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Quantitative optical microscopy—an emerging, transformative approach to single-cell biology—has seen
dramatic methodological advancements over the past few years. However, its impact has been hampered
by challenges in the areas of data generation, management, and analysis. Here we outline these technical
and cultural challenges and provide our perspective on the trajectory of this field, ushering in a new era of
quantitative, data-driven microscopy. We also contrast it to the three decades of enormous advances in
the field of genomics that have significantly enhanced the reproducibility and wider adoption of a plethora
of genomic approaches.
Introduction
As we consider quantitative light micro-

scopy, it is informative to compare it

with the enormous success of genomics.

The genomic revolution produced a

breathtaking transformation in biomedical

science, moving from a specialized field

focused on single genes to a pervasive

framework for understanding the biolog-

ical and medical world with technologi-

cally sophisticated and accessible tools

(Topol, 2014). Driving this transformation

are the inexpensive next-generation

sequencing of genomes, robust platforms

for profiling gene expression, the con-

struction of high-quality shared data-

bases and repositories, the development

of shared analysis tools, and publications

showcasing novel use cases. Major suc-

cesses include hundreds of genome-

wide association studies (Tam et al.,

2019; Uffelmann et al., 2021), the realiza-

tion that most diseases are highly polyal-

lelic (Lappalainen et al., 2019), and the

finding that complex and intertwined

changes in gene regulatory networks

accompany disease, differentiation, and

changes in cellular behavior (Chili�nski

et al., 2021). Innovation in these technolo-

gies has also greatly facilitated studying

epigenetics (Lake et al., 2018), the 4D

regulation of our genome (Zhou et al.,
2021), and cell-to-cell heterogeneity via

single-cell methodologies (Stuart and

Satija, 2019). Three overarching conclu-

sions from all these advances are that (1)

there is a synergistic interplay between

accessible technology development and

scientific progress, (2) understanding

and predicting cellular behaviors from ge-

nomics alone is challenging and requires

augmentation from other sources, and

(3) public archives and repositories for

storage and dissemination of sequence

data have been critical for advancing

the field.

Light microscopy provides unique

spatial and temporal information that can

revolutionize our understanding of the re-

lationships between genotype and pheno-

type, but the high-quality production and

quantitative analysis of cell and tissue im-

ages and the secondary use of this infor-

mation have lagged behind the genomic

sciences, due in part to inadequate fund-

ing. The potential of imaging to map, un-

derstand, and predict cellular behaviors

fromcell structure and organization across

broad spatial and temporal scales is

immense. Since its origins in 19th century

pathology, optical microscopy has signifi-

cantly benefited from breakthrough

technologies that recently include high-

resolution and high-throughput light mi-
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croscopy (Bickle, 2010; Mattiazzi Usaj

et al., 2016), genome editing for mutations

and protein tagging (Wright et al., 2016),

new visualization tools for volumetric

rendering and interrogation (Lemon and

McDole, 2020), and new statistical

methods, including artificial intelligence

for image analysis and integration (Moen

et al., 2019). With genomic technologies

that are increasingly capable of resolving

or imputing spatial organization (Liu et al.,

2020; Takei et al., 2021) and imaging tech-

nologies that are increasingly expanding

their degree of multiplexing (Lewis et al.,

2021), we believe there is an exciting,

emerging convergence of approaches

that will significantly change the future of

quantitative microscopy.

These new imaging technologies prom-

ise to transform biomedical research at

the cellular level and address fundamental

questions from basic to translational

science. Can cellular and subcellular or-

ganization predict cell behaviors and sin-

gle-cell gene expression profiles? If not,

do they affordmoremeaningful and useful

assessments of cell behaviors when

conjoined? Can a richer view of cellular

organization lead to better disease diag-

noses and prognoses? Over the next

decade we see the goal of integrating

multiscale image data, both optical and
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cryoEM (Nogales and Scheres, 2015;

Turk and Baumeister, 2020), with other

emerging single-cell ‘omics technologies

(e.g., single-cell gene expression and pro-

teomics), producing a rich, high replicate,

quantitative, integrated atlas for studying

and mining cellular phenomena. As these

technologies develop and integrate with

newer emerging technologies, they will

need to be brought to scale, bench-

marked, made interoperable, and democ-

ratized. Additionally, the large datasets

that will be produced will need tools for

management and sharing and will require

the development of common formats,

robust analytical tools, and consensus

standards for evaluating analysis quality.

We have begun addressing these chal-

lenges through formal and informal con-

versations across various stakeholders,

including relevant funding agencies,

NGOs, journals, and research commu-

nities. Here, we outline the nature of short-

and long-term challenges in quantitative

cell imaging for the broad scientific com-

munity and provide our perspective on

opportunities to enhance the growth of

this emerging field in transforming cell

biology (Figure 1).

Quality imaging data
Several recent breathtaking advances in

fluorescence microscopy have opened

new vistas in cell science. Piercing the

diffraction barrier by super-resolution

methods has opened the door to new in-

sights into sub-cellular structures (Betzig

et al., 2006; Gustafsson, 2000; Hell and

Kroug, 1995; Hell and Wichmann, 1994).

Light-sheet microscopes have greatly

reduced the photodamage intrinsic to

light microscopy (Reynaud et al., 2008),

allowing vastly longer viewing periods

and volumetric imaging. Automation soft-

ware and robotic platforms bring higher

reproducibility and throughput, providing

high-content image databases (Bickle,

2010). In addition, a broader spectrum of

genetically encoded tags and CRISPR-

based gene editing methods for precise

endogenous tagging allow multispectral

imaging and minimize complications

arising from perturbations (Roberts et al.,

2017). Deep learning offers the ability to

reduce, and even improve, human anal-

ysis of images (Moen et al., 2019). An

increasing range of commercial, non-

profit, grant-supported, and open-source
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approaches is democratizing access to

these state-of-the-art technologies.

While these advances have greatly

enhanced the use and potential of light

microscopy, several barriers inhibit the

large-scale data sharing, reuse, and anal-

ysis on the scale of genomic approaches.

Sample preparation, user-controlled im-

aging methods and settings, and instru-

mentation platforms are far more variable

and complex with microscopy than with

genomics. Endogenously tagged lines,

for example, require quality control to

assess structural and functional perturba-

tions as well as off-site genomic alter-

ations. Likewise, cell lines labeled with

exogenous fluorescent reporters require

similar assessments. Studies using fixed

and sectioned tissues, while used for

decades, also present reproducibility

challenges. A path to address these chal-

lenges starts with documented methods

and moves toward a goal of community

standards that ensure reproducibility

both within and across labs. The Human

Protein Atlas has developed such guide-

lines for antibody validation and repro-

ducibility (Uhlen et al., 2016), and the Allen

Institute for Cell Science is attempting to

realize these goals by using endoge-

nously tagged cell lines with documented

quality control (Roberts et al., 2017).

Live cell imaging has the unique ability

to explore the temporal domain of cellular

processes; however, the challenges of

bringing it to scale are significant. In addi-

tion to ensuring stable imaging conditions

and monitoring phototoxicity during the

duration of image capture, the volume of

data generated (e.g., terabytes for lattice

light sheet) can overwhelm most lab infra-

structure for storage.

While researchers have been acquiring

microscopic images for over a century,

quantitative assessment and documenta-

tion of image quality and microscope

acquisition parameters (e.g., illumination

intensity and evenness across the field,

magnification, resolution) are rare.

Some inexpensive and relatively straight-

forward methods to collect, benchmark,

and assess image quality are not

used widely, and more research is

needed. The National Institute of Stan-

dards and Technology (NIST), for

example, has several efforts for bench-

marking optical microscopy methods

including fluorescence imaging (https://
nist.gov/programs-projects/measurement-

assurance-quantitative-cell-imaging-

optical-microscopy). Since 2020, the

international community of light micros-

copists and the Quality Assessment and

Reproducibility for Instruments & Images

in Light Microscopy (QUAREP-LiMi)

(Boehm et al., 2021) have been organizing

to improve quality assessment and quality

control in light microscopy. A key benefit

for all stakeholders would be standard-

ized and automated capture of sample

and instrument metadata, as well as

benchmarked evaluation of microscopy

image quality, as DICOM does for

medical imaging (https://dicomstandard.

org). Ideally, such data would accompany

each image file, along with the prove-

nance of image data that specifies any

image processing and analysis. Highly

qualified data, with good metadata and

benchmarks and assurance of data integ-

rity, are necessary standards for sharing

of image data to enable analysis with

alternative methods and generate new

hypotheses.

There are several impediments to stan-

dardized image data. The proprietary

nature of the software driving the micro-

scopes and accompanying image anal-

ysis software produces images in differing

formats without details of how images

have been processed. In this way, image

data—raw and processed—cannot be

readily shared, evaluated, and repro-

duced among labs. One solution is image

format conversion software and analysis

platforms that can accommodate images

from the major manufacturers (e.g., Bio-

Formats [Linkert et al., 2010], OMERO [Al-

lan et al., 2012], and ImageIO [https://

github.com/AllenCellModeling/aicsimag

eio]) and the use of microscope-control

software (e.g., Micro-Manager [Edelstein

et al., 2014]) that interfaces with most mi-

croscopes. Another solution is open-

source microscope design (Gualda et al.,

2013). An additional challenge is that the

incorporation of more automation into im-

aging increases the size and number of

image datasets. While most microscope

analyses at the cell level tend to rely on

a small number (10 s) of captured images,

the enormous variance observed within

samples dictates going beyond a small,

typical image field and argues for larger

datasets that sample larger numbers of

cells (100–1000 s), both for better science
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Figure 1. Current image experiment to analysis pipelines have many bottlenecks that hinder making data and tools findable, accessible,
interoperable, and reusable (FAIR)
This illustration highlights ways in which the community can build consensus, incentives, and use cases across the imaging pipeline. Information transfer, from
data generation through publication, is shown with arrows. Addressing the list of features in filled circles will enable the iterative sharing of data, resources, and
tools in robust and easy-to-access repositories, which is critical to the growth of the quantitative cell imaging community and closes the loop between analysis,
generation, and discovery.
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and for statistical analyses. This is already

routine in histological studies (Anderson

and Badano, 2016; Lin et al., 2021).

The challenge is that the captured data

need to be stored, with accompanying

metadata, in a manner that can be readily

queried and accessed. The increased in-

terest and ability to collect time-lapse im-

aging of live cells will result in even larger

datasets that also need to be transferred,

annotated, and stored.

Thus, to produce high quality, shared

datasets that can be easily studied and

reused, the field will benefit from (1) stan-

dardized approaches for image quality

and associated metadata, (2) innovative

ways of democratizing access to imaging,

image analysis platforms, and protocols,

and (3) accessible platforms for micro-

scope automation and data management.

Our view is that the imaging community

will need to support the many researchers

actively developing these standards and

platforms (http://nature.com/collections/

djiciihhjh) and to work with research fun-

ders and journals to identify realistic

incentives help implement them. The in-

centives are critical; for example, the

OME project has advocated for standard

microscopy formats from vendors for

manyyearsbut isonly recentlygetting trac-
tion (Linkert et al., 2010). Cultural change

has been slow as well, so we see funder

and journal mandates as a more effective

mechanism to change the field.

FAIR and compliant imaging data
management
Optical microscopy lags behind geno-

mics, and even other biomedical imaging

technologies, in the development of gen-

eral-purpose data repositories. At the

core of the challenge is the trade-off be-

tween incentives, value, and burden. The

case for archiving data for general use is

weakened by several factors, including

(1) the inherent variety in terms of sam-

ples, sample preparation and staining

schemes, instrumentation, and data for-

mats, (2) the corresponding lack of

sufficiently detailed and standardized

metadata schema, (3) the lack of a strong

community of data users, and (4) the

perceived low value of older or poorly

documented datasets.

There are many long-standing reposi-

tories and tools, including the Cell Image

Library (https://cellimagelibrary.org) and

Broad Bioimage Benchmark Collection

(https://bbbc.broadinstitute.org) as well

as specialized clinical repositories for pa-

thology and ophthalmology and general-
purpose repositories for all types of

biomedical imaging, such as The Cancer

Imaging Archive (TCIA; https://cancer

imagingarchive.net) (Clark et al., 2013).

However, the trade-off between value

and burden has dramatically changed

for microscopy with the emergence of

large datasets due to higher-throughput,

higher-content, and higher-resolution im-

aging technologies, analytical methods

that require large datasets, and large

research programs with the mandate to

make their products findable, accessible,

interoperable, and reusable (FAIR) (Wil-

kinson et al., 2016).

The establishment of the EMBL-EBI

Bio Image Archive (https://www.ebi.ac.

uk/bioimage-archive/) and the associated

Image Data Resource (https://idr.

openmicroscopy.org) reflect the European

Union’s wider investment in life science

data management as part of the ERIC

and Elixir programs. The Global BioIma-

ging network (https://globalbioimaging.

org), initiated in 2015, is bringing the

international microscopy communities

together to support capacity-building and

to harmonize infrastructure, while targeted

programs such as the Allen Institute for

Cell Science (https://alleninstitute.org/

what-we-do/cell-science), the Human
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Protein Atlas (https://proteinatlas.org), the

Chan-Zuckerberg Biohub (Cho et al.,

2021) (https://czbiohub.org), the HHMI-

Janelia Farm’s Advanced Imaging

Center (https://janelia.org/open-science/

advanced-imaging-center-aic), and seve-

ral NIH Programs (e.g., Human Biomole-

cular Atlas Program [Snyder et al., 2019],

Human Tumor Atlas Network [Rozenblatt-

Rosen et al., 2020], 4DNucleome [Dekker

et al., 2017], and Kidney Precision Medi-

cine Program [Ferkowicz et al., 2021])

are building, demonstrating, and dissemi-

nating full workflows for large-scale

microscopy.

Still, many challenges remain that lead

to trade-offs. Resources come at a cost

and drive the economics of what to store,

where to store it, and how to make it

accessible. At one extreme, there is a

desire to share all data. However, technol-

ogies like lightsheet microscopy can pro-

duce terabytes of data daily, creating a

bottleneck for its upload, storage, trans-

fer, and analysis. While tools such as

BioFormats (https://openmicroscopy.org/

bio-formats) are a boon for the interopera-

bility of microscopy data formats, the lack

of standards around how to record anno-

tations, metadata associated with instru-

ments, experimental conditions, and data

pre-processing and how to report data

quality hamper the sharing of imaging da-

tasets and the accompanying raw data.

Traditional data repositories are central-

ized on premises, though the rapid emer-

gence of affordable cloud solutions make

the potential for distributed repositories

and data workbenches more practical. It

is likely several economic models will

emerge for supporting cloud repositories,

potentially including fees for accessing

and analyzing data, credits provided by

funders, cloud provider-paid (for data

deemed likely to generate use of their

compute service; e.g., AWS OpenData),

and tiered storage and access. If data

users need to pay for data, it will potentially

push data portals to provide interfaces

that allow smarter identification of subsets

of data based on metadata, curation, or

modeling.

The research community, in partner-

ship with funders and journals, could

play an important role over the next five

years to shape the trajectory of micro-

scopy data management. We believe

there needs to be a good balance of in-
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centives and mandates for (1) data gener-

ators to prepare and upload interoperable

datasets, (2) data managers to make data

and tools FAIR, and (3) repositories to

avoid siloing on data types or specific

use cases. Beyond ensuring resources

are FAIR, access to data repositories

needs to be equitable, with sufficient

annotation and documentation to assess

quality and reproducibility. Support for al-

gorithm sharing and testing needs to be

bolstered, and a common understanding

of what should be stored and for how

long needs to emerge. The stakeholders,

by working together, could address these

challenges in a stepwise fashion, enabling

insights awaiting discovery from broadly

accessible secondary analyses of micro-

scopy data.

Robust and interoperable tools for
image analysis
The dramatic expansion of cell imaging

from its initial focus on the careful produc-

tion of small numbers of images probing a

specific cell biological question to the

production of high-volume datasets for

mining and analysis is introducing many

new opportunities and challenges.

Recently, artificial intelligence and ma-

chine learning approaches have taken

center stage in this effort because they

enable processing, de-noising, compres-

sion, classification, visualization, integra-

tion, and comparison of large datasets.

The key opportunity is the development

of accessible, interoperable tools to

analyze and interpret complex image

data to extract new biological insights.

Many image analysis tools are devel-

oped in-house with the initial purpose of

addressing lab and context-specific

questions. Thus, each analysis pipeline

tends to be unique. This decentralized

analysis landscape—one in which each

PI generates, manages, and analyzes

data—does not scale and enable a com-

munity to easily share and modify tools.

It disincentivizes the development and

dissemination of efficient and modular

code, the benchmarking of tools, and

trust in data quality.

Anothermajor challenge is the quality of

in-house code, which is usually not readily

FAIR. In contrast, professional code is

well documented, maintained, hardened,

updated (as software languages evolve),

and packaged to be easily used by others.
It also runs more efficiently, reducing

computational expense. The require-

ments and demands for professional

code development make it difficult to pro-

duce in most labs, which lack both incen-

tives and appropriate personnel (e.g.,

software engineers and web designers)

to produce it. Thus, there is a need to

develop appropriate standards and

create incentives or other mechanisms

to develop high-quality shared software.

At present, some large, openly accessible

platforms are taking on that challenge. A

collaboration between NIST and NCATS

produced a web-based platform for data

and software sharing where image data

can be organized and operated on with

plug-in analytical tools and where image

processing and analysis provenance can

be saved, facilitating data sharing (Bajcsy

et al., 2018) (https://isg.nist.gov/deep

zoomweb/home). CellProfiler (https://cell

profiler.org) and ImageJ/Fiji (https://ima

gej.github.io/software/fiji) are examples

of long-standing image analysis platforms

that are openly accessible and accommo-

date community tools. The napari plat-

form is a community-built, open-source

platform designed for large datasets

(https://napari.org), and the Allen Cell

Segmenter is an example of a high-quality

3D image analysis platform, with tutorials,

that can stand alone or be plugged into

larger platforms (http://www.allencell.

org/segmenter). In contrast, pipeline lan-

guages and cloud containers have

already moved genomic analysis to be

more FAIR, a vision outlined for imaging

a decade ago (Swedlow, 2012).

Once developed, analysis tools require

large datasets for assessing accuracy

and generalizability. This is particularly

important for tools using artificial intelli-

gence, including deep neural nets, where

there is a need for ground truth training

sets and benchmarks for assessing accu-

racy and biological validation. In the end,

the value of the analysis depends on the

quality and quantity of available data. In

this light, there is a major need for well-

validated, annotated datasets. While

small collections (Ljosa et al., 2012) and

individual large datasets exist, the deep

learning revolution demands major efforts

here to produce a large collection of large,

annotated datasets. Perhaps datasets

meeting standards could be given a spe-

cial designation or funding incentives
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Figure 2. Community-established standards enable findable, accessible, interoperable, and
reusable (FAIR) resources
The consistent use of dynamic standards, benchmarks, and annotations for data generation and the
sharing of these resources in repositories is critical to developing a quantitative cell imaging community.
Supporting publicly available resources positions the community to build upon shared expertise and
develop resources that will empower and engage a new wave of investigators and lower the barrier for
productive collaborations.
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given for groups to generate or synthesize

these datasets.

Finally, there are several kinds of data

produced routinely—datasets developed

for reuse or mining, and smaller one-off

datasets used for validation or further

analysis—each requiring some unique so-

lutions. Establishing common standards

for metadata and quality assessments

will fortify trust and catalyze data reuse

both within and across the scientific com-

munity (Hammer et al., 2021). Finally, the

use of these datasets might be enhanced

through competitions, which would drive

development and bring in new investiga-

tors; they could also be used for cross

comparison of tools (e.g., segmentation

or classification). The Human Protein

Atlas has shown how useful this kind of

effort can be (Ouyang et al., 2019).

Cultural barriers
Over the past 20 years, genomics trans-

formed from a molecule-based field of

study to one highly dependent on compu-

tational approaches. Microscopy is just

beginning this transformation, evolving

from its qualitative, single-molecule ori-

gins into a highly quantitative, computa-

tional discipline producing and analyzing

large, complex datasets with sophisti-

cated statistical methods. In this light,

we believe the future of imaging will be

greatly accelerated by research organiza-

tions embracing and adapting to this new

computational landscape (Way et al.,

2021). This will require quantitatively
focused and collaboratively oriented sci-

entists to catalyze it. The transformation

will also need to be supplemented with

training in computational and statistical

methods at the undergraduate, graduate,

and professional levels. Exposing re-

searchers to image analysis early on can

help spur a cultural change toward quan-

titation of images, as well as broader

computational fluency, bringing a greater

diversity and integration of expertise

from across the sciences. Bioimage anal-

ysis is a fantastic way to introduce stu-

dents to computation because the results

of algorithms can be seen concretely us-

ing public datasets. Furthermore, re-

searchers entering the field can take

advantage of the explosion of excellent

online training materials for various bio-

imaging software packages (https://

bioimagingna.org; https://youtube.com/

c/neubias).

Outlook
Quantitative microscopy is likely to

change significantly in the next decade

and move beyond a method for studying

spatial organization of biological systems

toward a quantitative approach for

tracking tens to hundreds of specific bio-

molecules, subcellular structures, and

cells in space and time. However, as

covered here, there are substantial bar-

riers to progress throughout the workflow,

particularly in data generation, manage-

ment, and analysis. In addressing these

challenges, there are lessons to be
learned from genomics and medical im-

aging that can be tailored as solutions to

accelerate wider adoption.

The field canmove forward effectively by

working in partnership with funders and

journals to define better baseline standards

and benchmarks to ensure rigor, reproduc-

ibility, and reuse (Figure2).Toachieve these

goals, there needs tobe abalanceof incen-

tives and mandates in several areas,

including comprehensively annotating and

sharing data in standardized ways and

professionalizing the development of code

that supports lasting FAIR practices. The

dissemination and reuse of imaging data

will be greatly enhanced by a more stan-

dardized approach to the development

and distribution of well-documented and

hardened tools, workflows from published

papers, tutorials, and hands-on work-

shops. The development and sharing of

high-quality benchmarked datasets, along

with the democratization of in silico training

datasets, will also empower individual re-

searchers, entire labs, and new trainees to

reuse and improve upon one another’s

methods. Facilitating the transfer of innova-

tive tools to new users will enable iterative

improvements that generate robust ana-

lyses and future models that will carry the

entire field forward.

There is already significant movement

in this direction. The Network of European

Bioimage Analysts (NEUBIAS; https://

eubias.org/neubias), QUAREP (https://

quarep.org), and BioImaging North Amer-

ica (BINA; https://bioimagingna.org) are

examples of efforts that aim to build stron-

ger communities of users and promote

shared resources in image processing

and analysis.

If the hurdles we describe can be over-

come, the result will be a dramatic change

in the way that images are used (and re-

used) in biology. As imaging becomes

routinely higher-throughput and higher-

resolution, automated feature extraction

from images, particularly via deep

learning, offers the potential to use im-

ages as raw material for discovery and

insight. One may even envision autono-

mous (smart or learning) microscopes

that merge with edge computing to allow

on-camera data processing and smart

data acquisition for truly data-driven

quantitative imaging. From identifying

how genes functionally impact each other

in pathways to predicting the response of
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cells to previously untested compounds,

and frommodeling the localization of pro-

teins and cellular machinery in silico to

identifying causal relationships among

them, there is much to be gained by

treating microscopy as a data science.

We think investments in this field will

make linking cell morphology to pheno-

types as computable as genomes and

transcriptomes.

There is much to share and learn in this

rapidly evolving field, and we hope the

desire of stakeholders to work together

will catalyze change during this transfor-

mative time.
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