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Which image-based phenotypes are most promising
for using AI to understand cellular functions
and why?
Emma Lundberg
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Finding rare phenotypes
Developments in microscopy and visualization techniques have long pushed the

boundaries of our understanding of cells. With powerful machine-learning techniques,

we’re now facing a paradigm shift in image analysis for cell biology. Conventionally,

image-based phenotypes have been described using a selected set of features we

can easily intuit, such as shape or marker intensity. In the deep-learning era, neural

network models can automatically learn representations of cellular phenotypes. These

deep-learning features are data-driven, scalable, and sensitive to the representation of

sophisticated or hidden patterns in the images. This comeswith possibilities like contin-

uousmodeling of cell phenotypes and the discovery of rare or new phenotypes by deep

anomaly detection.

The challenge will be to translate the unexpected phenotypes unraveled with

machine learning into deeper biological understanding. Here, visual explanation tech-

niques such as grad-CAM can help. But beyond the development of interpretable

machine-learning models, I also believe that the imaging experiments need to be

done differently. With an iterative data-driven experimental design, I can envision

imaging schemes where labels of cellular structures and states are predicted in real

time at the microscope, analyzed, and coupled to deeper imaging of the key pheno-

types (and iterate again) until the needed quality and completeness of the dataset

and analysis is reached.

Machine learning will enable integration of image data with multi-omics data to

provide a dynamic and complex systems framework for understanding cells, particu-

larly for phenotypes that are rare, transient, or subtle. Together with the establishment

of public cell image repositories, one can envisionmicroscopy reaching the point where

re-analysis and meta-analysis across image datasets can help us answer previously

intractable biological questions.
Jan Funke
HHMI Janelia Research Campus
The non-obvious ones
Of the many variables that describe the internal state of a cell, any imaging technique

allows us to infer only a small subset through indirect measurements like fluorescent

probes or changes in electron density. In general, there is no reason to believe that

the relationship between those variables is simple, i.e., easy to understand by humans.

In this context, data driven machine learning is promising and likely necessary to model

non-linear correlations between phenotype and functional properties.

But here is the dilemma: we replace one complex system (imaging to indirectly

measure inter-related variables) with another one (a highly non-linear computational

model). As we celebrate the possibilities of machine learning in the life sciences, we

should take note that without understanding computational models, we are limited to

the automation of tasks that we can easily verify. For example, we can train

amachine-learning algorithm to segment cell organelles, which allows us to analyze da-

tasets that are otherwise prohibitively large. That is a big contribution in itself, but the

looming question is: Can we use machine learning to tell us about relationships that

we did not know of before?

Themost promising phenotypes are therefore those for which we can develop ‘‘in-sil-

ico’’ probes that predict function from structure in non-obvious ways. Crucially, those

models need to be interpretable. This is necessary to gain trust in the presence of data-

set specific confounders. What is more, interpretable methods will teach us about the
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learnt correlations and further our understanding of the relation between structure and

function.
Chris Bakal
Institute of Cancer Research, UK
Cell shape predicts cell state
Every day, pathologists perform sophisticated diagnoses by visually examining tissue

sections. Using only a microscope, a pathologist infers the existence of unseeable

states, such as cancer type, aggressiveness, and even mutational status. How pathol-

ogists do this is not always clear. But gaining insight into how humans make decisions

based on observable phenotypes is key to developing Artificial Intelligence based

methods capable of automated pathology, or that are used as research tools.

The ability of humans to infer complex unseen states is because by (very) deep

learning, the brain trains ‘‘classifiers’’ that use both images and prior data (genetics,

biochemistry) as inputs. Essentially, the brain builds relationships between observable

phenotypes, and what it has previously learned drives those phenotypes. For example,

that the presence of a mutation correlates with an observable feature.

We argue cell shape is a key feature in classifiers which can predict cell states from

images. Because cell shape correlates strongly with, and is sometimes even causal to,

many aspects of cells and of proteins, we can often reduce high-dimensional pheno-

types to cell shape alone. Toward reverse engineering what our brains do so well, we

use machine-learning based methods to generate ‘‘Quantitative Morphological Signa-

tures’’ that describe the shape of individual cells. Through integration of these signa-

tures with other datasets they become predictive of gene function, protein localization,

and protein-protein interaction. We believe cell shape is an informative and easy to

measure feature that can even potentially replace technologies such as transcriptomics

or proteomics in many types of analyses.
Virginie Uhlmann
EMBL-EBI
Embracing complexity
The wealth of complex features imaging data hold offers the ideal ground to explore

machine learning’s potential beyond sophisticated pattern recognition. Recent devel-

opments in (bio)image analysis provide us with efficient tools to quantify texture, shape,

abundance, and localization of cellular components, and to characterize how any of

these features evolve in time. The dynamics and interdependencies of the many

image-based phenotypes hold more information than each of them separately. AI

can provide tools to integrate this massive amount of quantified visual features into

interpretable biomechanical models, thus bringing theoretical and experimental

approaches to biology closer than they have ever been.

Modern machine learning indeed plays a pivotal role in the development of first-prin-

ciple mathematical models. It enables using complex experimental datasets to solve

elaborate dynamical models of physical phenomenon by efficiently exploring param-

eter spaces that would be daunting for classical optimization methods. It also goes

beyond, enabling the use of data to discover partial differential equations. This is the

direction explored by physics-informed neural networks, which learn solutions of

supervised learning tasks that respect a prescribed set of physical laws described by

general nonlinear partial differential equations.

We will not unravel the mechanisms underlying life’s complexity using machine

learning or mathematical modeling alone. However, combined into a virtuous circle of

data mining, hypothesis formulation, and model validation, these complementary

approaches will grant us the ability to exploit the full potential of bioimages, unify visual

information with omics data in multi-modal models, and push the boundaries of our

understanding of cellular function and dynamics.
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Collaboration is key
Combining automated microscopy with image analysis by computer vision and

machine learning has paved the way for cell biological experiments at very high

throughput. To investigate specific cell biological processes by automated imaging,

appropriate fluorescence markers have to be identified and complex cell morphology

feature profiles have to be converted into a phenotype score. Implementing sensitive

and robust imaging-based assays remains challenging, as it requires thorough under-

standing of the underlying biology, microscopy, and computational image analysis

procedures.

Developing a high-content screening assay should consider how phenotype assess-

ment by humans differs from that by computer algorithms. Phenotype classification by

machine learning typically relies entirely on the image content, whereas humans also

take rich biological and technical background knowledge into account when interpret-

ing images. For example, when humans observe changes in texture granularity or edge

sharpness, they consider not only the effect of the cellular perturbations but also knowl-

edge about how microscope focus inaccuracies or illumination irregularities affect cell

morphology. Developing a sensitive and robust assay based on computational proce-

dures thus requires careful adjustments of the cell biological experiment, fluorescence

markers, and image analysis strategy to focus the phenotype score entirely on image

contents and to eliminate indirect experimental side effects as much as possible. Effi-

cient communication and close collaboration between cell biologists and computer

scientists is key for successful high-content screening.
Thomas Walter
Mines ParisTech, Institut Curie
Beyond the human eye
Computer Vision has been the workhorse for computational phenotyping for more than

20 years. Application of single cell classification to High Content Screening data has al-

lowed us to systematically study subcellular protein localization and functional pheno-

types. Today, Deep Learning has revolutionized Computer Vision, reaching unprece-

dented performance in image classification and segmentation. The power of Deep

Learning resides in learning very complex relationships between input images and

output variables without relying on manually defined image features, provided there

is sufficient ground truth data for training the models. The by far most interesting appli-

cation case arises when the ground truth does not rely on manual annotation. For

instance, we can train networks to predict fluorescent labels from transmitted-light

microscopy, thereby allowing for comprehensive analyses covering many aspects of

cellular phenotypes. The ground truth can also result from the individual developmental

trjectory of each cell in order to identify the first morphological cues for fate decision.

Yet another interesting approach is to predict molecular features (typically gene expres-

sion signatures) from image data, an approach that is currently being investigated in

digital pathology. Altogether, Deep Learning has allowed us to go beyond automating

annotations by making predictions that are not obvious to the human eye. This will

provide us with exciting new hypotheses on the origin and consequences of morpho-

logical phenotypes
Anne Carpenter
Broad Institute of Harvard and MIT
Measure all the things!
Our laboratory often discovers morphological changes in cells that are responding to

a drug treatment, a genetic perturbation, or a disease state. We do this by measuring

as many features of the cell as we can (size, shape, stain intensity and texture, and

so on), in a strategy called image-based profiling. Once we find a change, the first ques-

tions a biologist asks are ‘‘What is the change? What does it mean?’’ Answering these

questions can unveil the underlying mechanisms of the drug, gene, or disease. So, it is

great when you can get an answer. But I also want to encourage researchers to become

more comfortable with those cases where it is not feasible to precisely pinpoint the

morphological change, at least not in a way that meshes nicely with our existing biolog-

ical knowledge of structures in the cell. Deep learning, with its lack of obviously inter-

pretable features, has certainly pushed us into this realm. If proper experimental design

and careful machine-learning controls tell us that a morphological change is real, we
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shouldn’t worry overlymuch about its biological interpretability, we should embrace just

using the pattern for discovery—for example, identifying a drug that reverses a discov-

ered disease phenotype. So,my short answer to ‘‘which phenotypes?’’ is ‘‘any and all of

them!’’
Luis Pedro Coelho
Fudan University
Image BLAST
When working with sequencing data, computational approaches can be classified into

either reference-based (e.g., mapping reads to previously sequenced genomes or

using BLAST) or de novo (e.g., building metagenome-assembled genomes from

scratch). In the world of imaging, however, computational analyses are almost exclu-

sively de novo and integrating the results with prior knowledge is performed by the

human researcher. In fact, until recently, most image analysis methods had to be

tweaked for each dataset, each imaging modality, often each individual molecular

probe and microscope combination.

Recently however, mostly due to the advent of deep learning, more robust methods

have emerged which can be applied even across different modalities. These are conve-

nient but are still only addressing tasks such as segmentation or image classification. I

think that the next big step is methods can exploit background information that is

present in databases. This can include image databases, such as using previously

acquired images to find similar phenotypes (so called ‘‘image BLAST,’’ a concept

that is not novel, but is still far from being fully realized), but also other modalities and

predictions. For example, analyzing spatial transcriptomics data by using bulk-

sequenced data and predicted gene networks as a reference. Whatever form it takes,

it will require creativity: deep learning provides us with the engine, but designing the

machines is still to be done.
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