jul-2012; 9(7). Nature Publishing Group, pp. 690–696.
PubMed Abstract|Publisher Full Text

20. McQuin C, et al. : CellProfiler 3.0: Next-generation image
processing for biology. PLOS Biol. Jul. 2018; 16(7), p. e2005970.
PubMed Abstract|Publisher Full Text|Free Full Text

21. Rueden CT, et al. : ImageJ2: ImageJ for the next generation of
scientific image data. BMC Bioinformatics. Nov. 2017; 18(1), p. 529.
PubMed Abstract|Publisher Full Text|Free Full Text

22. Pietzsch T, Saalfeld S, Preibisch S, et al. : BigDataViewer:
Visualization and processing for large image data sets. Nat
Methods.28-May-2015; 12(6). NaturePublishingGroup, pp. 481–483.
PubMed Abstract|Publisher Full Text

23. Bankhead P, et al. : QuPath: Open source software for digital
pathology image analysis. Sci. Rep. Dec. 2017; 7(1): 1–7.
PubMed Abstract|Publisher Full Text|Free Full Text

24. Mathis A, et al.:DeepLabCut:markerless pose estimation of user-
defined body parts with deep learning. Nat. Neurosci. Sep. 2018;
21(9): 1281–1289.
PubMed Abstract|Publisher Full Text

25. Levet F, et al. : SR-Tesseler: A method to segment and quantify
localization-based super-resolution microscopy data. Nat.
Methods. 2015; 12(11).
PubMed Abstract|Publisher Full Text

26. Tinevez JY, et al.: TrackMate: An open and extensible platform for
single-particle tracking. Methods. Feb. 2017; 115: 80–90.
PubMed Abstract|Publisher Full Text

27. de Reuille PB, et al. : MorphoGraphX: A platform for quantifying
morphogenesis in 4D. Elife. May 2015; 4(MAY), pp. 1–20.
PubMed Abstract|Publisher Full Text|Free Full Text

28. Luengo I, et al. : SuRVoS: Super-Region Volume Segmentation
workbench. J. Struct. Biol. Apr. 2017; 198(1): 43–53.
PubMed Abstract|Publisher Full Text|Free Full Text

Page 10 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

http://www.ncbi.nlm.nih.gov/pubmed/19465594
https://doi.org/10.1242/dev.022426
https://doi.org/10.1242/dev.022426
https://doi.org/10.1242/dev.022426
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685720
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685720
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685720
http://www.ncbi.nlm.nih.gov/pubmed/26000849
https://doi.org/10.1016/j.molcel.2015.02.033
https://doi.org/10.1016/j.molcel.2015.02.033
https://doi.org/10.1016/j.molcel.2015.02.033
http://www.ncbi.nlm.nih.gov/pubmed/28875992
https://doi.org/10.1038/nrm.2017.71
https://doi.org/10.1038/nrm.2017.71
https://doi.org/10.1038/nrm.2017.71
http://www.ncbi.nlm.nih.gov/pubmed/33205106
https://doi.org/10.1016/j.patter.2020.100038
https://doi.org/10.1016/j.patter.2020.100038
https://doi.org/10.1016/j.patter.2020.100038
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660399
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660399
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660399
https://doi.org/10.1088/2040-8986/aab58a
https://doi.org/10.1016/j.coisb.2017.07.011
http://www.ncbi.nlm.nih.gov/pubmed/32854116
https://doi.org/10.1083/jcb.201903166
https://doi.org/10.1083/jcb.201903166
https://doi.org/10.1083/jcb.201903166
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659718
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659718
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659718
https://doi.org/10.1364/optica.6.000794
http://www.ncbi.nlm.nih.gov/pubmed/30478326
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7
http://www.ncbi.nlm.nih.gov/pubmed/30514837
https://doi.org/10.1038/s41467-018-07390-9
https://doi.org/10.1038/s41467-018-07390-9
https://doi.org/10.1038/s41467-018-07390-9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279843
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279843
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279843
http://www.ncbi.nlm.nih.gov/pubmed/31740823
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.15252/embr.201948017
http://www.ncbi.nlm.nih.gov/pubmed/20944687
https://doi.org/10.1038/467753a
https://doi.org/10.1038/467753a
https://doi.org/10.1038/467753a
http://www.ncbi.nlm.nih.gov/pubmed/17210054
https://doi.org/10.1111/j.1365-2818.2006.01706.x
https://doi.org/10.1111/j.1365-2818.2006.01706.x
https://doi.org/10.1111/j.1365-2818.2006.01706.x
http://www.ncbi.nlm.nih.gov/pubmed/22743771
https://doi.org/10.1038/nmeth.2073
https://doi.org/10.1038/nmeth.2073
https://doi.org/10.1038/nmeth.2073
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641581
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641581
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641581
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554542
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554542
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554542
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844
http://www.ncbi.nlm.nih.gov/pubmed/22743774
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
http://www.ncbi.nlm.nih.gov/pubmed/29969450
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1371/journal.pbio.2005970
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029841
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029841
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029841
http://www.ncbi.nlm.nih.gov/pubmed/29187165
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708080
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708080
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708080
http://www.ncbi.nlm.nih.gov/pubmed/26020499
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
http://www.ncbi.nlm.nih.gov/pubmed/29203879
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41598-017-17204-5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715110
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715110
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715110
http://www.ncbi.nlm.nih.gov/pubmed/30127430
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/26344046
https://doi.org/10.1038/nmeth.3579
https://doi.org/10.1038/nmeth.3579
https://doi.org/10.1038/nmeth.3579
http://www.ncbi.nlm.nih.gov/pubmed/27713081
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/j.ymeth.2016.09.016
http://www.ncbi.nlm.nih.gov/pubmed/25946108
https://doi.org/10.7554/eLife.05864
https://doi.org/10.7554/eLife.05864
https://doi.org/10.7554/eLife.05864
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421794
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421794
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421794
http://www.ncbi.nlm.nih.gov/pubmed/28246039
https://doi.org/10.1016/j.jsb.2017.02.007
https://doi.org/10.1016/j.jsb.2017.02.007
https://doi.org/10.1016/j.jsb.2017.02.007
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405849
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405849
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405849

29. Levet F, et al. : A tessellation-based colocalization analysis
approach for single-molecule localization microscopy. Nat.
Commun. 2019; 10(1).
PubMed Abstract|Publisher Full Text|Free Full Text

30. Levet F: PoCA: Point Cloud Analyst. 2021.
Reference Source

31. Berg S, et al.: ilastik: interactivemachine learning for (bio) image
analysis. Nat. Methods. Dec. 2019; 16(12): 1226–1232.
PubMed Abstract|Publisher Full Text

32. Allan C, et al.: OMERO: Flexible, model-driven data management
for experimental biology. Nat Methods. 28-Mar-2012; 9(3). Nature
Publishing Group, pp. 245–253.
PubMed Abstract|Publisher Full Text|Free Full Text

33. Linkert M, et al. : Metadata matters: Access to image data in the
real world. J Cell Biol. 31-May-2010; 189(5). The Rockefeller
University Press, pp. 777–782.
PubMed Abstract|Publisher Full Text|Free Full Text

34. Rueden CT, et al. : Scientific Community Image Forum:
A discussion forum for scientific image software. PLOS Biol.
Jun. 2019; 17(6), p. e3000340.
PubMed Abstract|Publisher Full Text|Free Full Text

35. Procida D: The four kinds of documentation, and why you need
to understand what they are. 2017.
Reference Source

36. Gonzalez-Beltran AN, et al. : Community standards for open cell
migration data. GigaScience. 20-May-2020; 9(5). Oxford University

Press, pp. 1–11.
PubMed Abstract|Publisher Full Text|Free Full Text

37. Swedlow JR, Gault D, Besson S, et al.:NextGeneration File Formats
for BioImaging. 2020.
Reference Source

38. Berthold MR, et al. : KNIME: The konstanz information miner. in:
4th International Industrial Simulation Conference 2006, ISC 2006.
2006, vol. 11, no. 1, pp. 58–61.
Publisher Full Text

39. Dietz C, et al. : Integration of the ImageJ Ecosystem
in KNIME Analytics Platform. Front. Comput. Sci. Mar. 2020; 2(8),
p. 8.
PubMed Abstract|Publisher Full Text|Free Full Text

40. Pietzsch T, Preibisch S, Tomančák P, et al.: ImgLib2—generic image
processing in Java. Bioinformatics. Nov. 2012; 28(22): 3009–3011.
PubMed Abstract|Publisher Full Text|Free Full Text

41. Hong NC: In which journals should I publish my software?
Reference Source

42. Giving software its due. Nat. Methods. 01-Mar-2019; 16(3). Nature
Publishing Group, p. 207.
PubMed Abstract|Publisher Full Text

43. Call for Proposal ‘Research Software Sustainability,’. 2016.
Reference Source

44. CZI Announces Support for Open-Source Software Efforts to
Improve Biomedical Imaging. 2018.
Reference Source

Page 11 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

http://www.ncbi.nlm.nih.gov/pubmed/31147535
https://doi.org/10.1038/s41467-019-10007-4
https://doi.org/10.1038/s41467-019-10007-4
https://doi.org/10.1038/s41467-019-10007-4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542817
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542817
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542817
https://github.com/flevet/PoCA
http://www.ncbi.nlm.nih.gov/pubmed/31570887
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1038/s41592-019-0582-9
http://www.ncbi.nlm.nih.gov/pubmed/22373911
https://doi.org/10.1038/nmeth.1896
https://doi.org/10.1038/nmeth.1896
https://doi.org/10.1038/nmeth.1896
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437820
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437820
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437820
http://www.ncbi.nlm.nih.gov/pubmed/20513764
https://doi.org/10.1083/jcb.201004104
https://doi.org/10.1083/jcb.201004104
https://doi.org/10.1083/jcb.201004104
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878938
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878938
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878938
http://www.ncbi.nlm.nih.gov/pubmed/31216269
https://doi.org/10.1371/journal.pbio.3000340
https://doi.org/10.1371/journal.pbio.3000340
https://doi.org/10.1371/journal.pbio.3000340
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602289
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602289
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602289
https://www.writethedocs.org/videos/eu/2017/the-four-kinds-of-documentation-and-why-you-need-to-understand-what-they-are-daniele-procida
http://www.ncbi.nlm.nih.gov/pubmed/32396199
https://doi.org/10.1093/gigascience/giaa041
https://doi.org/10.1093/gigascience/giaa041
https://doi.org/10.1093/gigascience/giaa041
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317087
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317087
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317087
https://chanzuckerberg.com/eoss/proposals/next-generation-file-formats-for-bioimaging/
https://doi.org/10.1145/1656274.1656280
http://www.ncbi.nlm.nih.gov/pubmed/32905440
https://doi.org/10.3389/fcomp.2020.00008
https://doi.org/10.3389/fcomp.2020.00008
https://doi.org/10.3389/fcomp.2020.00008
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469687
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469687
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469687
http://www.ncbi.nlm.nih.gov/pubmed/22962343
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496339
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496339
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496339
https://www.software.ac.uk/which-journals-should-i-publish-my-software
http://www.ncbi.nlm.nih.gov/pubmed/30814703
https://doi.org/10.1038/s41592-019-0350-x
https://doi.org/10.1038/s41592-019-0350-x
https://doi.org/10.1038/s41592-019-0350-x
https://www.dfg.de/en/research_funding/programmes/infrastructure/lis/funding_opportunities/call_proposal_software/
https://chanzuckerberg.com/newsroom/czi-announces-support-for-open-source-software-efforts-to-improve-biomedical-imaging

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 24 June 2021

https://doi.org/10.5256/f1000research.55826.r87725

© 2021 Stuurman N. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Nico Stuurman
Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University
of California, San Francisco, San Francisco, CA, USA

This manuscript, written by leaders in the field, provides a wonderful overview of the
considerations, pitfalls, and challenges for developers of open source software for bioimage
analysis. It is of interest to users, who will get a taste of the efforts behind the tools they are using,
and to (aspiring) developers, who are provided with a great overview of all aspects of tool
development, helping them make sound choices in their work. The manuscript is well organized,
well written, and frankly, a pleasure to read. There are a few more subjects/questions related to
bioimage analysis software development that I am interested in, and would love to see the
authors’ take:

The relation to commercial software. Back a few decades ago, algorithms were developed in
academia, and User Interfaces to work with these algorithms were created by commercial
companies (NIH Image / ImageJ was one of the first software packages to break this
“tradition”, and received significant push back from commercial entities). I would love to see
a description of the current relation between open source and commercial bioimaging
software, as well as a description what this relation ideally would be.

○

Perhaps related and perhaps partly covered: the tension between creating new approaches
to problems for which solutions exist (open source or not), versus
using/embracing/extending existing solutions. The software development world in general
has adopted the strategy to try many approaches and let the most widely used or durable
solution(s) stand. Due to the limited resources in the bioimage software world, this hardly
seems the most optimal approach, yet many are tempted to make a better solution than the
one that already exists.

○

Distribution: Code signing / security. Operating systems and IT infrastructures are
increasing security requirements for desktop software, and a future where unsigned/non-
confirming software can no longer be executed seems near, yet there are few (I don’t
remember encountering any) one click installers of bioimage analysis software that are

○

Page 12 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

https://doi.org/10.5256/f1000research.55826.r87725
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-6179-8613

signed, ImageJ needs moving the executable out of and back into the Applications folder to
get it to run on modern OSX, and Fiji advices against installing into the standard “Program
Files” directory on Windows. I am not sure whether this is a minor financial and technical
hurdle to be addressed by individual developers or something that needs more community
attention.

Again, the manuscript is great as is, and would totally understand if the authors feel these issues
are out of scope.

Is the topic of the opinion article discussed accurately in the context of the current
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Cell Biology, single molecule imaging, open source software for microscope
control.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 04 May 2021

https://doi.org/10.5256/f1000research.55826.r83552

© 2021 Royer L. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Loïc A. Royer
Chan Zuckerberg Biohub, San Francisco, CA, USA

The opinion article "Developing open-source software for bioimage analysis: opportunities and
challenge." addresses the important topic of developing software for bioimage analysis.

The authors discuss all aspects including the genesis of a project, the choice of scope and
audience, technical choices, the role of communities, the ever important documentation, licensing,

Page 13 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

https://doi.org/10.5256/f1000research.55826.r83552
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9991-9724

publication, and the crucial aspect of long-term funding and maintenance.

I wholeheartedly agree with everything said here. Nothing here is controversial or in my opinion
subject to debate. The issue perhaps is that the bits of wisdom in this piece should be more
broadly shared, and in that sense I welcome its publication. If debate must arise, let the
community as a whole do the debating.

Here comes some constructive feedback to improve the manuscript: I find the first figure a bit
cryptic, the different symbols are nice but there is no legend, and they are combined in evocative
but unclear ways. It takes a bit too long to 'decode' the figure in my honest opinion. I would
rethink the graphical design, make things more explicit, and add a bit of text to guide the reader.

Is the topic of the opinion article discussed accurately in the context of the current
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioimage analysis, microscopy, biology, algorithms, optics,

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Page 14 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 15 of 15

F1000Research 2021, 10:302 Last updated: 27 JUL 2021

mailto:research@f1000.com

