
ImageJ and CellProfiler: Complements in
Open-Source Bioimage Analysis
Ellen T.A. Dobson,1 Beth Cimini,2 Anna H. Klemm,3 Carolina Wählby,3

Anne E. Carpenter,2,6 and Kevin W Eliceiri1,4,5,6

1Laboratory for Optical and Computational Instrumentation (LOCI), Center for
Quantitative Cell Imaging, University of Wisconsin at Madison, Madison, Wisconsin

2Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
3Science for Life Laboratory BioImage Informatics Facility and Department of Information
Technology, Uppsala University, Uppsala, Sweden

4Department of Medical Physics, University of Wisconsin at Madison, Madison, Wisconsin
5Morgridge Institute for Research, Madison, Wisconsin
6Corresponding authors: anne@broadinstitute.org; eliceiri@wisc.edu

ImageJ and CellProfiler have long been leading open-source platforms in the
field of bioimage analysis. ImageJ’s traditional strength is in single-image pro-
cessing and investigation, while CellProfiler is designed for building large-
scale, modular analysis pipelines. Although many image analysis problems can
be well solved with one or the other, using these two platforms together in a
single workflow can be powerful. Here, we share two pipelines demonstrating
mechanisms for productively and conveniently integrating ImageJ and Cell-
Profiler for (1) studying cell morphology and migration via tracking, and (2)
advanced stitching techniques for handling large, tiled image sets to improve
segmentation. No single platform can provide all the key and most efficient
functionality needed for all studies. While both programs can be and are often
used separately, these pipelines demonstrate the benefits of using them together
for image analysis workflows. ImageJ and CellProfiler are both committed to
interoperability between their platforms, with ongoing development to improve
how both are leveraged from the other. © 2021 Wiley Periodicals LLC.

Basic Protocol 1: Studying cell morphology and cell migration in time-lapse
datasets using TrackMate (Fiji) and CellProfiler
Basic Protocol 2: Creating whole plate montages to easily assess adaptability
of segmentation parameters

Keywords: cell tracking � CellProfiler � image stitching � ImageJ � segmen-
tation

How to cite this article:
Dobson, E. T., Cimini, B., Klemm, A. H., Wählby, C., Carpenter, A.
E., & Eliceiri, K. W (2021). ImageJ and CellProfiler: Complements

in open-source bioimage analysis. Current Protocols, 1, e89.
doi: 10.1002/cpz1.89

INTRODUCTION

ImageJ and CellProfiler are two of the most widely used open-source image analysis plat-
forms in science. Over the years, both projects have developed independently, cementing
themselves in the field of image analysis. Cited in over 10,000 publications per year, Im-
ageJ, and its plugins-included distribution known as Fiji, enable in-depth image investi-
gations; both are ideally suited for interactive, single-image processing and are popular
choices for both novice and experienced developers alike to add functionality (Rueden

Current Protocols e89, Volume 1
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpz1.89
© 2021 Wiley Periodicals LLC

Dobson et al.

1 of 19

https://doi.org/10.1002/cpz1.89


et al., 2017; Schindelin et al., 2012; Schneider, Rasband, & Eliceiri, 2012). With over
10,000 publications to date, CellProfiler’s strength is in project building, where complex
pipelines of individual modules can be built to automate the processing of large experi-
ments of images (Carpenter et al., 2006; Kamentsky et al., 2011; McQuin et al., 2018).
The projects also differ in their respective languages, with ImageJ being Java based and
CellProfiler Python based.

The ImageJ and CellProfiler teams have worked together for many years, not just on
mutually useful software development, but also in developing the bioimage analysis
community into its present healthy and cooperative state. For example, the teams ad-
vocate together for open-source technologies, usability, and interoperability (Carpenter,
Kamentsky, & Eliceiri, 2012; Kamentsky et al., 2011). The two software projects joined
forces to build the Scientific Community Image Forum (https:// forum.image.sc/ ; Rueden
et al., 2019), an online resource for members of the worldwide scientific community to
learn about image analysis from each other. Currently, 40 open-source imaging software
projects, termed “Community Partners,” use the Forum as their primary interaction with
users. This Forum has increased communication among developers of various software
packages and provided users access to a wide breadth of experts in various open-source
platforms. The Forum has blossomed into a solid community, with over 14,000 users
worldwide, encouraging open science and reproducible research by advocating for open
tools and their interoperability.

Recently, the ImageJ and CellProfiler teams at the University of Wisconsin–Madison and
the Broad Institute have formally come together to pursue their common open-source
development and outreach goals by creating the Center for Open Bioimage Analysis
(COBA; https://openbioimageanalysis.org/ ) via a P41 grant from the National Institutes
of Health National Institute of General Medical Sciences (NIH NIGMS). COBA’s mis-
sion is to serve the cell biology community by catalyzing the entire open-source bioim-
age analysis software field to develop and implement cutting-edge methods, such as deep
learning, making them more easily accessible. No single piece of software can handle the
full diversity of bioimaging needs. Making tools interoperable and demonstrating how to
link them together is therefore a priority for COBA.

Here, we aim to highlight the strengths and weaknesses of ImageJ and CellProfiler and
showcase how these programs can be used in conjunction, and therefore more powerfully,
to build effective analysis workflows. We also give two use cases that illustrate the com-
plementary strengths of the two programs. The first protocol (Basic Protocol 1) involves
integrating the Fiji plugin TrackMate, for semi-automated cell tracking, into a CellPro-
filer pipeline for further analysis and measurements of cell morphology and migration
in time-lapse datasets. The second protocol (Basic Protocol 2) involves using Fiji’s fast
image manipulation and image exploration tools, specifically the Hyperstack and Make
Montage tools, to help verify that the segmentation results of a CellProfiler pipeline are
robust across a number of different image phenotypes. In both cases, the strengths of each
open-source platform are employed in a single workflow that best addresses researchers’
varying needs. We also describe future plans to improve upon these two projects’ interop-
erability. Overall, ImageJ and CellProfiler plan to continue their development as separate
programs, while constructively and collaboratively improving researchers’ experiences
and accessibility to leading image analysis techniques.

BASIC
PROTOCOL 1

STUDYING CELL MORPHOLOGY AND CELL MIGRATION IN
TIME-LAPSE DATASETS USING TrackMate (FIJI) AND CellProfiler

This protocol uses Fiji and CellProfiler to track the movement of cells and additionally
analyze the shape of the cells at each time point. Using this protocol, it is possible to

Dobson et al.

2 of 19

Current Protocols

https://forum.image.sc/
https://openbioimageanalysis.org/


Figure 1 Basic Protocol 1 uses 2-channel time-lapse videos as input: one channel contains a cytoplasmic
marker (A) and the other channel labeled nuclei (B). TrackMate finds positions of the nuclei (C) and tracks
them over time, while CellProfiler can take the TrackMate positions as input and identify cell outlines (D); scale
bar, 25 μm.

study the connection between variations in cell morphology and migration over time.
The protocol consists of two main steps: tracking the cells using the TrackMate plugin in
Fiji and then analyzing cell morphology using CellProfiler. With TrackMate, it is possible
to track the cells and also easily visually inspect and correct any errors in the tracking
results (Tinevez et al., 2017). CellProfiler is powerful for detecting and quantifying cell
morphology.

The workflow uses 2-channel time-lapse videos as input: one channel contains a cyto-
plasmic marker (Fig. 1A), the other channel labeled nuclei (Fig. 1B). The positions of
the nuclei over time are tracked using TrackMate. TrackMate returns the center of the
tracked object (visualized as small dots in Fig. 1C), but no information on the size and
shape of a tracked object. Using the module “IdentifySecondaryObjects” in CellProfiler,
we can use the position of the tracked nuclei as seeds for a ‘seeded’ watershed, which
identifies the outline of the cells by starting at the seed positions and following the in-
tensity profiles of the cytoplasmic marker image. We can then automatically extract a
large number of size and shape measurements using CellProfiler and link them back to
the tracking results from TrackMate.

Materials

CellProfiler 4.0.7+ (cloned from https://github.com/CellProfiler/CellProfiler or
downloaded from https://cellprofiler.org/releases)

Current version of Fiji (downloaded from https:// imagej.net/Fiji.html#Downloads)
The following files are all freely available via Zenodo

(https:// zenodo.org/record/4317505#.X9OvOflKhPY):
Fiji IJMacro script: create_LabelledMasks.ijm
CellProfiler pipeline: TrackMate_CellProfiler.cppipe
Matlab script: Plot_per_cell.m
Saved, manually curated TrackMate project:
crop_1_60_ManualCuration.xml

Saved Spots Results Table of manually-curated TrackMate project: Spots in
tracks statistics.csv

CellProfiler pipeline output: cp_output.zip
Example dataset: crop_1_60.tif (a subset of image data from

Shafqat-Abbasi et al., 2016)
Stack of labeled masks, output from TrackMate:
crop_1_60_TrackMate_LabelledMask.tif

Using TrackMate in Fiji: Preparations
1. Load your data (for this example, crop_1_60.tif) into Fiji by drag and drop or

using “File -> Open.” Dobson et al.

3 of 19

Current Protocols

https://github.com/CellProfiler/CellProfiler
https://cellprofiler.org/releases
https://imagej.net/Fiji.html#Downloads
https://zenodo.org/record/4317505#.X9OvOflKhPY


For tracking, we only need a time-lapse series of the fluorescently labeled nuclei. How-
ever, it is easier to inspect the tracking results in a hyperstack that contains both channels
(nuclei and cytoplasmic marker) over time. If the two markers are saved into two separate
files, open both files in Fiji and combine them by running “Image -> Color -> Merge
Channels.”

Track cell nuclei using TrackMate
2. Start TrackMate: “Plugins -> Tracking -> TrackMate.”

3. Double-check the calibration settings (Pixel width, Pixel height, Time interval), and
correct if necessary. Click Next.

4. Select the LoG detector.

The LoG detector applies a Laplacian of Gaussian (LoG) filter before detecting local
intensity maxima. The detector works best for bright round objects. Nuclei are not per-
fectly round; however, the LoG detector still tracks nuclei well in many cases. Errors in
the detection, and therefore the tracking, can be expected in cell lines with many non-
round nuclei. Using CellProfiler’s IdentifyPrimaryObjects module to identify and export
identified nuclei may produce better results in such cases. See CellProfiler’s Help for that
module for details.

5. In the GUI interface, select the channel with nuclei for object segmentation. Enter an
estimated blob diameter and a threshold. Click Preview for inspecting the settings.
Settings for the example dataset: segmented channel = channel 1, estimated blob
diameter = 20; threshold = 0.5.

The estimated blob diameter should reflect the expected nuclei diameter. If the entered
estimated blob diameter is set too low, the detector will find more than one detection per
nucleus. If the blob diameter is too high, difficulties can arise when two cells are close to
each other. You can estimate the diameter of a representative nucleus using the line tool in
the main toolbar of Fiji. Setting the threshold is a balance between detecting background
signals (threshold too low) and missing nuclei (threshold too high).

6. Wait until nuclei are detected. Click Next.

7. Initial thresholding; Click Next.

The initial thresholding can be adapted; however, in most cases, this is not needed when
the threshold in the LoG detector step was chosen properly.

8. Wait for the HyperStack Displayer to load. Click Next.

9. Set filters on spots. For the example data, it is not necessary to add a filter here. Click
Next.

Adding filters can help if there are too many erroneous spots detected. For adding a filter,
press the green “plus” symbol, and select a measure parameter to filter on in the drop-
down menu.

10. Select a tracker. Select the Simple LAP tracker.

The Simple LAP tracker does not account for cell division.

11. When choosing the Simple LAP tracker, the following parameters have to be set:
Linking max distance, Gap-closing max distance, Gap-closing max frame gap. Set-
tings for the example dataset: linking max distance = 25 microns, gap-closing max
distance = 25 microns, gap-closing max frame gap = 2. Click Next.

Linking max distance is the maximum distance the nuclei are expected to move from frame
to frame. To define a good value, draw a line using the line tool in the main toolbar of
Fiji and move one end of the line onto the center of one nucleus. Activate the next frame

Dobson et al.

4 of 19

Current Protocols



and drag the other end of the line to the new position of the nucleus. Then, measure the
length of the line using “Analyze -> Measure.”

Tracks can have gaps, e.g., when cells leave the field-of-view and then return or when the
detection fails in a frame. Gap-closing max distance is the maximum distance an object
can move within a gap to still be considered belonging to the same track. Gap-closing
max frame gap is the number of frames allowed for a gap.

12. Wait for the Tracker to be executed. Click Next.

13. Set filters on tracks. If needed, add filters by pressing the green “plus” symbol. For
the example data, no filters were used.

The choice of track filters depends on the dataset. For example, in a dataset where all
cells move, using Track displacement might help to filter out bright particles that stick
to the surface and are detected. Number of gaps can be useful to filter out tracks of low
detection quality. Be careful to not bias the data by filtering out tracks.

Save the analysis and export the tracking result
14. Click Save to the analysis as an .xml file.

It is important to save the .xml file for documentation of all tracking parameters. After
saving, click Resume.

15. Click Analysis. Save the table “Spots in tracks statistics” as a .csv file using “File
-> Save As…”.

Automatically, TrackMate will open three results windows: one window for measurements
of detected nuclei (spots), one window for the links from spot to spot, and one window
for entire tracks. For further analysis in this protocol, only the file Spots in tracks
statistics.csv is needed. Please see Critical Parameters below for how to tune
and manually correct tracking results in case the output from the automated tracking is
not satisfactory. Only a few manual corrections had to be done in the example dataset
using the parameters as specified in the protocol. The corrections consisted of closing
gaps, adding undetected frames at the end of a track, and splitting dividing cells. Load
the corrected .xml file, crop_1_60_ManualCuration.xml, and inspect the cor-
rected tracking result for the example dataset. The corresponding results table listing the
spots of the manually corrected data is available as Spots in tracks statis-
tics.csv.

Run create_LabelledMasks.ijm

he TrackMate results table Spots in tracks statistics.csv contains a list
of all spots (here nuclei detections) and gives their x,y position at specific time points,
t. It also lists to which track spots belong by listing the Track ID. The script, cre-
ate_LabelledMasks.ijm, creates a new time-lapse stack where for each time
point. The detections are represented as dots with a gray value encoding the TrackID.
The script is written in the IJ macro language.

16. Open the time-lapse file used for tracking and the “Spots in tracks” results table
output from TrackMate.

17. Open create_labelledMasks.ijm in Fiji by drag and drop. The script opens
within the Script Editor. Click Run.

18. Input dialog window. The macro needs to know the names of the time-lapse file and
the “Spots in tracks” results table. Adjust the defaults, if needed. Click OK.

19. Select the directory where the macro will save the output. Click Select.

20. The macro saves a stack of labeled masks into the chosen output directory. The name
of this file is NameOfTimeLapseFile_TrackMate_LabelledMask.tif.

Dobson et al.

5 of 19

Current Protocols



The labeled mask corresponding to the corrected tracking results of the example dataset
is available online (https:// zenodo.org/record/4317505#.X9OvOflKhPY).

Run CellProfiler
21. Open CellProfiler and import the pipelineTrackMate_CellProfiler.cppipe

(available in the same Zenodo folder as the input data) by dragging it to the part of
the screen that says “Drop a pipeline file here” or via “File -> Import -> Pipeline
from File…”.

22. To save the output of the pipeline after running, set the Default Output Folder using
“Output Settings -> Default Output Folder.”

23. Module Images: Drag and drop the original time-lapse file and the stack
of labeled masks that were output from TrackMate into the files list.
In the example dataset, these files are named crop_1_60.tif and
crop_1_60_TrackMate_LabelledMask.tif.

24. Module Metadata: Click “Extract metadata” and “Update.” Check the listed files;
each row represents a frame of the original time-lapse movie or a labeled mask from
TrackMate.

For the example dataset, there will be 180 rows in total. crop_1_60.tif consists of
a total 120 rows representing the 60 time points, and for each time point “T,” there are
two channels “C” (0, 1). crop_1_60_TrackMate_LabelledMask will be listed
as 60 rows, reflecting each time point of the stack, since the LabelledMask has only one
channel.

25. Module NamesAndTypes: Click “Update.” For each time point there should be
three types of images, labeled as “cytoplasm_marker,” “nuclei_marker,” and “track-
Mate_result.” The pipeline assumes that the nuclei are in channel 1 and the cyto-
plasm marker is in channel 2. If you have a reversed order, change to “Metadata Does
Have C matching 1” for the “nuclei_marker” images and “Metadata Does Have C
matching 0” for the “cytoplasm_marker” images.

26. Choose “Windows -> Hide All Windows on Run.”

27. Run “Analyze Images.”

28. Check the output in the Default Output Folder.

The output consists of a control image for each time point which shows the nuclei marker
(magenta), the cell marker (green), the outlines of the cells as detected by CellProfiler
(magenta), and the TrackID. Note that the CellProfiler TrackID = TrackMate TrackID+1.
The pipeline also saves four .csv files: cells.csv, Experiment.csv, Im-
age.csv, and trackMate_detection.csv, with cells.csv containing all the
important information for this workflow. cells.csv lists many parameters quantify-
ing the size and shape of the cells, as exported by the MeasureSizeShape module of Cell-
Profiler. Read more about the details of the measurement in the module’s Help. It also
contains the measurement “Intensity_MaxIntensity_trackMate_result_rescaled,” which
reflects the CellProfiler TrackID (= TrackMate TrackID+1).

BASIC
PROTOCOL 2

CREATING WHOLE-PLATE MONTAGES TO EASILY ASSESS
ADAPTABILITY OF SEGMENTATION PARAMETERS

CellProfiler is highly adaptable; researchers can create image analysis pipelines for
large datasets and tune segmentation parameters to perform well across many differ-
ent perturbations and phenotypes. There is a major challenge, however, for datasets
containing large numbers of image phenotypes, it can be extremely time consuming to
check segmentation parameters in enough fields to ensure that they reliably segment im-
ages of all phenotypes present in the set. This poses a particular challenge when someDobson et al.

6 of 19

Current Protocols

https://zenodo.org/record/4317505#.X9OvOflKhPY


Figure 2 An example for Basic Protocol 2 of primary (left) and secondary (right) object segmentations of
a particular site in CellProfiler. These images show reasonable segmentation. Image axes are pixels. Image
resolution is 0.656 μm/pixel.

phenotypes are rare, and the screener does not know which treatment(s) are likely to
produce these rare phenotypes. Missing a rare phenotype at the segmentation-checking-
stage can lead to poor segmentation of this phenotype, potentially causing at least one
of several undesirable outcomes: (a) a treatment that did produce a real change, but the
change is not captured in the segmentation and a true screening “hit” is identified as a
“miss,” (b) a poor segmentation that leads to the screener thinking a “hit” changes one
aspect of the cell (size) when it truly changes another (intensity), causing the screeners
to incorrectly pursue the wrong mechanism of action, and (c) a screener only later re-
alizing that their “hits” are due to segmentation errors and needing to rerun dozens or
hundreds of plates worth of segmentation and measurement results, costing both human
and computer time. All of these are worth avoiding where possible, but in practice having
a screener hand-check tens of thousands of segmentation results one-by-one is tedious,
and doing it quickly may cause screeners to miss the rare phenotypes for which they were
so diligently searching.

It is possible to use a workflow that allows easy checking of segmentations en masse.
It begins by running a CellProfiler pipeline that, after manually selecting segmentation
parameters for a subset of sample images (Fig. 2), is designed to export one segmen-
tation image per well of a multiwell plate, followed by a Fiji script that automatically
stitches these into a “pseudo-plate” image for easy review using Fiji’s Hyperstack and
Make Montage tools (Fig. 3). While this does not guarantee finding all rare phenotypes,
since the screener is only visualizing the results of one field per well (and typically more
than one field is acquired in each well), it creates a more acceptable tradeoff between the
hands-on time required by the image analysis specialist and the likelihood that most rare
phenotypes will be viewed and have their segmentation assessed. In theory, a CellProfiler-
only version of this workflow can be created using the CellProfiler Tile module, but the
CellProfiler-Fiji hybrid solution is orders of magnitude faster to execute and higher qual-
ity, as it allows more customized viewing of the output plate montages in the end; in Fiji,
brightness and contrast can be adjusted for the whole plate, individual channels can be
toggled on and off, the lookup tables of individual channels can be adjusted, and so on.

The CellProfiler section of the protocol here assumes that the dataset contains two chan-
nels, one a nuclear marker and one a whole-cell marker, but this approach, and the down-
stream Fiji script, are adaptable to any number of channels and/or objects; information
on how to customize the pipeline to your exact needs is provided in the notes. Dobson et al.

7 of 19

Current Protocols



Figure 3 For Basic Protocol 2, a whole-plate stitch (A) with area to be inset selected; scale bar, 250 μm. Inset
of the whole plate stitch covering wells A01-C03 (B); scale bar, 50 μm. In both images, magenta = DAPI, green
= phalloidin + WGA, cyan = nuclear outlines, and white = cell outlines.

Materials

CellProfiler 4.0.7+ (cloned from https://github.com/CellProfiler/CellProfiler or
downloaded from https://cellprofiler.org/releases)

Current version of Fiji (downloaded from https:// imagej.net/Fiji.html#Downloads)
BBBC025_AssayDevelopment.cppipe (provided as Supporting

Information)
CellCounts.ipynb (provided as Supporting Information)
Make_fiji_montages.py (provided as Supporting Information)
Test image dataset, BBBC025 (https://bbbc.broadinstitute.org/BBBC025)

Configure image sets in CellProfiler
1. Open CellProfiler and import the CellProfiler .cppipe pipeline file by dragging to

the part of the screen that says “Drop a pipeline file here.”

2. Load images by dragging a folder of images to the part of the screen that says “Drop
files and folders here.”

3. Configure the Metadata module to extract metadata from the file and/or folder
names; at a minimum, information about the plate name, well name, and site should
be extracted for each image.

This information is required to make sure that the pipeline processes a single site for each
well and that it correctly outputs the images into a separate folder for each plate.

4. Configure the NamesAndTypes module to recognize the channels in your image set.

NamesAndTypes is currently set up for two input channels (one corresponding to nuclei,
and one corresponding to cells), but to customize to your own data you can use anywhere
between one and hundreds of channels; see the module help for more information. Name-
sAndTypes is currently set up to use Site 1 from each well; if you would prefer a different
site, you can change the “Metadata Does Have Site matching 1” line for each channel
to use whichever site you like.

Perform initial assay development in CellProfiler
5. Open CellProfiler’s Test Mode by clicking the “Start test mode” button at the bottom

left corner of the program.

CellProfiler can be run in two modes: TestMode, where one image is assessed at a time,
step-by-step, interactively, and AnalysisMode, where all images are run sequentially.

Dobson et al.

8 of 19

Current Protocols

https://github.com/CellProfiler/CellProfiler
https://cellprofiler.org/releases
https://imagej.net/Fiji.html#Downloads
https://bbbc.broadinstitute.org/BBBC025


While you are testing your settings, you will want to use TestMode; once your config-
uration is complete, you will use AnalysisMode.

6. Hit the “step” button twice to run the IdentifyPrimaryObjects and IdentifySec-
ondaryObjects modules on your initial dataset to visualize your initial nucleus and
cell segmentation, respectively.

CellProfiler can be set up to analyze as many types of objects as you would like; in gen-
eral, add more IdentifyPrimaryObjects modules to identify objects purely from a given
image channel, and IdentifySecondaryObjects modules to identify objects based on a
given channel plus a “seed object.” For example, one could identify nuclei in the DNA
stain channel using IdentifyPrimaryObjects, then use IdentifySecondaryObjects to ex-
pand those nuclei to find cell borders in a channel where cell bodies are stained. See
the in-program Help for each module (buttons marked with “?”), as well as Critical
Parameters in the Commentary of this article for links to more resources. If you do
add/subtract/change objects in the pipeline, you will need to perform the optional step
11 in this protocol.

7. If needed, adjust the parameters in IdentifyPrimaryObjects and/or IdentifySec-
ondaryObjects to improve segmentation quality on your initial image set. Click
“step” to execute any changes you make.

The “?” button next to each setting gives information on what the setting does, as well as
advice on adjusting it. See Critical Parameters for links to more comprehensive resources
on adjusting these modules.

8. Choose another image at random by going to the “Test” menu and selecting “Choose
random image set.”

If, instead of selecting an image set at random, you wish to navigate to a particular image,
you may do so by going to the “Test” menu and then selecting “Choose Image Set.” A
list of all of the loaded images and their metadata values will be populated. You can sort
by whichever metadata value you like; select the image you want to test and then click
“Ok” to load that image into TestMode.

9. Repeat steps 6-8 until your segmentation parameters look suitable on many consec-
utive image sets. This may take many iterations. Reasonable segmentation examples
are shown in Figure 2.

Save your work intermittently by going to File -> SaveProject to avoid losing your work
if a crash should occur.

Prepare CellProfiler to run assay development on plate(s) of data
10. Exit Test Mode by clicking the “Exit Test Mode” button.

11. Optional: If needed, adjust your OverlayOutlines and SaveImages settings.

This is necessary if you have adjusted the number of channels, names of channels, num-
ber of objects, or names of objects; generally, you need one OverlayOutlines module
per object, and one SaveImages module for each image and object to be assessed. See
Troubleshooting for more information if you have trouble with this step.

12. Prevent the opening of any windows during the final run by selecting the “Windows”
menu, and then selecting the option “Hide All Windows On Run.”

This reduces processing time; you can keep individual windows open to monitor if you
prefer.

13. Select the “Output Settings” button and set the Default Output Folder where you
want the output image files to be saved.

You do not need to adjust the Default Input Folder in this pipeline. The Images module
contains the information about image file location, and there are no other inputs. Dobson et al.

9 of 19

Current Protocols



14. Save the final copy of your project file, containing the image and pipeline informa-
tion, by going to File -> Save Project.

15. Click “Analyze Images” to analyze all images.

Create plate montages
16. Open Fiji, and open the Fiji script, make_fiji_montages.py (provided as Sup-

porting Information), by dragging-and-dropping the script onto the main Fiji toolbar.

Alternatively, to make this script permanently accessible from within Fiji, rename the
script such that it starts with an underscore (“_”) and put it in your Fiji installation’s
“Plugins” folder; upon rebooting Fiji, the script can be accessed in Fiji’s “Plugins”
menu for as long as the file is in this location.

17. Execute the script by clicking “Run.”

If you are executing this script from the plugins menu, simply click on the name of the
plugin in the plugins menu.

18. Answer the script’s prompts to provide the folder where your CellProfiler-produced
images were saved (i.e., the CellProfiler output folder that contains the folder of
output images and the .csv files), as well as the number of columns and rows, and
the scale (1× size the original images, 0.5×, etc) at which you want to save the
output montage.

19. Allow the script to execute. “Command finished” will appear in the Fiji bar when it
has completed.

Review plate montage images
20. When processing completes, you may open the finished montages in Fiji.

21. Examine the montages (Fig. 3) for all plates to check for appropriate segmentation in
all wells. Note any plates and/or wells you think are performing particularly poorly.

To adjust the zoom of your montage, use the “Image -> Zoom” menu; to toggle colors
on and off, use the “Image -> Color -> ChannelsTool” menu-item-tool; to adjust the
brightness of each channel, use the “Image -> Adjust -> Color Balance” menu item
tool; to adjust the displayed color of each channel, make sure that channel is selected in
Fiji using the channel slider at the bottom of the montage, and then select a new colormap
in the “Image -> Lookup Tables” menu.

22. When all plates have been examined, assess if you think the segmentation errors
you have seen warrant adjustment of your segmentation pipeline. If so, repeat steps
5-21 as needed, using the notes you made in step 21 to guide your manual image
selections as you run step 8.

Be sure to check some images that worked well (plates and wells that were not on your
list), as well as ones that worked poorly, to make sure you are not sacrificing segmentation
of most images to fix things for only few, rare phenotypes. Achieving perfect segmentation
is typically impossible, so your goal is simply to maximize the proportion of samples with
suitably decent segmentation results.

23. When you are satisfied with your segmentation parameters, you may finalize your
CellProfiler pipeline to prepare it for full-scale analysis by (a) removing the site
filter in your NamesAndTypes module, (b) removing all modules after the initial
segmentation modules, (c) adding any measurements you need for your phenotypes,
and (d) saving your project with a new name using the “File -> Save Project As”
function in CellProfiler.

Dobson et al.

10 of 19

Current Protocols



Sample data

The sample pipeline and script are designed to be run on image set BBBC025 (https:
//bbbc.broadinstitute.org/BBBC025) from the Broad Bioimage Benchmark Collection
(Ljosa, Sokolnicki, & Carpenter, 2012). The pipeline minimally requires the Hoechst and
PhGolgi channels from any single plate, but was optimized on plates 37,983 + 38,002; the
additional channels of this experiment can easily be added as described in the CellProfiler
sections of the protocol.

COMMENTARY

Background Information
ImageJ has been a mainstay in the image

analysis community since its inception in 1987
at the National Institutes of Health (NIH).
Originally called NIH Image, it was devel-
oped by Wayne Rasband with the intention to
be easily and openly shared and extended via
code contributed by the scientific community
at large. Rasband proposed from the start the
idea that this program would have third-party
contributors that could customize and develop
their own analysis components, making this
a user-driven open-source project. Sun Mi-
crosystems released a Java programming lan-
guage that could run on any operating system
in 1995, which would allow programmers to
“write once, run anywhere.” This is what led
to the transition of NIH Image, originally writ-
ten in Pascal, to Java, and to the first release of
ImageJ (Schneider et al., 2012).

The driving design concept behind NIH Im-
age and ImageJ was to keep things simple, in
particular the interface, which is minimalist
and has remained essentially the same to this
day. However, this interface ‘hides’ the true
power and extensibility behind this platform.
Because of the developer community orienta-
tion of ImageJ, it had to be made easily exten-
sible by outsiders, as opposed to a centralized
development model. Rasband achieved this
through the use of macros and plugins. Macros
are short, customizable scripts that allow re-
searchers to automate their analysis workflows
using existing features and commands within
the software. Plugins are more advanced, mod-
ular software elements that extend the func-
tionality of the software. Plugins were either
integrated into ImageJ if Rasband saw their
global utility or were available for download
from third-party sites (Schneider et al., 2012).
This decentralized development is what has
led to one of ImageJ’s greatest strengths as an
image analysis platform: the ImageJ commu-
nity of users and developers.

ImageJ has, to this day, remained a
community-driven open-source project. The
development of Fiji, a distribution of ImageJ

primarily focused on biological-image analy-
sis which began in 2007, allows for the for-
mal sharing of new algorithms with end users
through an integrated update system (Schin-
delin et al., 2012). ImageJ and Fiji have con-
tinued down the original path set out by Ras-
band years ago: to remain a ‘federation’ of de-
centralized developers driven by community
needs. The core ImageJ team, which includes
developer leadership by the Eliceiri laboratory
at the University of Wisconsin-Madison and
many collaborators around the world, does de-
velop and improve the architecture of the en-
tire ImageJ ecosystem (Rueden et al., 2017).
However, its main goal is to drive independent
learning and development as opposed to lim-
ited analysis support and code production in-
house.

ImageJ was developed with the self-taught
coder at the bench in mind. It is oriented to-
wards single-image processing and is quite
customizable via scripting, etc. Users can add
their own functionality as well, focusing on
their own research priorities for analysis so-
lutions. Therefore, the target audience for Im-
ageJ remains the bench biologist who is able
to find existing plugins or macros for a given
task, and even someone who is willing to put
in the time and effort needed to script and ex-
pand the functionality of the program. It also
targets users who need a platform for initial
image viewing, editing, and processing. Im-
ageJ is an ideal platform for efficient image
inspection and testing/building potential anal-
ysis workflows. Large-scale analysis is possi-
ble with ImageJ via integrations with KNIME,
an analytics platform for visually construct-
ing nonlinear workflow graphs whose nodes
perform steps such as data mining, machine
learning, image processing, and text analysis
(Berthold et al., 2008; Dietz & Berthold, 2016;
Dietz et al., 2020; Fillbrunn et al., 2017).

CellProfiler, another mainstay platform
in open-source image analysis, was started
in 2003 by Anne E. Carpenter and Thouis
(Ray) Jones in the Sabatini Laboratory at
the Whitehead Institute for Biomedical Dobson et al.

11 of 19

Current Protocols

https://bbbc.broadinstitute.org/BBBC025
https://bbbc.broadinstitute.org/BBBC025


Research and Golland laboratory at MIT’s
Computer Science & Artificial Intelligence
Lab. CellProfiler was originally born out
of necessity, as driven by the work of Car-
penter, a cell biologist who saw a need for
user-friendly software for more advanced,
large-scale image analysis (Carpenter, 2020).
CellProfiler was initially released in Decem-
ber 2005, originally developed in MATLAB
(Carpenter et al., 2006); it was re-written in
Python and released as CellProfiler 2.0 in
2010 (Kamentsky et al., 2011). Support for
volumetric analysis of 3D image stacks and
optional deep-learning modules was added
in the release of version 3.0 in October 2017
(McQuin et al., 2018). The recent release
of version 4.0 in September 2020 included
improvements to speed, usability, and utility,
including a migration to Python 3 (https:
//carpenterlab.broadinstitute.org/blog/cell
profiler-40-release-improvements-speed-utility
-and-usability). The CellProfiler project is
currently actively maintained by the Carpenter
lab at the Broad Institute of Harvard and MIT.

Unlike ImageJ, CellProfiler was specifi-
cally designed for larger-scale experiments
and building modular, reproducible analysis
pipelines. The clear inputs and outputs of its
modules can be easily pipelined into exten-
sive analysis workflows. Most of CellProfiler’s
user base is unfamiliar with code, mainly con-
sisting of biologists who aim for user-friendly,
“point and click” solutions to their analysis
needs. Users rely on the CellProfiler team at
the Carpenter lab for their analysis and de-
velopment expertise; their top-down design
results in heavy curation of CellProfiler fea-
tures and extensive, consistent documentation
that readily orients beginners to making their
own analysis pipelines without a need for
coding.

As both tools encompass a large fraction
of the commonly required algorithms required
for most image analysis tasks, the choice of
ImageJ versus CellProfiler for a given analy-
sis task is often based on the user’s personal
preferences. ImageJ’s interactive nature and
ease of image exploration make it a common
first tool for exploring any image set, partic-
ularly multi-dimensional images (time-lapse,
3D, or both). Users often choose to use ImageJ
for an analysis task when taking advantage of
the large number of plugins added to ImageJ
by its community, when the number of im-
ages to be analyzed is small, when the analy-
sis of each image needs to be individually cus-
tomized, and/or when the user is comfortable
with scripting and so can automate a series

of steps using ImageJ’s fast processing func-
tionalities. Likewise, users often choose Cell-
Profiler to analyze their experiments based on
the ability to easily reproduce results and build
standard point-and-click workflows from cu-
rated, documented modules with clear inputs
and outputs, the large measurement suites that
make it easy to deeply analyze each image
set and carry out machine learning-based clas-
sification, and/or the ease with which analy-
ses can be scaled to large image sets with-
out the need to write macros or scripts. For
this reason, it is commonly used in pharma-
ceutical and academic high-content screening
centers.

Some algorithms and strategies, however,
are only available in one tool or the other,
and a language divide (Java vs. Python) makes
it non-trivial to exchange code directly be-
tween the programs, leading to demands for
interoperability. At the simplest level, users
can employ the tools in sequence, as demon-
strated in the protocols here; in these cases,
images saved to disk form the bridge be-
tween the first and second tools in the se-
quence. Enabling ImageJ and CellProfiler to
directly interoperate began with a bridge to
run ImageJ macros in the context of CellPro-
filer pipelines in CellProfiler 2.1 (Kamentsky
et al., 2011), a functionality that has since
been deprecated over the years due to main-
tenance burden. Because of their now formal
commitment as a collaborative organization
via COBA, ImageJ and CellProfiler have re-
newed their dedication to creating and main-
taining direct bridges between the two plat-
forms. As a result, a new CellProfiler module
was developed in CellProfiler 4.0.8 (RunIm-
ageJMacro), which allows users to pass im-
ages and variables to an ImageJ macro or
script from a CellProfiler pipeline and receive
images back from ImageJ that they can use
in the rest of their CellProfiler pipeline. This
bridge is just the beginning of more advanced
interoperability to come, such as the ability to
use both tools together in the context of script-
ing and workflow management tools such as
KNIME.

Critical Parameters

Basic Protocol 1
The critical parameters in TrackMate are

the initial parameters for spot detection (step
5) and the linking parameters. A good track-
ing result is essential for downstream analyses,
and improvements may be achieved adjusting
the parameters for detection and track linking

Dobson et al.

12 of 19

Current Protocols

https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability
https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability
https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability
https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability


(steps 6, 8, 10, and 14). Read more about the
parameters and settings of TrackMate online
(https:// imagej.net/TrackMate).

It is advisable to adjust the lookup ta-
ble of both channels (nuclei and cytoplasm)
for best possible visual inspection of tracks.
Do this using “Image -> Color -> Chan-
nels Tool.” Toggle between “Composite” and
“Gray Scale” visualization when inspecting
the tracking result.

Manual correction should be avoided as
much as possible, since it is time consuming
and non-reproducible. In many cases, how-
ever, some manual corrections of the track-
ing results are unavoidable. TrackMate allows
users to add and delete detections, and mod-
ify their position. Also, several tracks can
be linked to one, and one track can be split
into several individual tracks. Shortcuts sup-
port the user doing this efficiently. Read the
documentation about how to manually curate
tracking results (https:// imagej.net/Manual_
editing_of _tracks_using_TrackMate). When
following this protocol for subsequent cell
morphology analysis, the following correc-
tions are crucial:
Avoid gaps in tracks: Add a detection

manually, and link it to a track to fill the
gap.

Dividing cells: The Simple LAP tracker gives
one daughter cell the track ID of the
mother cell and the other a new track ID.
This is useful because for this workflow it
is not possible that two cells share the
same track ID. Depending on the scope of
the analysis, it can make sense to
manually split the track after division such
that both daughter cells receive a new
track ID and are treated individually from
the mother cell.
After correcting the tracks, do not forget

to save the .xml file under a new name,
and also click Analysis again to obtain and
save a new Spots in tracks statis-
tics.csv results file.

The critical parameters in CellProfiler are
the parameters of IdentifySecondaryObjects
(step 7), since they define the detection of the
cell borders.

Image data has to be suitable for tracking
and segmentation: the nuclei and cell mark-
ers should have a high signal intensity com-
pared to the background, but signals should
not be saturated. High cell densities should
be avoided, and the frame rate has to be ad-
justed such that the cells are still easy to link
from frame-to-frame (i.e., minimal cell dis-
placement from frame-to-frame).

Basic Protocol 2
Segmentation accuracy is driven by ad-

justing the suite of settings in IdentifyPrima-
ryObjects and/or IdentifySecondaryObjects
in parallel (steps 6-8). The full descrip-
tion of how to adjust these parameters to
any dataset the user may want is outside
the scope of this manuscript; the CellPro-
filer manual (https://cellprofiler-manual.s3.
amazonaws.com/CellProfiler-4.0.7/modules/
objectprocessing.html) contains an expla-
nation of all parameters, and our written
(https://github.com/CellProfiler/ tutorials)
and video (https://www.youtube.com/
playlist?list=PLXSm9cHbSZBBy7JkChB32_
e3lURUcT3RL) tutorials also cover these
concepts in detail. It is not typically possi-
ble to find parameters that work perfectly
on every cell in every image; the goal is
to find parameters that treat all images
fairly and work well for the vast majority
of cells in each image. See our blog post
(https://carpenterlab.broadinstitute.org/
blog/when-to-say-good-enough) on assessing
image quality and when a pipeline is “good
enough.”

When running the Fiji script, adjusting the
scale parameter in the script is essential to the
usefulness of the stitched montages. At too
small a scale, the montage may be so down-
sampled that segmentation quality cannot be
accurately assessed; at too large a scale, the
montage may be too large for the user to open.
It is reasonable to start at the default-provided
parameter of 1, and adjust empirically based
on the size of your original image, the number
of channels, and the size of the objects whose
segmentation you wish to assess.

Troubleshooting

General
When troubleshooting integrated ImageJ

and CellProfiler protocols such as those pre-
sented in this article, the best location to dis-
cuss hurdles and gain potential solutions is the
Scientific Community Image Forum (https://
forum.image.sc/ ). Due to the variability and
uniqueness of such integrated protocols, spe-
cific questions can be posted on the forum
to gain insight from experts within the entire
open-source community, including the authors
of this article, who regularly frequent the fo-
rum.

Basic Protocol 1
When observing cells over time and ex-

tracting measurements, there are typically
two types of errors: errors in the tracks and

Dobson et al.

13 of 19

Current Protocols

https://imagej.net/TrackMate
https://imagej.net/Manual_editing_of_tracks_using_TrackMate
https://imagej.net/Manual_editing_of_tracks_using_TrackMate
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/modules/objectprocessing.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/modules/objectprocessing.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/modules/objectprocessing.html
https://github.com/CellProfiler/tutorials
https://www.youtube.com/playlist?list=PLXSm9cHbSZBBy7JkChB32_e3lURUcT3RL
https://www.youtube.com/playlist?list=PLXSm9cHbSZBBy7JkChB32_e3lURUcT3RL
https://www.youtube.com/playlist?list=PLXSm9cHbSZBBy7JkChB32_e3lURUcT3RL
https://carpenterlab.broadinstitute.org/blog/when-to-say-good-enough
https://carpenterlab.broadinstitute.org/blog/when-to-say-good-enough
https://forum.image.sc/
https://forum.image.sc/


errors in how the cells are segmented or out-
lined. Here, we describe how to detect errors,
and what effect they may have on the final
result. There are two straightforward ways to
detect both segmentation and tracking errors:
(1) look for outliers in the final result and (2)
browse through and visually inspect the final
output. The output from CellProfiler, includ-
ing outlines of cytoplasms and TrackID num-
bers from the tracking, can be easily re-opened
and interactively viewed in Fiji, as described
below. If outliers are detected in the final re-
sults, the same approach can be used, focus-
ing on the cells and time frames corresponding
to the outliers. The following troubleshooting
steps may be appended to Basic Protocol 2:
29. Run “File -> Import -> Image

Sequence…” and select the first image of
the series in the output folder. Fiji loads
the output images into one stack.

30. Browse through the images and inspect
whether outlines of cytoplasms have been
sufficiently well detected. If there are too
many incorrect outlines, go back to
CellProfiler and adjust the settings for
identifying the cytoplasm in
IdentifySecondaryObjects.
For detecting tracking errors, focus on the

TrackID number while browsing through the
stack. If the number disappears in a frame, the
track contains a gap. There is a problem in
linking the nuclei if the number changes from
one frame to another or if a number appears
on top of another nucleus. Go back to Track-
Mate in Fiji to adjust settings to try to reduce
tracking errors.

Changing the settings of IdentifySec-
ondaryObjects:
31. To visually examine the result on a given

time frame, click Start Test Mode and use
“Test -> Choose Image Set” in the top
menu to choose one of the time frames in
which you detected incorrect
segmentations. Note that the time frames
start with Frame = 0 for the first frame in
CellProfiler, but t = 1 in Fiji.

32. Click on the grayed-out eye symbol next
to IdentifySecondaryObjects to open the
eye.

33. Click Run.
34. In the Module IdentifySecondaryObjects,

check which settings work best for the test
image.

35. Click Step, and inspect the output of
IdentifySecondaryObjects.

36. Load other time frames of the stack using
“Test -> Choose Image Set” to check

whether the settings are generally
applicable to the stack. Click Run to run
the pipeline on the chosen test image.

37. Exit Test Mode, and re-run the analysis
using Analyze Images.
Re-loading the tracking result in Track-

Mate and correcting for tracking errors:
38. Run “Plugins -> Tracking -> Load a

TrackMate file” to open the .xml file
saved. TrackMate will open the
TrackMateGUI already at the step
“Display option” and also the time-lapse
movie used for tracking.

39. Correct the tracking result as described in
this protocol under ‘Tune and Manually
Correct the Tracking Result’.

40. Save the new .xml file under a new
name using the “Save” button of the
TrackMate GUI.

41. Click Analysis, and save the results table
“Spots in tracks
statistics.csv.”

42. Re-run
create_LabelledMasks.ijm as
described under the section ‘Run
create_LabelledMasks.ijm’ in
this protocol.

Effect of errors
The effect of errors while tracking depends

on the goal of the analysis. If the goal is to
monitor an overall effect of, e.g., adding a
perturbant to the cell culture, mixing up two
tracks may have little effect on the final result.
However, if the actual behavior of individual
cells in a heterogeneous population is crucial,
care should be taken to correct the TrackMate
output.

Gaps in tracks can result in segmentation
errors if the cell containing the tracking-gap is
close to another one.

The CellProfiler pipeline may over- or
under-estimate the shape, size, and intensity
measurements of individual cells as a re-
sult of segmentation errors. This may hap-
pen if the cytoplasms become very extended
and fragmented, meaning that long protru-
sions may partially fall below the intensity
threshold in the segmentation step. To keep
track of the potential effect of segmentation
errors, it may be a good idea to add a step
to the pipeline where the total number and
area of cytoplasmic objects that are above
the intensity threshold are measured. Com-
paring this number to the total cell area will
give a hint on cell fragmentation in large-scale
experiments.Dobson et al.

14 of 19

Current Protocols



Basic Protocol 2
Users should take care that, when adjusting

the number or names of channels used and/or
the number or names of objects whose seg-
mentation is to be tested, they adjust any nec-
essary modules downstream of their changes.
Modules that need to be adjusted will have
a red “X” next to them, which will tell you
the error if you hover over it; modules that do
not need to be adjusted will have green checks
next to them.

As a rule of thumb, the CellProfiler
pipeline should include one SaveImages mod-
ule for every raw image the user wants to
see in their segmentation montage and one
Identify(Primary/Secondary/Tertiary)Objects
+ one OverlayOutlines + one SaveImages
module for each object whose segmentation
needs to be examined. Users may include
more modules as they like, such as an Ex-
portToSpreadsheet module to export object
counts or measurement modules to assess
object properties, such as size or intensity,
for troubleshooting. In order to correctly
batch the data by plate, it is important that
each SaveImages module use the “Default
Output Folder SubFolder” option, with the
subfolder set to the plate metadata so that
the Fiji script has the structure it requires to
run.

The Fiji script assumes that all rows and
columns are full and that the total number
of images present must be divisible by the
stated number of rows × columns; it will oth-
erwise refuse to stitch. Users should there-
fore be careful that all the CellProfiler out-
put data is complete before executing the Fiji
script and that no other image files are present
in the plate subfolders. No other subfolders
(i.e., data subfolders) should be present in
the folder containing the plate subfolders, but
files not in subfolders are fine and will be
ignored.

If the actual plate layout is such that not all
rows and/or columns contain the same num-
ber of wells, the user can choose to load into
CellProfiler only those rows/columns that do
form a complete rectangle, or can fill in miss-
ing data by duplicating and renaming existing
image data to stand in for data from missing
wells.

Statistical Analysis

General
Data produced by the described proto-

cols can also be exported via Windows Ex-
cel, Google Sheets, R, KNIME, etc., for fur-

ther processing and analysis; use the Export-
ToSpreadsheet module of CellProfiler (or Ex-
portToDatabase if you prefer that format).

Basic Protocol 1
Statistical analysis depends on the research

question. Typical parameters for analyzing
cell motility are mean square displacement,
analysis of the turning angles between frames,
and distribution of turning angles (Beltman,
Marée, & de Boer, 2009). CellProfiler out-
puts a .csv file, cells.csv, with a large
number of measurements per cell and time
point. It does not automatically output veloc-
ity, but as x and y coordinates are provided
for each time frame, this velocity can eas-
ily be calculated. Using a short Matlab script,
plot_per_cell.m, we calculated veloc-
ity and created a scatter plot of velocity, form
factor, and area, where each dot represents a
specific cell at a given time point (Fig. 4A).
From this plot, we can see that cells with small
area and small form factor have lower veloc-
ity, while larger cells tend to have higher form
factor and higher velocity. This could be sta-
tistically verified by measuring the coefficient
of determination (R2) between, e.g., per-cell
mean area and mean velocity. Next, we also
plotted area per cell over time (Fig. 4B). This
plot is useful for determining tracking and
cell segmentation quality, as smooth variations
over time should be expected. These types of
plots are also useful when, e.g., visualizing
and quantifying changes over time, such as
the effect of a perturbant added at a specific
time point. For statistical analysis, mean and
standard deviation in per-cell change over time
may be useful.

Understanding Results

Basic Protocol 1
As described in the statistical analysis

and Figure 4, there are a number of differ-
ent ways the output data can be used. The
cells.csv format is a simple comma-
separated data file, where each row represents
a cell in a given time point. The feature
measurements extracted by CellProfiler are
named at the top of each column of the data
file, and many of them are self-explanatory.
For detailed descriptions, see the manual
for the corresponding measurement mod-
ules in CellProfiler. As mentioned above, it
is important to notice that it is the “Inten-
sity_MaxIntensity_trackMate_result_rescaled”
that reflects the TrackID from TrackMate.
The corresponding ID numbers are shown

Dobson et al.

15 of 19

Current Protocols



Figure 4 The per-cell and per-time-frame measurements output by CellProfiler for Basic Protocol 1 can be
processed in many ways. A scatter plot (A) of velocity, form factor, and area, where each dot represents a
specific cell at a given time point, shows the relationship between shape and motion, while (B) shows variation
in area per cell over time. CellProfiler also provides cell IDs and outlines (C); scale bar 25 μm.

Figure 5 The cell counts from each image exported by CellProfiler’s ExportToSpreadsheet mod-
ule for Basic Protocol 2, as broken down by plate.

on top of the individual cells as shown in
Figure 4C.

Basic Protocol 2
It is very difficult to assess segmenta-

tion quantitatively without laborious creation
of a ground truth; however, in our sam-
ple datasets with our preferred segmenta-
tion pipeline, we achieved a mean ± stan-
dard deviation of 109 ± 62.5 cells per im-
age, distributed as per Figure 5. These data
were analyzed in a Jupyter Notebook, Cell-
Counts.ipynb, using pandas 1.1.4 and
seaborn 0.11.0 (Kluyver et al., 2016; McK-
inney, 2010; Reback et al., 2020; Waskom
& The Seaborn Development Team, 2020),
which can also be used to reproduce results of
your own segmentation parameters.

Time Considerations

Basic Protocol 1
Processing of the example dataset takes

only few seconds (detection and linking) in

TrackMate and 2-3 min in CellProfiler (sys-
tem: IntelR CoreTM i7-6700HQ CPU @ 2.60
GHz, 2601 Mhz, 4 Core(s), 8 Logical Pro-
cessor(s), 32 GB RAM). Manually inspecting
the tracking results and correcting them can
take up to several hours, and the time invest-
ment has to be considered. The decision of
whether the time for manually correcting the
tracking results is acceptable depends on both
the dataset and the research question.

Basic Protocol 2
The amount of time needed to complete

the CellProfiler section will depend on the
number of images to be run, the number
of objects per image, and the number of
CPUs available on which to run; the 768
fields of view from two sample plates of
BBBC025, which contain on average 100-200
cells per image, took approximately 25 min
to complete in CellProfiler 4.0.7 utilizing
4 of the 8 cores of a MacBook Pro (Intel
Core i7 3.1 GHz, 16 GB of RAM). A cluster

Dobson et al.

16 of 19

Current Protocols



can be utilized to speed processing of very
large datasets; see this manual page (https:
//cellprofiler-manual.s3.amazonaws.com/
CellProfiler-4.0.7/help/other_batch.html)
and this GitHub page (https://github.com/
CellProfiler/CellProfiler/wiki/
Adapting-CellProfiler-to-a-LIMS-environment)
for more information on running CellProfiler
on a cluster.

The Fiji section will likewise somewhat de-
pend on the size of the images and the num-
ber of channels the user would like to assess;
for the sample data, which had a 1080 × 1080
pixel image size, four input channels (two im-
age channels and two outline overlay chan-
nels), and 384 wells, execution took 2-3 min
per plate on the same machine as the CellPro-
filer assessment.

Future Directions
There is great value in using the ImageJ

and CellProfiler programs separately. How-
ever, we hope that we have conveyed the
strength in using them together in combined
image analysis workflows to best harness their
individual strengths. ImageJ and CellProfiler
complement each other quite well, and given
their commitment via COBA, there remain
opportunities to improve existing bridges be-
tween them. One of the major hurdles has been
the divide in languages for development be-
tween Java and Python. However, PyImageJ, a
recently developed Python wrapper for ImageJ
(https://github.com/ imagej/pyimagej), allows
for the mixing and matching of image process-
ing routines from ImageJ, including plugins
and scripts, with Python-side image process-
ing (e.g., scikit-image, ITK, and OpenCV).
Therefore, PyImageJ will allow for even more
convenient use of ImageJ and CellProfiler
platforms in the same workflow, providing a
strong step towards improved, long-term inter-
operability.

Acknowledgments
This work was supported by the National

Institutes of Health (NIH P41 GM135019 to
A.E.C. and K.W.E.), the SciLifeLab BioIm-
age Informatics Facility, the Swedish Founda-
tion for Strategic Research (SSF–SB16-0046),
and Network of European BioImage Analysts
(NEUBIAS). We thank the thousands of users
and developers of bioimage analysis software
who have improved the tools and created a
welcoming and helpful community. We also
thank Erin Weisbart for her editing of the
manuscript, as well as Staffan Strömblad for

sharing the example image data used in Basic
Protocol 1.

Author Contributions
Ellen T.A. Dobson: Conceptualization,

Formal analysis, Investigation, Methodology,
Validation, Visualization, Writing-original
draft, Writing-review & editing, Beth Cimini:
Formal analysis, Investigation, Method-
ology, Validation, Writing-original draft,
Writing-review & editing, Anna H. Klemm:
Data curation, Formal analysis, Investiga-
tion, Methodology, Validation, Visualization,
Writing-original draft, Writing-review &
editing, Carolina Wählby: Funding acqui-
sition, Resources, Software, Supervision,
Writing-original draft, Writing-review & edit-
ing, Anne E. Carpenter: Conceptualization,
Funding acquisition, Project administration,
Resources, Supervision, Writing-original
draft, Writing-review & editing, Kevin W
Eliceiri: Conceptualization, Funding acqui-
sition, Project administration, Resources,
Software, Supervision, Writing-original draft,
Writing-review & editing

Conflicts of Interest
The authors declare no conflicts of interest.

Data Availability Statement
The data that support the findings of

this study are openly available in https:
// zenodo.org/record/4317505#.X9OvOflK
hPY https://bbbc.broadinstitute.org/BBB
C025 and the supplementary material of this
article.

Literature Cited
Beltman, J. B., Marée, A. F. M., & de Boer, R. J.

(2009). Analysing immune cell migration. Na-
ture Reviews. Immunology, 9, 789–798. doi: 10.
1038/nri2638.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R.,
Kötter, T., Meinl, T., … Wiswedel, B. (2008).
KNIME: The konstanz information miner. In C.
Preisach, H. Burkhardt, L. Schmidt-Thieme, &
R. Decker (Eds.), Data analysis, machine learn-
ing and applications (pp. 319–326). Berlin Hei-
delberg: Springer.

Carpenter, A. E. (2020). Bridging domain and data.
Patterns, 1, 100064.

Carpenter, A. E., Jones, T. R., Lamprecht, M. R.,
Clarke, C., Kang, I. H., Friman, O., … Sabatini,
D. M. (2006). CellProfiler: Image analysis soft-
ware for identifying and quantifying cell pheno-
types. Genome Biology, 7, R100. doi: 10.1186/
gb-2006-7-10-r100.

Carpenter, A. E., Kamentsky, L., & Eliceiri, K. W.
(2012). A call for bioimaging software usabil-
ity. Nature Methods, 9, 666–670. doi: 10.1038/
nmeth.2073.

Dobson et al.

17 of 19

Current Protocols

https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/help/other_batch.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/help/other_batch.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/help/other_batch.html
https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment
https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment
https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment
https://github.com/imagej/pyimagej
https://zenodo.org/record/4317505#.X9OvOflKhPY
https://zenodo.org/record/4317505#.X9OvOflKhPY
https://zenodo.org/record/4317505#.X9OvOflKhPY
https://bbbc.broadinstitute.org/BBBC025
https://bbbc.broadinstitute.org/BBBC025
http://doi.org/10.1038/nri2638
http://doi.org/10.1038/nri2638
http://doi.org/10.1186/gb-2006-7-10-r100
http://doi.org/10.1186/gb-2006-7-10-r100
http://doi.org/10.1038/nmeth.2073
http://doi.org/10.1038/nmeth.2073


Dietz, C., & Berthold, M. R. (2016). KNIME
for open-source bioimage analysis: A tuto-
rial. Advances in Anatomy Embryology and
Cell Biology, 219, 179–197. doi: 10.1007/
978-3-319-28549-8_7.

Dietz, C., Rueden, C. T., Helfrich, S., Dobson, E.
T. A., Horn, M., Eglinger, J., … Eliceiri, K. W.
(2020). Integration of the ImageJ Ecosystem in
KNIME Analytics Platform. Frontiers in Com-
puter Science, 2, 8. doi: 10.3389/fcomp.2020.
00008.

Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Lan-
drum, G. A., & Berthold, M. R. (2017). KN-
IME for reproducible cross-domain analysis of
life science data. Journal of Biotechnology, 261,
149–156. doi: 10.1016/j.jbiotec.2017.07.028.

Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-
A., Logan, D. J., Madden, K. L., … Carpenter,
A. E. (2011). Improved structure, function and
compatibility for CellProfiler: Modular high-
throughput image analysis software. Bioinfor-
matics (Oxford, England), 27, 1179–1180. doi:
10.1093/bioinformatics/btr095.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger,
B., Bussonnier, M., Frederic, J., … Carol
and JupyterDevelopment Team (2016). Jupyter
Notebooks ? A publishing format for repro-
ducible computational workflows. In F. Loizides
& B. Scmidt (Eds.), Positioning and power in
academic publishing: Players, agents and agen-
das (pp. 87–90). Amsterdam: IOS Press. Avail-
able at: https://eprints.soton.ac.uk/403913/.

Ljosa, V., Sokolnicki, K. L., & Carpenter, A. E.
(2012). Annotated high-throughput microscopy
image sets for validation. Nature Methods, 9,
637. doi: 10.1038/nmeth.2083.

McKinney, W. (2010). Data structures for sta-
tistical computing in Python. In S. van der
Walt & J. Millman (Eds.), Proceedings of the
9th Python in Science Conference (pp. 56–61),
Austin, Texas.

McQuin, C., Goodman, A., Chernyshev, V., Ka-
mentsky, L., Cimini, B. A., Karhohs, K. W., …
Carpenter, A. E. (2018). CellProfiler 3.0: Next-
generation image processing for biology. PLoS
Biology, 16, e2005970. doi: 10.1371/journal.
pbio.2005970.

Reback, J., Mc Kinney, W., Brockmendel, J.,
Bossche, J. V., Augspurger, T., Cloud, P., …
Pandas Development Team. (2020). pandas-
dev/pandas: Pandas 1.1.4. Zenodo. Available at:
https://github.com/pandas-dev/pandas/releases/
tag/v1.1.4.

Rueden, C. T., Ackerman, J., Arena, E. T., Eglinger,
J., Cimini, B. A., Goodman, A., … Eliceiri,
K. W. (2019). Scientific Community Image Fo-
rum: A discussion forum for scientific image
software. PLoS Biology, 17, e3000340. doi: 10.
1371/journal.pbio.3000340.

Rueden, C. T., Schindelin, J., Hiner, M. C., De-
Zonia, B. E., Walter, A. E., Arena, E. T., &
Eliceiri, K. W. (2017). ImageJ2: ImageJ for
the next generation of scientific image data.
BMC Bioinformatics, 18, 529. doi: 10.1186/
s12859-017-1934-z.

Schindelin, J., Arganda-Carreras, I., Frise, E.,
Kaynig, V., Longair, M., Pietzsch, T., … Car-
dona, A. (2012). Fiji: An open-source plat-
form for biological-image analysis. Nature
Methods, 9, 676–682. doi: 10.1038/nmeth.
2019.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W.
(2012). NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9, 671–675. doi: 10.
1038/nmeth.2089.

Shafqat-Abbasi, H., Kowalewski, J. M., Kiss, A.,
Gong, X., Hernandez-Varas, P., Berge, U., …
Strömblad, S. (2016). An analysis toolbox to
explore mesenchymal migration heterogene-
ity reveals adaptive switching between distinct
modes. eLife, 5, e11384. doi: 10.7554/eLife.
11384.

Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G.
M., Reynolds, G. D., Laplantine, E., … Eliceiri,
K. W. (2017). TrackMate: An open and extensi-
ble platform for single-particle tracking. Image
Processing for Biologists, 115, 80–90.

Waskom, M., & The Seaborn Development Team
(2020). mwaskom/seaborn. Zenodo. doi: 10.
5281/zenodo.592845.

Internet Resources
https://forum.image.sc/
The Scientific Community Image Forum.

https://openbioimageanalysis.org/
The official homepage for The Center for Open

Bioimage Analysis (COBA).

https://imagej.net/Welcome
The official wiki homepage for the ImageJ Ecosys-

tem, including ImageJ and Fiji.

https://imagej.net/Fiji/Downloads
The wiki page for downloading Fiji.

https://cellprofiler.org/
The official homepage for CellProfiler.

https://cellprofiler.org/releases
The official page for downloading CellProfiler

releases.

https://github.com/CellProfiler/CellProfiler
The GitHub page of CellProfiler for contributing

code, maintaining third-party modules, and/or
downloading beta releases.

https://github.com/imagej/pyimagej
The code for PyImageJ, a Python wrapper for

ImageJ.

https://imagej.net/TrackMate
The official wiki page for the Fiji plugin, TrackMate.

https://imagej.net/Manual_editing_of_tracks_
using_TrackMate

A TrackMate tutorial for manual editing of tracks.

https://zenodo.org/record/4317505#.
X9OvOflKhPY

Link to all files needed for Basic Protocol 1.

https://bbbc.broadinstitute.org/BBBC025
Link to BBBC025 image dataset for Basic

Protocol 2.
Dobson et al.

18 of 19

Current Protocols

http://doi.org/10.1007/978-3-319-28549-8_7
http://doi.org/10.1007/978-3-319-28549-8_7
http://doi.org/10.3389/fcomp.2020.00008
http://doi.org/10.3389/fcomp.2020.00008
http://doi.org/10.1016/j.jbiotec.2017.07.028
http://doi.org/10.1093/bioinformatics/btr095
https://eprints.soton.ac.uk/403913/
http://doi.org/10.1038/nmeth.2083
http://doi.org/10.1371/journal.pbio.2005970
http://doi.org/10.1371/journal.pbio.2005970
https://github.com/pandas-dev/pandas/releases/tag/v1.1.4
https://github.com/pandas-dev/pandas/releases/tag/v1.1.4
http://doi.org/10.1371/journal.pbio.3000340
http://doi.org/10.1371/journal.pbio.3000340
http://doi.org/10.1186/s12859-017-1934-z
http://doi.org/10.1186/s12859-017-1934-z
http://doi.org/10.1038/nmeth.2019
http://doi.org/10.1038/nmeth.2019
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.7554/eLife.11384
http://doi.org/10.7554/eLife.11384
http://doi.org/10.5281/zenodo.592845
http://doi.org/10.5281/zenodo.592845
https://forum.image.sc/
https://openbioimageanalysis.org/
https://imagej.net/Welcome
https://imagej.net/Fiji/Downloads
https://cellprofiler.org/
https://cellprofiler.org/releases
https://github.com/CellProfiler/CellProfiler
https://github.com/imagej/pyimagej
https://imagej.net/TrackMate
https://imagej.net/Manual_editing_of_tracks_using_TrackMate
https://imagej.net/Manual_editing_of_tracks_using_TrackMate
https://zenodo.org/record/4317505#.X9OvOflKhPY
https://zenodo.org/record/4317505#.X9OvOflKhPY
https://bbbc.broadinstitute.org/BBBC025


https://carpenterlab.broadinstitute.org/blog/
cellprofiler-40-release-improvements-speed-
utility-and-usability

CellProfiler blog post regarding release of version
4.0.

https://cellprofiler-manual.s3.amazonaws.com/
CellProfiler-4.0.7/modules/objectprocessing.
html

CellProfiler manual for object processing (adjust-
ing parameters for IdentifyPrimaryObjects and
IdentifySecondaryObjects).

https://github.com/CellProfiler/tutorials
CellProfiler tutorial pipelines and images on

GitHub.

https://www.youtube.com/playlist?list=
PLXSm9cHbSZBBy7JkChB32_
e3lURUcT3RL

YouTube page for CellProfiler video tutorials.

https://carpenterlab.broadinstitute.org/blog/
when-to-say-good-enough

CellProfiler blog post on assessing image quality
and pipeline readiness.

https://cellprofiler-manual.s3.amazonaws.com/
CellProfiler-4.0.7/help/other_batch.html

CellProfiler help page for batch processing.

https://github.com/CellProfiler/CellProfiler/wiki/
Adapting-CellProfiler-to-a-LIMS-environment

GitHub page showing how to run CellProfiler on a
cluster.

Dobson et al.

19 of 19

Current Protocols

https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability
https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability
https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/modules/objectprocessing.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/modules/objectprocessing.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/modules/objectprocessing.html
https://github.com/CellProfiler/tutorials
https://www.youtube.com/playlist?list=PLXSm9cHbSZBBy7JkChB32_e3lURUcT3RL
https://www.youtube.com/playlist?list=PLXSm9cHbSZBBy7JkChB32_e3lURUcT3RL
https://www.youtube.com/playlist?list=PLXSm9cHbSZBBy7JkChB32_e3lURUcT3RL
https://carpenterlab.broadinstitute.org/blog/when-to-say-good-enough
https://carpenterlab.broadinstitute.org/blog/when-to-say-good-enough
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/help/other_batch.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.7/help/other_batch.html
https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment
https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment

