
Molecular Biology of the Cell • 33:ar49, 1–11, May 15, 2022 33:ar49, 1  

MBoC | ARTICLE

Cell Painting predicts impact of lung cancer 
variants

ABSTRACT Most variants in most genes across most organisms have an unknown impact on 
the function of the corresponding gene. This gap in knowledge is especially acute in cancer, 
where clinical sequencing of tumors now routinely reveals patient-specific variants whose 
functional impact on the corresponding genes is unknown, impeding clinical utility. Transcrip-
tional profiling was able to systematically distinguish these variants of unknown significance 
as impactful vs. neutral in an approach called expression-based variant-impact phenotyping. 
We profiled a set of lung adenocarcinoma-associated somatic variants using Cell Painting, a 
morphological profiling assay that captures features of cells based on microscopy using six 
stains of cell and organelle components. Using deep-learning-extracted features from each 
cell’s image, we found that cell morphological profiling (cmVIP) can predict variants’ func-
tional impact and, particularly at the single-cell level, reveals biological insights into variants 
that can be explored at our public online portal. Given its low cost, convenient implementa-
tion, and single-cell resolution, cmVIP profiling therefore seems promising as an avenue for 
using non–gene specific assays to systematically assess the impact of variants, including dis-
ease-associated alleles, on gene function.

INTRODUCTION
Lung cancer is the leading cause of cancer-related mortality and 
presents high mutation rates (Lawrence et al., 2013; Bray et al., 
2018). New variants are found every year in clinical studies, most of 
them variants of unknown significance (VUS). Although custom-tai-
lored assays might be created to assess the function of each gene in 
the presence or absence of each variant, this is exceptionally time-
consuming. It is only practical for a small number of known onco-

genes and tumor suppressors and is impossible for genes whose 
function is unknown. This limits the expansion of precision medicine, 
where cancer patients are tested to identify their specific mutations 
and ultimately receive targeted treatments.

High-dimensional profiling assays have been proposed as an ac-
celerant for determining the significance of VUS: by measuring 
many phenotypic properties of cells exposed to each variant in each 
gene of interest, the strategy is to capture many genes’ functions in 
a single assay and therefore assess many variants’ impact. This strat-
egy was successfully demonstrated using high-throughput tran-
scriptional profiling in an approach called expression-based variant 
impact phenotyping (eVIP; Berger et al., 2017; Thornton et al., 
2021), where the transcriptional profiles of overexpressed reference 
genes (wild-type) are systematically compared with those of their 
variants (mutants) to assess impact. In this case, a bead-based, high-
throughput transcriptional profiling method called L1000 was used 
(Peck et al., 2006; Subramanian et al., 2017).

We hypothesized that another profiling readout, image-based 
profiling, could also be used for variant impact phenotyping. 
Image-based profiling has proven powerful in more than a 
dozen applications in biological research and drug discovery 
(Chandrasekaran et al., 2020). We sought to develop cell morphol-
ogy–based variant impact phenotyping (cmVIP) as a way to assess 
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the functional impact of coding variants inexpensively for many 
genes using the same systematic assay. If scaled up, a catalogue 
might be created of all possible variants in a given oncogene or 
tumor suppressor to help guide clinicians.

Here, we present a systematic study of the ability of image-
based profiling to characterize lung cancer variants. We conducted 
a high-throughput Cell Painting (Bray et al., 2016) experiment using 
gene overexpression in A549 cells to investigate the extent to which 
cell morphology can reveal sufficient phenotypic differences be-
tween reference genes and variants. We developed deep learning–
based computational methods to transform images of cells into 
high-dimensional phenotypic profiles and used them to quantify the 
impact of variants. In addition, we compare the performance of im-
age-based profiling with respect to gene expression profiling to 
capture phenotypic changes induced by variants and to predict 
their functional impact.

RESULTS
Cell Painting captures a diversity of allele phenotypes
We tested 375 overexpression perturbations (50 reference genes 
and 325 variants) in A549 cells using the Cell Painting assay in 384 
well plates with eight replicates each (Materials and Methods). The 
overexpression construct set was previously created to test the ex-
pression-based variant impact phenotyping (eVIP) method (Berger 
et al., 2017) and contains variants previously identified by exome 
sequencing primary lung adenocarcinomas (Cancer Genome Atlas 
Research Network, 2012), as well as their reference genes. They in-
clude many known impactful variants as well as many variants of 
unknown significance (VUS). As negative controls, we used wells 
with untreated cells that we call EMPTY controls.

We found that the Cell Painting assay can detect phenotypic 
signals for the majority of alleles (83.2%); this is an important first 
step in determining the impact of variants. We evaluated this as fol-
lows: after acquiring Cell Painting images for each sample (Figure 
1B), we transformed them into replicate-level allele profiles using a 
deep learning–based workflow (Pawlowski et al., 2016; Michael 
Ando, McLean and Berndl, 2017; Figure 1A; see also Materials and 
Methods). We evaluated the quality of profiles using the percent 
replicating score (Way et al., 2021), measured as the percentage of 
perturbation reagents whose replicates consistently have higher 
similarity (reproducible signal) than random sets of perturbations; in 
this case 83.2% (Figure 1C).

Variant phenotypes cluster consistently with the 
corresponding reference gene’s phenotype
Having determined that most reference genes and their vari-
ants’ overexpression produced a replicable profile, we next 
sought to assess the structure of the relationships (similarities) 
among those profiles. Cell Painting has been shown to recapitu-
late genetic pathway relationships between reference genes in 
overexpression perturbation experiments (Rohban et al., 2017); 
here, we tested a large number of variants per gene, together 
with the reference alleles. After aggregating replicate-level pro-
files into perturbation-level profiles to obtain a high-dimensional 
representation of each allele in our experiment, we clustered 
them.

The correlation matrix (Figure 1E) displays a large set of alleles 
that have closely similar phenotypic characteristics, which indi-
cates that within this dataset most cancer variants share the same 
major phenotype. Cell Painting profiles are still able to capture 
subtle and meaningful variations between alleles as reflected in 
the continuous groups of reference genes and their corresponding 
variants in the hierarchical clustering (Figure 1F, color bar marked 
“gene”) and in the UMAP data visualization (Becht et al., 2018) 
(Figure 1G).

Because the profiles of most variants tend to cluster together 
within each gene, as observed in the hierarchical clustering of the 
correlation matrix (Figure 1F), we conclude that the phenotypic 
changes of variants remain closely related to the reference allele 
and rarely result in a major phenotypic disruption that places them 
in a different cluster. This type of closely related variation is consis-
tent with previous studies in morphological and transcriptional pro-
filing (Squires et al., 2020; Way et al., 2021), which report that the 
major factor of variation detected by profiling platforms is first as-
sociated with cell lines, then with groups of perturbations that 
share similar mechanisms, and finally with specific effects of each 
perturbation.

Interestingly, for a subset of alleles with functional annotation, 
Cell Painting profiles cluster the data in two major parts in the cor-
relation matrix (Supplemental Figure 1): one part is enriched with 
variants from known oncogenes such as BRAF, EGFR, KRAS, and 
CTNNB1, and the other part is enriched with variants from known 
tumor suppressor genes, including FBXW7, KEAP1, and STK11. 
This result confirms that morphology captures relevant cellular 
changes associated with known cancer biology.

FIGURE 1: Cell morphology captures phenotypic variation of lung cancer alleles. (A) Workflow to create image-based 
profiles by transforming Cell Painting images into quantitative, multivariate representations of the states of cells 
impacted by each allele (whether a reference gene or variant overexpressed in the cells). (B) Example Cell Painting 
images under three experimental conditions: empty controls, BRAF reference gene overexpression, and BRAF V600E 
allele overexpression. Images are random crops of 200 × 200 pixels from a field of view (1080 × 1080), and each channel 
has been independently rescaled to fit the visible intensity range. Fluorescent channels: RNA/nucleoli and cytoplasmic 
RNA (SYTO 14), ER/endoplasmic reticulum (concanavalin A), AGP/actin, Golgi and plasma membrane (phalloidin and 
WGA), Mito/mitochondria (MitoTracker Deep Red), and DNA/nucleus (Hoechst 33342). (C) Distribution of true replicates 
vs. a null distribution of randomized replicates in this experiment, resulting in 83.2% of all perturbations having high self-
correlation. Note that the null threshold (above which significant correlations are detected) is 0.44 in the Pearson 
correlation scale of [–1,1]. (D) List of genes included in our study; some genes whose variants are grouped in the 
dendrogram are outlined. For each gene, we tested several variants. (E) Correlation matrix between all pairs of 
perturbations (reference and variant overexpression) sorted according to the hierarchical clustering of the rows and 
columns. (F) Dendrogram depicting groups found by the hierarchical clustering in the correlation matrix. The type bar 
coloring refers to whether the perturbation is a reference sequence or a variant. The gene bar is colored according to 
the color code in D. (G) UMAP plots of reference genes’ and variants’ perturbation-level profiles (combining data from 
all replicate wells). Clusters of reference genes and their variants are observed and four examples are zoomed in 
(full-scale figures available at http://broad.io/cmvip/umap.html).
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Cell morphology–based variant impact phenotyping 
correctly classifies benchmark variants
We next tested whether the detected differences in morphology 
can predict each variant’s impact on gene function. Using the deci-
sion tree from prior eVIP (Berger et al., 2017; Thornton et al., 2021), 
we tested for significant differences in the similarity between cell 
morphological profiles of reference genes and their variants 
(Materials and Methods). We call this extension of VIP cell morphol-
ogy–based VIP (cmVIP), which interprets replicate correlations 
among alleles as probability distributions that can be compared us-
ing statistical tests (Figure 2A; Materials and Methods).

We found that cmVIP correctly classified 100% of the set of 20 
well-characterized variants (Supplemental Table 1) that Berger et al. 
previously used in evaluating eVIP. This set of 20 variants has been 
characterized previously using functional assays. We also predicted 

the directionality of the variants in this benchmark set and found 
that cmVIP correctly classifies 16 out of the 20 variants into one of 
two groups: change of function (COF) or gain of function (GOF) vari-
ant vs loss of function (LOF) variant (Supplemental Table 1).

Finally, we also estimated the false positive rate of cmVIP with 
mock alleles using a set of high-replicate controls. We collected 64 
replicates for each of these control alleles (known to have high phe-
notypic activity), and then we sampled random groups of eight rep-
licates without replacement to simulate reference genes and vari-
ant pairs. Next, we ran the cmVIP analysis to determine if this mock 
pair had an impact; we expected a negative answer as a result. We 
ran this simulation 1000 times and found that cmVIP falsely calls the 
mock alleles impactful 6.75% of the time on average (Supplemen-
tal Table 2), close to the false discovery rate of 5% at which the 
testing procedure is controlled. These results suggest that Cell 

FIGURE 2: Morphology-based variant impact phenotyping (cmVIP) and resulting predictions in a diverse set of variants. 
(A) Decision tree of the VIP algorithm (Berger et al., 2017; Thornton et al., 2021), which we adopt for classifying variants 
by their Cell Painting profiles as gain of function (GOF), loss of function (LOF), change of function (COF), and neutral 
(NT) mutations. (B) Example predictions by cmVIP on four variants, one of each type. The correlation matrices at the top 
show how similar the replicates of each pair are (reference gene self-correlation, reference–variant cross-correlation, and 
variant self-correlation). The correlation matrix colors represent the correlation values in the same color scale as in D. 
The boxplots below the matrices show the distribution of median values of the matrices’ rows (self-correlation) and 
columns (cross-correlation). (C) Sparkler plots display the magnitude and directionality of predictions for all variants in a 
gene set. The x-axis represents the negative log p-value of the impact test (the larger the more impactful), and the 
y-axis represents the log p-value of the directionality test polarized by the result of the strength test. All variants for 
these genes are displayed, but only a few are annotated to aid visualization. All the plots and annotations can be 
queried at full scale in the interactive website: http://broad.io/cmvip. (D) Correlation matrices for the groups of variants 
presented in C, together with the corresponding reference alleles.
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Painting can reliably predict the impact status of variants of un-
known significance.

The impact of variants of unknown significance can be 
predicted at high throughput with Cell Painting
We next explored the full set of reference and variant alleles. 
cmVIP found 258 variants (79.3%) to be impactful; from these 158 
variants (48.6%) were classified as GOF or COF variants, and 100 
as LOF variants (30.7%). We show examples (Figure 2B) and pro-
vide an online resource to explore all genes and their variants 
(http://broad.io/cmvip).

Similarly to eVIP (Berger et al., 2017; Thornton et al., 2021), the 
cmVIP decision tree (Figure 2A) starts by looking at the correlation 
matrices of reference gene replicates (REF self-correlation) and vari-
ant replicates (VAR self-correlation) as probability distributions. 
Given that the image-based profiling workflow involves control-
based normalization (Materials and Methods), we expect self-corre-
lation matrices (correlation values between true replicates) to have 
high signal when the underlying phenotype is different from nega-
tive controls. This interpretation applies to reference gene and vari-
ant self-correlation matrices (REF_REF and VAR_VAR in Figure 2B). 
Finally, the reference gene versus variant cross-correlation matrix 
(REF_VAR) reveals how similar is the variant in question to its corre-
sponding reference gene.

cmVIP interprets statistically significant changes in these three 
distributions of similarities among replicates in a biologically 
meaningful way. For instance, CTNNB1 has a relatively low signal 
in its reference form (REF_REF median signal strength = 0.30, 
Figure 2B), meaning that overexpressing it in cells changes their 
morphology only marginally. A gain-of-function (GOF) variant in 
this gene (e.g., CTNNB1 S37C in Figure 2B), by contrast, yields a 
relatively stronger signal (VAR_VAR median signal strength = 0.50, 
Figure 2B) and is different from the reference (REF_VAR median 
signal strength = 0.25). Loss-of-function (LOF) variants, on the 
other hand, are usually characterized by variants with a weak phe-

notype relative to a reference allele that has a strong phenotype 
(e.g., KEAP1 G333C, Figure 2B). Change-of-function variants show 
strong phenotypes for the reference gene and variants, and they 
differ from each other (e.g., KRAS G12V, Figure 2B). Finally, neutral 
mutations show high similarity between the reference gene and 
variant, indicating no detectable phenotypic change (e.g., FBXW7 
P620R, Figure 2B).

The statistical tests of cmVIP provide p-values for such differ-
ences, which can be visualized to compare the impact and direction-
ality of a group of variants using sparkler plots (Figure 2C). These 
show, for example, that the KEAP1 and STK11 variants tested in our 
study mainly present a LOF or COF variant pattern; BRAF variants 
have GOF behavior, while CTNNB1 and EGFR variants present a 
diverse range of GOF, COF, and LOF variants.

Cell Painting reveals allele heterogeneity at single-cell 
resolution
Image-based profiling inherently offers single-cell resolution while 
being the lowest cost even among bulk profiling methods. We in-
vestigated whether single-cell morphological profiling might pro-
vide insights into the heterogeneity of allele subpopulations or 
other phenotypic mechanisms that cannot be observed using bulk-
level data (Ursu et al., 2022). We extract single cells from Cell Paint-
ing images using the seeded-watershed segmentation algorithm 
and then compute deep-learning feature embeddings for each one 
individually (Materials and Methods). The feature representation of 
single cells has been transformed using a sphering transformation 
with respect to a set of 1.5 million negative control cells to minimize 
the impact of technical variation across batches.

We found that single-cell data visualizations for each allele al-
lowed qualitatively observing cell heterogeneity and the relationship 
among cells overexpressing a particular variant allele relative to its 
reference allele counterpart. For example, the two BRAF variants in 
Figure 3 (V600E and W450L) were classified as impactful GOF vari-
ants using the cmVIP algorithm: both showed a strong phenotype in 

FIGURE 3: Single-cell heterogeneity of variants. Different mutations of the same gene result in different phenotypes. 
(A, D) Correlation matrices and box/dot plots of bulk-level profiles for the corresponding alleles, as in Figure 2. These 
matrices are used to obtain the impact and directionality predictions with cmVIP. (B, C) UMAP visualizations of three 
populations of cells, the empty control population (in blue), the reference gene population (in green), and the variant 
population (in orange). Each point in the plots is a single cell extracted from the Cell Painting images using 
segmentation. The UMAP embedding for all panels is computed using a fixed sampling of negative control wells. 
Arrows indicate the shift in phenotypic space from the reference gene population to the variant population. Note that 
variants of the same gene move in different directions. (E, F) Venn diagrams of the overlap among the reference gene, 
variant, and control populations of cells. These counts are obtained using graph analysis in the original feature space 
(Materials and Methods).
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the variant replicate correlation matrices compared with the refer-
ence gene, whose replicate correlation was weak (Figure 3, A and 
D). When looking at single cells in reduced-dimensional space 
(Figure 3, B and C), we observe that each variant’s phenotypes move 
to different regions of the phenotypic space compared with the ref-
erence allele. These two different regions are not exclusive of these 
two variants; they are also occupied by other BRAF variants (W450L 
is similar to H574N and D594H, while V600E is similar to L485S, 
K601N, and H574Q; interactive website http://broad.io/cmvip/ 
variants/BRAF_p.W450L/). This suggests different mechanisms be-
tween the two groups of variants; in fact, it is well known that V600E 
and other constitutively activating variants have different behavior 
than W450L and other variants of the same gene (Yao et al., 2015, 
2017; Dankner et al., 2018).

We quantify and summarize these variations in single-cell states 
using graph analysis and nearest neighbors (Materials and Methods), 

which can be observed in the Venn diagrams (Figure 4, E and F) that 
summarize single-cell counts with shared phenotypes (Materials and 
Methods). UMAP plots that allow single cell visualizations, as well as 
the corresponding Venn diagrams, are available for all the variants in 
our study at http://broad.io/cmvip.

Cell Painting phenotypic variations are highly correlated 
with gene expression variations
A subset of 160 variants that we profiled for this study were previ-
ously profiled using transcriptional profiling with the L1000 plat-
form. Given the pairs of profiles for the same perturbations, we in-
vestigated the extent to which phenotypic variation captured with 
Cell Painting profiles corresponds with L1000 variation. Although 
they are not identical, we found high correlation between the two 
platforms in this subset of alleles by conducting two different cor-
relation analyses (Figure 4).

FIGURE 4: Correlation between Cell Painting profiles and L1000 profiles for a common subset of 160 alleles. (A) Signal 
replicability, defined as the median pairwise correlation between replicates of the same allele, was calculated for each 
variant in the common subset in both profiling platforms. The x-axis corresponds to the signal strength in L1000 and the 
y-axis represents the signal strength in Cell Painting. The Spearman correlation coefficient is 0.69. (B) Canonical 
correlation analysis (CCA) in the multidimensional feature space for both profiling platforms at the perturbation level. 
CCA obtains a common latent space by finding the directions of maximal correlation between two multivariate datasets, 
allowing us to project data points from Cell Painting and L1000 in the same subspace. The axes in this plot are the first 
and second CCA directions. Points in blue are morphology profiles and points in green are gene expression profiles. 
The red lines connect two points of different modalities that represent the same allele. (C) Same representation of Cell 
Painting profiles (morphology) and L1000 profiles (gene expression) in CCA space as in B, but using an independent plot 
for each platform.

http://broad.io/cmvip/variants/BRAF_p.W450L/
http://broad.io/cmvip/variants/BRAF_p.W450L/


Volume 33 May 15, 2022 Images predict cancer variant impacts | 7 

First, when measuring the phenotype replicability of alleles, we 
found a high correlation between the signal of Cell Painting profiles 
and the signal of L1000 profiles (Figure 4A). Phenotype replicability 
is defined as the median replicate correlation among true replicates 
of the same allele; high correlation values indicate that the underly-
ing condition is detectable by the profiling platforms and reproduc-
ible among replicates—that is, when an allele has a high signal in 
L1000, it is likely to be detected with high signal in Cell Painting as 
well.

Second, we projected perturbation-level profiles of both plat-
forms to the same latent space using canonical correlation analysis 
(CCA), which finds directions of maximal correlation between two 
paired multidimensional datasets. We found high agreement be-
tween profiles from both platforms when projected into the first two 
CCA components (Figure 4, B and C). This alignment confirms that 
the relative similarities and differences observed between allele 
phenotypes in our study can be reproduced with different assays 
under different experimental settings, increasing the confidence 
that the signal captured by both platforms is reliable and biologi-
cally meaningful.

Cell Painting predictions are consistent with transcriptional 
profiling predictions
We next explored how well cmVIP’s predictions matched known ob-
servations about cancer genes and variants. Beyond the 20 bench-
mark genes tested above (Supplemental Table 1), 140 additional 
variants in our study were previously characterized using transcrip-
tional profiling via expression-based variant impact phenotyping 
(eVIP; Berger et al., 2017).

We found that eVIP and cmVIP platforms agree on the predicted 
impact for 123 of the 160 variants (76.8%; Figure 5A). From those 
concordant predictions, 102 alleles were found to be impactful 
while 21 were found to be neutral. This level of agreement increases 
the confidence that both phenotypic profiling platforms are consis-
tently quantifying relevant cancer biology in the underlying experi-
ment, and also confirm that the VIP strategy generalizes well to di-
verse phenotypic readouts.

Next, we evaluated the agreement between the two platforms 
on the predicted directionality of impactful variants, and we found 
consistency in 21 LOF variants, 29 GOF variants, and 7 COF variants 
(Figure 4B). A common disagreement appears with variants that are 

FIGURE 5: Comparison of VIP predictions using Cell Painting (morphological profiling) and L1000 (transcriptional 
profiling). Both platforms use the same underlying statistical tests of the VIP algorithm. (A) Impact test results. The 
x-axis presents the negative log p-value obtained by eVIP (L1000), and the y-axis represents the negative log p-value 
obtained by cmVIP. The dotted lines represent the significance threshold adopted in this study (0.05). Each point is one 
variant and its color indicates the prediction agreement between the two platforms: green is impactful by both 
platforms, gray is neutral by both platforms, pink is impactful by Cell Painting only, and blue is impactful by L1000 only. 
(B) Directionality test results. The x-axis indicates the polarized log p-value obtained by L1000, and the same for Cell 
Painting on the y-axis. Each point is one variant with the inner circle colored according to the predictions obtained by 
each platform. (C) Distribution of cmVIP and eVIP predictions in known oncogenes, known tumor suppressor genes 
(TSGs), or genes of unknown function. The distribution of oncogenes is enriched with GOF/COF calls in both platforms, 
and similarly, the distribution of tumor suppressor genes is enriched with LOF calls.
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called GOF by one platform and COF by the other (23 variants). 
Other disagreements are observed between LOF and NT (17 vari-
ants) and between COF and NT (10 variants), which happen when 
one platform has higher phenotype strength for those variants than 
the other, that is, one platform detects the phenotype and the other 
does not. A few unexpected disagreements also appeared in five 
cases with LOF versus GOF directionality classifications: IDH2 
K130del (CP:GOF/L1000:LOF), IDH2 S249G (CP:GOF/L1000:LOF), 
PIK3CA E600K (CP:GOF/L1000:LOF), RIT1 R122L (CP:LOF/
L1000:GOF), and CTNNB1 V600G (CP:LOF/L1000:GOF). These 
may represent either occasional technical errors, or cases where the 
function of the reference or variant allele is undetectable by one 
platform versus the other.

Finally, we looked at the functional classification of genes for a 
few variants in the common set (Figure 5C). Our set of 160 alleles in 
common between the two platforms has not been completely char-
acterized as to their GOF, LOF, COF, or NT status, but many of their 
genes are classified as tumor suppressors or oncogenes. One would 
expect that variants found in tumor suppressors are more likely to 
be LOF than GOF/COF, whereas variants found in oncogenes are 
more likely to be GOF/COF than LOF. We found that both cmVIP 
and eVIP make predictions consistent with these expected trends 
(Figure 5C).

DISCUSSION
Here we demonstrate that images of cells overexpressing given 
cancer-associated variants can be used to predict their impact on a 
diverse array of genes’ functions at high throughput using the cmVIP 
strategy. The signal obtained from image-based profiling was sensi-
tive to morphological variations of lung cancer variants in this ex-
periment and was useful to characterize and make predictions for 
325 variants. The accuracy appears comparable to that of transcrip-
tional profiling, and the two platforms’ predictions are generally 
concordant. Resolving the impact of variants at high throughput has 
the potential to accelerate precision oncology (Suzuki et al., 2019; 
Vichas et al., 2021).

Unbiased cell morphological profiling based on the Cell Paint-
ing assay has been shown to be a powerful approach to drug dis-
covery and functional genomics (Caicedo, Singh and Carpenter, 
2016; Chandrasekaran et al., 2020). Our work expands the applica-
tion of image-based profiling with Cell Painting to cancer variant 
phenotyping, indicating that it might be scaled up to much larger 
collections of variants efficiently and cost-effectively. The approach 
may be extended from somatic variations found in cancer to inves-
tigate the impact of germ-line variations of unknown significance 
in humans. Exploring a variety of cell lines and examining their 
concordance for variant impact prediction would be particularly 
interesting.

Extending this even further, it would be informative to test 
whether the allele-associated morphologies we observed in a cul-
tured cell line would be identical to morphologies in cultured or-
ganoids or even tumors with the given allele. We actually suspect 
that this will often not be the case; the simplified system described 
here may cause certain phenotypes to manifest very differently 
than they would in the complex context of an organoid or tumor 
with all its three-dimensional cell interactions and mixtures of cell 
types. An interesting aspect of profiling technologies is their ability 
to detect similar patterns of morphological changes rather than 
precisely matching individual morphological features, and we 
would expect those patterns of similarity among alleles (or dissimi-
larity from reference allele to a given variant allele) to be more 
consistent with tumor samples than particular shape changes 

themselves. Nevertheless, some such cases are likely to exist, 
where the specific morphological impact of a given allele would 
recapitulate in a more complex cell system such as organoids or 
tumors.

Image-based profiling provides single-cell resolution to investi-
gate cellular heterogeneity across perturbations. We observed sin-
gle-cell phenotypic differences between variants of the same gene, 
which could provide insights into functional differences of alleles. 
The richness of single-cell variation and the ease of implementation 
suggests that phenotypic studies could be performed using image-
based profiling with fewer technical replicates while maintaining the 
ability to detect meaningful morphological variations. We leave it to 
future research to further investigate particular cases where single 
cells reveal interesting heterogeneity patterns to uncover novel can-
cer biology, as well as potential confounders therein.

In this work, we also used novel computational methods based 
on deep learning models to transform images of cells into quantita-
tive phenotypic profiles, an approach just starting to be used in the 
field (Pratapa, Doron and Caicedo, 2021). The sensitivity of image-
based profiling can be further increased with the advent of more 
powerful machine learning algorithms that extract precise patterns 
from images using computer vision. Our methods are open source 
and can be adopted for similar applications in the future, and we 
also expect contributions from the imaging community to develop 
new techniques that harness the morphology of cells for studying 
cellular biology.

Future studies might aim to integrate imaging and mRNA data 
types (if both are available) to explore whether their predictive 
power increases when they are combined. Our results indicate that 
morphology and gene expression, as captured by the Cell Painting 
and L1000 assays, measure highly correlated phenotypic variation, 
which mutually confirms their ability to detect meaningful biological 
events. This suggests the possibility of modeling their correspon-
dences using computational approaches to translate one data type 
from the other or to understand their causal relationships. Our data-
set has been used simultaneously in a study to identify which gene 
expression variations correspond to which morphology variations, 
and vice versa (Haghighi et al., 2021). While this has been explored 
at the bulk level, our results and previous work based on scRNAseq 
(Ursu et al., 2022) indicate that this type of analysis could be ex-
tended to understand multiomics connections at the single-cell 
level.

We publicly provide all data used and created in this study, in-
cluding the raw images and the computed profiles (Materials and 
Methods). Further, we provide a public portal where researchers can 
explore alleles of interest to see the distribution of signal strength, 
impact and directionality predictions, VIP calls, and UMAP plots of 
alleles (http://broad.io/cmvip/).

MATERIALS AND METHODS
Profiling cancer variants with Cell Painting
Cells were grown, stained, fixed, and imaged as described in our 
protocol (Bray et al., 2016). Briefly, A549 cells are grown in a 384-
well format and infected with lentiviral open reading–frame (ORF) 
constructs that induce overexpression of various ORFs and alleles 
therein. After 96 h, MitoTracker stain was added to live cells to label 
the mitochondria. Cells were then fixed with formaldehyde, per-
meabilized with Triton X-100, and stained with the remaining dyes 
to identify the nucleus (Hoechst), nucleoli and cytoplasmic RNA 
(SYTO 14), endoplasmic reticulum (concanavalin A), Golgi and 
plasma membrane (wheat germ agglutinin), and actin cytoskeleton 
(phalloidin). Plates were imaged using an ImageXpress Micro XLS 
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automated microscope (Molecular Devices). We captured images 
from nine fields of view (sites) per well in five fluorescent channels, 
each using a 20× lens. Separate, grayscale image files for each chan-
nel were then stored in 16-bit TIFF format. All raw image data are 
publicly available at the Cell Painting Image Collection (https://
registry.opendata.aws/cell-painting-image-collection/).

The alleles in the ORF library represent a subset of those identi-
fied in an analysis of 412 primary lung adenocarcinomas that were 
previously sequenced (Cancer Genome Atlas Research Network, 
2012; Imielinski et al., 2012), which detected 518 unique missense 
and in-frame insertions or deletions in the 50 genes prioritized in 
this study (Berger et al., 2017) . In all, ORF constructs for 325 vari-
ants (and reference versions) of these 50 genes were successfully 
generated and assayed. An additional 88 constructs are included 
in the dataset, representing TP53 variants that inadvertently had 
double mutations. A comprehensive description of the process for 
selecting the constructs that were analyzed is presented in Supple-
mental Figure 2. The additional alleles have been included in the 
dataset for completeness. Eight replicates were assayed for two of 
the plates of constructs; a third plate—comprising multiple repli-
cate wells of a small number of “control” alleles—was assayed in 
two replicates.

Cell line
A549 cells (adenocarcinomic human alveolar basal epithelial cells), 
RRID:CVCL_0023, were obtained from ATCC; they were not addi-
tionally authenticated before this experiment. The cell line tested 
negative for mycoplasma before this experiment.

Mutated cDNA Library
The cDNA library is identical to that described in Berger et al. (2017): 
wild-type ORF constructs were obtained from the human ORFeome 
library version 5.1 (http://horfdb.dfci.harvard.edu) and used as tem-
plates for site-directed mutagenesis to generate mutated cDNAs in 
the pDONR223 Gateway entry vector. All constructs used in down-
stream analyses were validated by Sanger sequencing to include 
the intended mutation and no other identified sequence differences 
relative to the wild-type construct. After sequence verification, 
mutated ORFs were shuttled into the pLX317 lentiviral expression 
vector by LR recombination.

Image analysis
Illumination correction. TIFF images were corrected for non-
homogeneous illumination variation across the image field using a 
retrospective approach (Singh et al., 2014). Briefly, the method 
computes illumination correction functions by averaging all images 
of the same channel in a multiwell plate, followed by a median filter. 
Images in the plate are corrected by dividing their intensity values 
by the corresponding illumination correction function. For 
visualization purposes (e.g., example images reported in Figure 1), 
we rescale intensity values to fit the range of 255 grayscale values 
separately for each channel.

Segmentation. Single-cell identification was performed using Cell-
Profiler (McQuin et al., 2018; Stirling et al., 2021) with the Identify 
Primary (nuclei) and Secondary (cell bodies) objects functionality. This 
approach runs thresholding and seeded watershed to identify the 
structures of interest. The single-cell analysis presented in this work 
was conducted by recording the center of the nucleus of each cell 
and then cropping a fixed-size region around these coordinates (see 
Feature Extraction). Cell masks were not used to isolate cells from the 
background.

Feature extraction. Feature extraction computes a numerical rep-
resentation of the image content. Standard approaches use hand-
crafted descriptors such as texture or shape features (Stirling et al., 
2021). Although widely used to quantify cellular morphology, they 
still require careful hyperparameter tuning to get high-quality repre-
sentations, and, due to the high variability in the acquisition pro-
cess, different datasets require custom adjustment. In contrast, rep-
resentation and deep learning methods aim to find transformations 
automatically that yield a compact and meaningful representation 
based solely on image pixels. Previous empirical exploration showed 
promising results using deep learning models trained in the natural 
images and then using them to extract features from cellular images 
(Pawlowski et al., 2016). Motivated by this and the success of trans-
fer learning in computer vision applications, we use a pretrained 
EfficientNet neural network (Tan and Le, 2021) to obtain embed-
dings for Cell Painting images.

First, we compute a feature vector that represents the content 
for each segmented cell. Bounding boxes are centered on the cen-
ters of segmented cells, cropped to 128 × 128 pixels, and rescaled 
to 224 × 224 pixels to match the expected input of EfficientNet B0. 
We process each of the five Cell Painting channels independently as 
if they were separate RGB images by replicating their grayscale val-
ues in three channels and then running them through the Efficient-
Net. We keep the feature vectors of the second-to-last layer, which 
produces a 1280-dimensional representation for one image, and 
then concatenate the five vectors (one per channel), generating 
6400 features to represent a single-cell profile. This process was ex-
ecuted using the DeepProfiler open source tool (https://github.
com/cytomining/DeepProfiler).

Image-based profiling
In general, we followed the image-based profiling best practices 
defined by the community for transforming images into quantitative 
readouts (Caicedo et al., 2017). More specifically, in order to get 
perturbation-level (or bulk-level) profiles, we first aggregate single-
cell profiles into replicate-level (or well-level) profiles by computing 
their means, and then aggregate replicate-level profiles by comput-
ing their medians. In our study, we conducted a multilevel analysis 
of image-based profiles including perturbation-level profiles to ver-
ify associations among alleles and with gene expression data; repli-
cate-level profiles to make impact and directionality predictions us-
ing the cmVIP algorithm; and single cell–level profiles to explore 
phenotype heterogeneity.

Data normalization and batch correction
As is the case in many biological experiments, imaging assays may 
also be prone to nuisance variation due to technical artifacts. We 
used negative control sphering, which has been shown to be effec-
tive in other studies (Michael Ando, McLean, and Berndl, 2017; 
Moshkov et al., 2021; Way et al., 2021), to correct for batch effect 
biases. The sphering transform used in this work makes the assump-
tion that negative controls sampled from different batches ought to 
be similar to each other in the biological sense, and any deviations 
from this normal-looking phenotype are rather technical. Therefore, 
by finding a new embedding space where controls have roughly the 
same amount of variation in every dimension, the patterns of inter-
est naturally emerge while batch effects are minimized. This is the 
same principle used in the Typical Variation Normalization (TVN) 
transform (Michael Ando, McLean, and Berndl, 2017).

Sphering is achieved by computing a singular value decomposi-
tion of the covariance matrix of control profiles and then scaling 
all the directions of the orthogonal basis by the inverse of the 
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corresponding eigenvalues (Kessy, Lewin, and Strimmer, 2015). The 
rescaled dimensions define a new representation space where large 
variations (usually associated with nuisance variations) are reduced, 
and rare variations (usually phenotypic variations) are amplified. We 
calculated the transformation matrix using control samples at the 
replicate level and used it to project all other perturbation profiles in 
our experiment into the corrected feature space. The sphering 
transform has a regularization parameter for safely inverting the ei-
genvalues of the covariance matrix, which was set to 0.01 in our 
analysis.

Cell morphology–based Variant Impact Phenotyping
Our procedure closely follows the eVIP algorithm (Berger et al., 
2017; Thornton et al., 2021). For any given variant and its corre-
sponding reference gene, cmVIP estimates the impact and direc-
tionality of the variant based on three correlation sets: 1) variant self-
correlation: median correlation values in the rows of the replicate 
correlation matrix of the variant, 2) reference gene self-correlation: 
median correlation values in the rows of the replicate correlation ma-
trix of the reference gene, and 3) reference–variant cross-correlation: 
median correlation values in the rows and columns of the correlation 
matrix between variant and reference gene replicates.

cmVIP follows the rule-based decision tree depicted in Figure 
2A. The first stage determines if there is a statistically significant dif-
ference between any of the three correlation sets using the Kruskal–
Wallis test, which is a nonparametric test. If the test rejects the null 
hypothesis, that is, there is a difference, then the variant is consid-
ered to be impactful; otherwise, the variant is considered to be 
neutral.

For impactful variants, cmVIP determines their functional direc-
tionality by running a Wilcoxon statistical test on variant self-correla-
tions vs reference gene self-correlations. If the test rejects the null 
hypothesis, that is, there is a difference between variant and refer-
ence gene, then their medians are directly compared. If the median 
of the variant is higher than the reference one, we predict that it is a 
gain-of-function variant; otherwise, we call it a loss-of-function vari-
ant. In case the Wilcoxon test fails to reject the null hypothesis, that 
is, there is no difference between variant and reference, we predict 
that it is a change-of-function variant.

The Benjamini–Hochberg multiple-hypothesis correction proce-
dure is used to control the false discovery rate of each step to be 
less than 5%.

Single-cell analysis
We used single-cell profiles to explore phenotypic differences be-
tween variants of the same reference gene. The first step before us-
ing single-cell profiles for quantitative analysis was to sphere the con-
trol distribution at the single-cell level (see Data Normalization and 
Batch Correction for more details). To accomplish this, we used ∼1.5 
million single-cell profiles taken from all 320 control wells in our ex-
periment to compute the sphering transform. Then we projected all 
other single cells coming from overexpression perturbations in the 
corrected space. The regularization parameter used for sphering sin-
gle cells was set to 0.01 (the same as in the aggregated profiles case).

Corrected single-cell profiles were then used to compute visual-
izations using the UMAP projection one gene at a time, including 
the reference gene and all its available variants. We observed that, 
when single cells in this UMAP visualization were colored with plate 
identifiers, the different replicates were well mixed and integrated 
(random coloring patterns; see http://broad.io/cmvip for exam-
ples). By computing visualizations for all alleles of the same gene at 
the same time, we can also qualitatively assess the relative differ-

ences among their phenotypes. We used the UMAP algorithm de-
fault parameters in their Python implementation in all cases to re-
veal the structure of the feature space in the most unbiased way 
possible.

Beyond qualitative single-cell analysis using UMAP visualiza-
tions, we used graph analysis based on nearest neighbors to objec-
tively quantify the overlap between populations of cells in the origi-
nal feature space. In this analysis, we first created a five–nearest 
neighbor graph using a sample of 15,000 single cells coming from 
three populations (5000 from each): reference gene, variant, and 
negative controls. The sample from each population comes from a 
mix of all replicates. In this graph, we proceed to classify the pheno-
type of single cells in one of seven categories: 1) pure reference 
gene phenotype, 2) pure variant phenotype, or 3) pure control phe-
notype, if all five nearest neighbors are from one of these three 
populations; 4) shared reference–variant phenotype, 5) shared refer-
ence–control phenotype, or 6) shared variant–control phenotype, if 
the five nearest neighbors are a mix of these two populations; finally, 
7) combined phenotype, if the five nearest neighbors are a mix of 
the three populations. The classification of single cells into these 
seven categories is used to create the Venn diagrams of single-cell 
phenotypic overlap presented in Figure 3 and at the interactive 
website http://broad.io/cmvip.

Data and code availability
We make the data used in this project publicly available. The raw 
images can be downloaded from the AWS Open Data–Cell Painting 
Image Collection (https://registry.opendata.aws/cell-painting-im-
age-collection/ in the following path: cytodata/datasets/LUAD-
BBBC043-Caicedo/). CellProfiler was used to prepare and segment 
cells. The code used to process raw images and obtain deep learn-
ing features, which is based on TensorFlow (Abadi et al., 2016), is 
available at https://github.com/cytomining/DeepProfiler/.

After image-based profiles were obtained, all our analysis was 
developed using the data science Python ecosystem, including 
NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), Pandas, and 
JupyterLab, among others. All our scripts and notebooks are avail-
able at https://github.com/broadinstitute/luad-cell-painting. Finally, 
an interactive website with the aggregated data, predictions for all 
variants, and full-resolution figures presented in this manuscript is 
available at http://broad.io/cmvip.
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