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Cells can be perturbed by various chemical and genetic treatments

and the impact on gene expression and morphology can be measured
viatranscriptomic profiling and image-based assays, respectively. The
patterns observed in these high-dimensional profile data can power adozen
applications in drug discovery and basic biology research, but both types
of profiles are rarely available for large-scale experiments. Here, we provide
acollection of four datasets with both gene expression and morphological
profile data useful for developing and testing multimodal methodologies.
Roughly athousand features are measured for each of the two data types,
across more than 28,000 chemical and genetic perturbations. We define
biological problems that use the shared and complementary informationin
these two data modalities, provide baseline analysis and evaluation metrics
for multi-omic applications, and make the data resource publicly available

(https://broad.io/rosetta/).

Biological systems canbe quantified in many different ways. For exam-
ple, researchers canmeasure the morphology of a cell using microscopy
andimage analysis, or molecular details such as the levels of mMRNA or
proteinin cells. Historically, biologists chose asingle feature to measure
for their cell samples, based on their previous knowledge or hypoth-
eses. Now, ‘profiling’ experiments capture a high-dimensional profile
of features for each sample, and hundreds to thousands of samples
can be quantified. This allows the discovery of unexpected behaviors
of the cell system.

Profiling experiments carried out at large scale remain expensive,
even forasingle profiling modality. We observed that no public dataset
exists providing both genetic and chemical perturbation of cells with
two different kinds of profiling readouts. Such a dataset would enable
multimodal (also known as multi-omic) analyses and applications.
Examplesincludeintegrating the two datasources to better predicta
compound’s activity in an assay', predicting the mechanism of action
(MoA) of a drug based on its profile similarity to well-understood
drugs?, or predicting a gene’s function based on its profile similarity
to well-understood genes’.

Observing asystem from multiple perspectivesis known to reveal
patterns in data that may not be visible in individual perspectives.
Machine learning methods have been exploredinvariousfieldstolearn
frommultiple sources to make better inferences from data*. In biology,
the advancement of technologies for measuring multi-omic data has
sparked research investigating the relationship and integration of
different high-dimensional readouts’. For example, transcriptomic,
proteomic, epigenomic and metabolomic data can be combined to
predict the MoAs of chemical compounds®.

Here, we created a collection of gene expression (GE) and mor-
phology datasets with the scale and annotations needed for machine
learning research in multimodal data analysis and integration. The
GE data were obtained using the L1000 assay’ and the morphology
datasets using the Cell Painting (CP) assay®. This Resource provides two
different, rich views on the cells by providing roughly athousand mRNA
levels and athousand morphological features when samples of cells are
perturbed by hundreds to thousands of different conditions, includ-
ing chemical and genetic. Furthermore, we present a framework for
thinking about the utility of multimodal data by defining applications
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Fig.1|Multimodal datasets overview. Multimodal genetic and chemical
perturbation datasets are valuable for many applications. For each dataset, CP
and GE L1000 assays were used to collect morphological and GE representations

(profiles), respectively. The datasets are described in Supplementary 1. Chemical
structure by G.). Owns, distributed under a CC0 3.0 license. DNA structure by R.
Wheeler, distributed under a CCBY-SA 3.0.

where the shared information, and the complementary information,
across datatypes can be useful, using terminology understandable to
those new to the biological domain. We demonstrate example applica-
tions within each group, uncover interesting biological relationships,
and provide baseline methods, code, evaluation metrics and bench-
mark results for each, as afoundation for future biologically oriented
machinelearning research.

Results

Gene expression and morphological profiles

All datasets were created at our institution (Supplementary 1) and
involved one of two types of ‘inputs’: chemical perturbations and genetic
perturbations (Fig. 1). There are also two types of high-dimensional
outputs measured: GE profiles and morphological profiles, each with
roughly 1,000 features measured. For each of the datasets, in asingle
laboratory, cells are plated into two sets of identical plates, each plateis
treated with chemical (or genetic) perturbationsidentically, and then
onesetisusedtomeasure GEand the other set to measure morphology.

We captured GE (mRNA) profiles using the LI00O assay’. The levels
of mRNAinthe cell are often biologically meaningful; collectively, mMRNA
levels for a cell are known as its transcriptional state. The L1000 assay
reportsasample’smRNA levels for ~978 genes at high throughput, from
the bulk population of cells treated with a given perturbation. These
‘landmark’ genes capture approximately 82% of the transcriptional vari-
ancefortheentire genome’; the specificgenes’ mRNAs that are measured
canbedifferentacross datasets, although largely overlapping (Methods).
Wenotethat ‘genes’areaninput (individual genes are overexpressed as
the perturbation in some datasets) and an output (GE profiles are the
measured mRNA levels foreachlandmark geneinthe L1000 assay); this
can cause confusion for researchers new to the domain.

We captured morphological profiles using the CP assay®. This
microscopy assay captures fluorescence images of cells colored by
sixwell-characterized fluorescent dyes to stain the actin cytoskeleton,
Golgi apparatus, plasma membrane, nucleus, endoplasmic reticu-
lum, mitochondria, nucleoli and cytoplasmic RNA in five channels
of high-resolution microscopy images. Images are processed using
CellProfiler software’ to extract thousands of features of each cell’s
morphology suchasshape, intensity and texture statistics, thus form-
ing a high-dimensional profile for each single cell. The aggregated
(population-averaged) profiles were then created for allimaged single
cellsin each sample well.

Forbothdatatypes, aggregation of all the replicate-level (equiva-
lent to well-level) profiles of a perturbationis called a treatment-level

profile.In our study, we used treatment-level profiles for each pertur-
bationin all experiments but have provided replicate-level profiles for
researchers interested in further data exploration. Therefore, in our
experiments, each perturbation in each dataset has two correspond-
ing vectors of measurements for each modality; one treatment-level
profile for GE and one treatment-level profile for morphological meas-
urements. GE and morphological measurements are taken from two
different sets of plates; therefore, no direct, one-to-one correspond-
enceexists between the two readouts at the replicate level. Of the eight
datasets provided (four datasets x two modalities), four have been
used previously by researchers at our Institute*'®"; here, we complete
the matrix by providing the missing data type for each pair, organizing
them and providing benchmarks.

Shared versus complementary information content
Cellmorphology and GE are two very different kinds of measurements
aboutacell’sstate, and their relationship is known to be complex. For
example, a change in morphology can induce GE changes' and GE
changes caninduce a change in cellmorphology®'*. However, a strict
relationship is not always the case; many drugs impact cells’ mRNA or
morphology profile, but not both'®">'®, Changes in protein stability
or posttranslational modifications can induce changes in morphol-
ogy without changes in GE; for example, in the Rho family of small
GTPases, morphology changes on a timescale that is much too short
tobe explained by changes in mRNA". Furthermore, the two data types
are collected at different time points, determined as optimal for each
individually. Therefore, even if technical artifacts were nonexistent,
we do not expect a one-to-one map between these two modalities.
We therefore hypothesized that the information in each data type
consists of a shared subspace, a modality-specific complementary
subspace, and noise (Fig. 1). Both subspaces can be exploited for bio-
logical applications.

Shared subspace across two modalities

The shared subspace between GE and cell morphology is beginning
to be explored. For example, cross-modal autoencoders learned the
shared latent space for single-cell RNA-sequencing (RNA-seq) and
chromatin images to integrate and translate across modalities™. In
another study, probabilistic canonical correlation analysis learned a
shared structure in paired samples of histology images and bulk GE
RNA-seqdata, suggesting that shared latent variables form a composite
phenotype between morphology and GE that can be useful”®. Many
uncovered relationships will not be transferable from one experimental
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batch to another, particularly if great differences exist: for example,
histology images differ in many ways from fluorescence microscopy
images, yet some features, suchas nuclear shape, might be consistent
across different experimental techniques.

The existence of a shared subspace enables multiple applica-
tions. Most prominently, if sufficient shared information is present,
one modality can be computationally predicted (that is, inferred or
estimated) using another, saving substantial experimental resources.
For example, one could predict the expression level of genes of inter-
est given their morphological profiles from already available images,
even from patients whose samples are no longer available for mRNA
testing. Or, one could generateimages or morphological profiles from
large libraries of mRNA profiles.

Another use of shared subspace is to identify relationships
between specific features of the two types. For example, a morpho-
logical feature and a specific gene’s mRNA level may be tightly linked,
which canyield clues as to the biological mechanisms underlying their
relationship. As well, inspecting which genes can be well predicted
may shine light on general relationships between mRNA levels and
morphology for different classes of genes’; enrichment analysis of
these groups of genes could also lead to biological pattern discover-
ies. Researchers have used linear regression and enrichment analysis
to explore the association between variationsin cellmorphology and
transcriptomic data’.

Modality-specific, complementary subspaces

Each modality will likely have amodality-specific subspace containing
information unique to that modality and unpredictable by the other.
Although this property confounds applications requiring a shared sub-
space, itenables other applications because the fusion of two modali-
ties should increase the overall information content, and therefore
predictive power, of a profiling dataset.

Datamodality fusion and integration techniques are anactivearea
of research in machine learning* and could potentially yield asuperior
representation of samples for many different biological profiling tasks
on datasets where multiple profiling modalities are available. For
example, predicting assay activity might be more successful using
information about the impact of that compound on cells’ mRNA lev-
els and morphology, rather than either data source alone'. Likewise,
predicting the function of a gene based on similarities to other genes’
profiles might be more successful using both data types.

Application1: cross-modality predictions

Asabaseline for finding the correspondence between GE and morphol-
ogy and predicting one from the other, we modeled the relationship
using a regression model in which the mRNA level of each landmark
geneinthe GE profile can be estimated as afunction of allthe morpho-
logical features in the CP profile, y; = f{X.,) + €;; in which y,is a
P-dimensional (P,1) vector of expression levels for the landmark gene
[acrossallthe Pperturbationsinadatasetand X, is the P x F-dimensional
(P.F) whole morphological data matrix representing all Fmorpholog-
ical changes/features across all the Pperturbations. We used Lasso as
abaselinelinear model and multilayer perceptron (MLP) as abaseline
nonlinear model for the regression problem.

Some datasets showed excellent accuracy in predicting some
mRNA levels from morphology data (and vice versa), with MLP yield-
ing superior results to Lasso (Fig. 2a,b). Machine learning methods
that can improve upon these benchmarks would be very useful to
the biomedical community. Two of the datasets (LUAD and LINCS)
have a markedly higher performance than the other two (TAORF and
CDRP-bio), which suggests alikely poorer data quality or poorer align-
mentof themodalitiesin thelatter two. Given LUAD and LINCS both use
A549 cells, it is also possible that the transcription-morphology link
iscell-line dependent, and that it is stronger in A549 for some reason;
however, it seems even more likely that the differences in performance

relate to differences in technical quality of the data. Likewise, further
preprocessing and denoising techniques such as batch-effect correc-
tions toimprove alignment are another target for future machine learn-
ing research. In addition to alignment across modalities, alignment
across different datasets is also necessary to translate the prediction
model across different datasets. Application of a model trained on
each of the highest performing datasets and tested on the other one
(LUAD and LINCS) indicates poor translatability of the models across
datasets (Extended Data Fig. 1). Improving model generalizability
across datasets requires methods specifically designed to correct for
technical variations and batch effects in the bulk-level information of
the datatypes presented herein.

The shared information in the two modalities canbe used in other
ways. We can identify the overlap in landmark genes that are highly
predictable according to one or more datasets (Fig. 2¢); 59 landmark
genes were well predictedin atleast three of the four datasets. For the
LUAD dataset (which has the highest cross-modal predictability), we
identified the gene families for highly predictable genes (Extended
DataFig.2). Overrepresentation analysis of LUAD’s highly predictable
geneset (relative tothe L1000 background gene set) revealed that many
overrepresented categories related to components stained in the CP
assay, such as DNA and actin (Extended Data Fig. 3).

Finally, we examined prediction scores for each category of
image-based feature in the experiment, to aid in understanding
which features underlie prediction of which genes’ mRNA levels. To
do this, we first sorted CP features into four categories (intensity,
texture, radial distribution and shape) and five fluorescence channels
(DNA, RNA, ER, AGP and Mito), and then we calculated and displayed
feature-group-specific prediction scores as a hierarchically clustered
heat map of median (over k-folds) prediction scores (Fig. 2d). In this
view, genes with strong red columns were predicted using many of
the morphological categories of features, indicating that the genes
are associated with widespread morphological changes; several of
these were cell cycle related, which is known to impact morphology
dramatically. Others were more selective, such as the cluster of genes
including TXNRD1, SQSTMI, FAM20B and MLLT11, whose mRNA levels
were strongly predictable by mitochondrial texture features (Fig.
2d). Several of these genes have functional annotations relating to
mitochondria, and cells that are predicted to have (and actually do
have) high levels of these four genes’ mRNA were all associated with
visible changesin the staining for mitochondria (Extended DataFig.4).

To more generally inspect if the GE-CP relationships observed
(Fig. 2d) are consistent with the known biological functions of the
L1000 landmark genes, we performed a Gene Ontology (GO) terms
search analysis (Methods). We wondered whether landmark genes that
are highly predictable by morphological features in each specific CP
channel are more likely to have GO annotationsrelated to that channel
compared to the rest of CP channels; this was generally not the case
(Extended Data Fig. 5 and Methods), consistent with most predict-
able genes showing signal across all categories of features rather than
being strongly channel specific (Fig. 2d). We also wondered whether
landmark genes that are more predictable than other genes are more
likely to have functions associated with the particular stains in the CP
assay.Indeed, among the set of 59 highly predictable genes (in at least
three of the four datasets), we observed anincreased chance of annota-
tionsrelating to the cellular components and organelles stained inthe
assay (Extended DataFig. 6). That said, many highly predictable genes
were associated with no such terms, indicating that the assay probes
biologicalimpact beyond the particular labeled components, or that
the genes have unannotated functions.

Prediction can be run in the other direction as well, that is, each
morphological feature can also be estimated using the 978 landmark
genes as y¢ = f(Xge ) + g in which y,is a P-dimensional (P,1) vector of
measurements for feature facross all the Pperturbations in a dataset
and X, is the whole GE data matrix (P,L) representing all L landmark
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(R*> (tg9y, + 0.2)) is shown across the four datasets; 59 are well predicted in at
least three of the four datasets. d, Example of interpretable maps showing the
connection between the expression of each landmark gene and the activation of
each category of morphological features in the LUAD dataset using the MLP
model: each point on the heat map shows the predictive power of agroup of
morphological features (on the y axis) for the predicting expression level of a
landmark gene (on the x axis). ‘Predictive power” here means the R*scores
generated by limiting the prediction to all the features in the y axis group. The
cluster marked with an asterisk is discussed in the main text and explored in
Extended Data Fig. 4. The heat map is limited to 131 genes with R*> 0.6 scores
according to any of the morphological groups (on the y axis). The complete
version is provided in the GitHub repository (cat_scores_maps.xlsx) and can be
loaded into Morpheus® or Python for further exploration.

genes measurements across all the P perturbations. We found a large
portion of morphological features to be highly predictable especially
forthe LUAD and LINCS datasets (Fig. 3a). Grouping highly predictable
morphologicalfeatures according to all the datasets revealed that they
fell mainly in the radial distribution and texture features categories
across all channels (Fig. 3b). We also provide a Jupyter notebook for
exploringthelist of top connections between any gene or morphologi-
cal feature of interest (explore_the_link.ipynb). Users can input an
L1000 landmark gene and get the list of top morphological features
involvedinthe prediction of the input feature along with theirimpor-
tance score. Likewise, one can query a morphological feature to find
the landmark genes whose mRNA levels are predictive. For example,
the morphological feature ‘Cells_Texture_InfoMeasl_RNA_3_ 0’ relies

onthelevels of many genes inits prediction, including several known
to beinvolved in mRNA processing (Fig. 3c).

Application 2: Integrating gene expression and morphology

Discerning how a compound works is a major bottleneck in drug dis-
covery. The task is called MoA determination, and the goal is to deter-
mine the mechanism by which the drugimpacts the biological system.
Existing methods are often resource and time intensive, with a low
successrate. Asaresult, few strategies have been tested systematically
acrossadiverse set of drugs; most strategies inherently only workona
subset of drug or target types, such that multiple methods are usually
pursued simultaneously to generate a hypothesis for further testing?.
One promising method to predict MoAsis to collect a profile from cells
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Example output of exploratory scripts available to researchers to see what are the
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of each feature as the percentage of the strongest feature component (here it
translates to the most important landmark gene) involved in the prediction of
the morphological feature under exploration. The absolute value and sign of

this metric corresponds to the level of importance and direction of the linear
relationship, respectively. A description of each morphological feature extracted
by CellProfiler software is available on the Cell Painting wiki.

and attempt to match it to alibrary of profiles gathered from other
chemical perturbations: a match, or close similarity, can be helpful if
the compound the query matches is already well known. Likewise, a
matchtoagenetic perturbation means that the gene, or another gene
in the same pathway, is a possible target of the query compound?®.

Severalstudies have reported success predicting the MoA of com-
pounds using GE or cellmorphology data individually*2° but none of
these integrated the two data types to test for improved predictive
ability in a supervised or unsupervised setting. We therefore provide
abenchmark for this, using the two chemical perturbation datasetsin
our set, CDRP-bio and LINCS. The discovery that many genes could not
be well predicted based on morphology (and vice versa) in application
1lends some support for the idea that the two modalities might carry
complementary information.

In the unsupervised setting, we tested how the compounds clus-
ter together by their MoA class, in feature spaces of each modality
alone, and in the integrated space of both modalities, using several
state-of-the-art modality integration methods?. Clustering of pertur-
bations using each CP and GE modality alone shows CP outperformed
GEinthis MoA ground-truthretrieval task in both compound datasets.
We observed that, although most of the integration methodsincrease
clusterretrieval performancein the integrated space compared to the
GE space, only regularized generalized canonical correlation analysis
(RGCCA)*®improved the performance over the CP space alone (Fig. 4a).

Inthe supervised setting, using logistic regression and MLP classi-
fiersas the baseline models, we predicted MoA labels using each modal-
ity of dataindependently, with astandard k-fold (k = 5) cross-validation

onafiltered subset of compounds. CP profiles resulted in higher MoA
prediction performance compared to GE profiles for each of the
datasets (Fig. 4b). Next, we performed the MoA prediction task on
two integrated spaces: (1) trivial representation-level concatenation
of profiles from the two modalities (shown as early fusion) and (2)
representation-level concatenation of profiles from the two modalities
inthe RGCCA space (shown asRGCCA _EarlyFusion). We also performed
decision-level integration of modalities for the MoA prediction task
(shown as late fusion), that is, class probabilities output by classifiers
trained on each modality separately were averaged before the final
MoA prediction.

All three integration strategies showed relatively comparable
performancein predicting MoA across the two datasets and two model
types, withsmall average improvements upon the performance of the
better-performing modality (Fig. 4b), highlighting the need for devel-
oping data fusion methods that better leverage the complementarity
of the modalities.

Exploring MoA-class-specific F1-scores for the integrated modali-
tiesrevealed high variationin class-specific prediction results (Fig. 4c).
As already seen more generally, the integration of modalities does
not always increase the performance of the MoA prediction task over
the higher-performing modality alone for individual MoA categories.

Discussion

We provide the research community a collection of multimodal profil-
ing datasets with GE and morphology readouts, representing two cell
types and two perturbation types (genetic and chemical). We define
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by the different integration methods? and the ground-truth MoA clusters.
RGCCA improved MoA retrieval for both CDRP-bio and LINCS datasets. In the
box plots, the center line indicates the median, box limits represent upper and
lower quartiles and whiskers denote 1.5 times the interquartile range; n =16
(CDRP-bio), n =57 (LINCS). b, MoA classification of the two compound datasets
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(CDRP-bio and LINCS) using GE, morphology and their integration to predict
the MoA of compounds. Classification performance (weighted F1-score) for the
MLP and logistic regression classifiers using each data modality alone, the two
early and late fusion strategies explained in the main text, and the early fusion of
modalities after application of RGCCA on the feature space of both modalities.
Chance-level predictions for each dataset are shown as a horizontal red dashed
line. In the box plots, the center line indicates the median, box limits represent
upper and lower quartiles and whiskers denote 1.5 times the interquartile
range; n =k =5.c, Class-specific F1-scores are shown based on the MLP model
for 16 MoA categories of CDRP-bio (left; 4 of 16 MoA categories that resulted in
zero F1-scores after fusion were excluded) and for LINCS (right; 23 of 57 MoA
categories that resulted in zero F1-scores after fusion were excluded).

useful biological applications for this datain two categories: those using
the shared information and those using modality-specific, complemen-
tary information. We provide the data, code, metrics and benchmark
results for one application in each category.

Theresults demonstrate that GEand morphology profiles contain
useful overlapping and distinct information about cell state. We were
pleased to find that many mRNAs are predictable by cell morphology
and vice versa, under the conditions of these high-throughput assays.
Similarly, we found that morphology captures information beyond
thatseeninan mRNA profile; thatis, the two modalities contain unique
information and weidentified which compounds’mechanisms are better
captured by each. Although some scientists speculated thatitisimpos-
sible for cells to show a morphological change without mRNA profiles
changing, whether as a cause or consequence, we find thisis not the case.

We made anumber of observations of new biology, such as which genes’
mRNA levels are predicted by which particular morphological features
(andvice versa). Finally, we discovered that the CP assay information can
predict the mRNA levels of genes not clearly linked to the stains in the
assay, pointing toits ability to capture broad biological impact.
Theresults also demonstrate that these applications are challeng-
ing enough to provide room forimprovement. For example, the varia-
tionin the performance for prediction tasks across different datasets
showsthe necessity of machine learning techniquesto further filter and
preprocess the profiles (for example, to correct batch effects, includ-
ing those resulting from the position of wells on a plate?) to improve
performance. Such techniques might also sufficiently align the four
datasets with each other, to explore generalized, dataset-independent
models. Nevertheless, we note that we do not expect anywhere close
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to100% accuracy for either application. For prediction across the two
modalities, we do not expect the modalities to be completely overlap-
ping in their shared information. Furthermore, we note that ground
truth in this prediction task is defined only by the available experi-
mental GE and cell morphology data, which is subject to technical
variationand error and thusis not absolute truth. For MoA prediction,
theapplicationis ‘notoriously challenging’ and low percentage success
rates are expected for any single assay; most commonly, several strate-
gies are used to determine the MoA*°. In addition, the ground truth is
based onimperfect human knowledge.

There are multiple additional limitations for the presented data-
sets, aside fromtheir data quality as already noted. The number of gene
perturbations captured in these datasets was a few hundred, whereas
thereareroughly 21,000 genesin the genome and numerous variations
within each, which could be overexpressed or knocked down. Likewise,
a few thousand compounds were tested here but pharmaceutical
companies often have millions of compounds. The only limitation for
expanding these datasets is the financial resources to carry out the
experiments. Regarding limitations of the assays, the GE profiles are
captured by the L1000 assay, which is thought to capture 82% of full
transcriptome variation’, and the CP assay includes only six stains,
whichisinsufficient to capture the localization and morphological vari-
ation of all cellular components. Finally, the cell types were commonly
used historical lines derived from two white patients, one male (A549)
and one female (U20S). Therefore, conclusions from these data may
only hold true for the demographics or genomics of those persons and
not broader groups. The cell lines were chosen because they are both
well suited for microscopy and they offer the advantage of connecting
to extensive previous studies and datasets using them.

Despite these limitations, these datasets may be used to pursue
many other applications of profiling in biology, as well as methods
development. The complementary information used here for MoA
prediction can be used for any profiling application; there are more
thanadozenthatcanimpactbasic biology discovery and the develop-
ment of novel therapeutics®. Each application can also be validated in
different ways. For example, the prediction task might be extended to
more complex systems, suchas humantissue samples where appropri-
ate stains have been used, although such samples are more difficult to
procure, and assessing adjacent tissue slices may introduce variation
not present in the cultured cell lines used in this study. In the future,
multimodal profiles at the single-cell level may become widely avail-
able. In the presented datasets, single-cell information exists in one
modality (images) but not in the other modality (mRNA). Therefore,
the variations in one cannot be explained by the other, as we have a
distribution in one space (images) and point estimates in the other
space (mRNA). Although still very rare, small and labor intensive to
create, datasets with both GE and morphology at single-cell resolu-
tion are beginning to become available via in situ RNA-seq methods
and could accelerate the field of multimodal biological data analysis.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-022-01667-0.
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Methods
Dataset preprocessing
We gathered four available datasets that had both CP morphological
profiles and L1000 GE profiles, preprocessed the data from different
sources and indifferent formatsina unified .csvformat,and made the
data publicly available atamazon s3 bucket: s3://cellpainting-gallery/
cpg0003-rosetta/broad/workspace/preprocessed_data/.

The rows of each csv file are replicate-level (that is, well-level)
profiles, augmented with metadata available for that well.

Cell Painting and L1000 profiles

Single-cellmorphological (CP) profiles were created using CellProfiler

software and processed to form aggregated replicate profiles using the

Rcytominer package (https://cran.r-project.org/package=cytominer).
We made the following three types of profiles available:

« Aggregated profiles, which are the average of single-cell profiles
in eachreplicate well (replicate_level_cp_augmented.csv.gz).

« Normalized profiles, which are the z-scored aggregated profiles,
where the scores are calculated using the distribution of nega-
tive controls as the reference (replicate_level_cp_normalized.
csv.gz).

« Normalized variable-selected profiles, which are normalized
profiles with features selection applied (replicate_level_cp_nor-
malized_variable_selected.csv.gz).

For L1000, we used the previously processed 978 ‘landmark’ genes
asourinput features. The complete processing details are providedin
ref.”. The L1000 landmark genes in the CDRP dataset are different from
the landmark genes in the other datasets, with an overlap of n =785
(80%). The CDRP dataset was acquired using the so-called ‘delta prime’
probe set (n=977). Subsequent datasets (LUAD, TAORF and LINCS)
were acquired using the so-called ‘epsilon’ probe set (n = 978)*.

The 20% of the delta prime landmark genes that are absent in
epsilon canbe inferred using the epsilon landmark genes’.

To simplify our analysis, we did not perform this inference, and
instead only used the landmark genes available for each dataset. When
combining CDRP with other datasets, we used the intersection of the
two probe sets.

Data processing for analysis

We used treatment-level profiles for both the GE (using L1000) and
morphology (CP) modalities for the analysis, although replicate-level
profiles are provided and could be used instead in other formulations
of the problem to create more advanced models.

Treatment-level profiles are the average of replicate-level profiles.
For CP, replicate-level profiles are the average of single-cell measure-
ments of cells from that replicate well. For GE, replicate-level profiles
are simply the bulk GE profile for that replicate well.

We standardized replicate-level profiles for each plate to have zero
mean and unit variance before averaging themto form treatment-level
profiles.

Note that, aside from some image segmentation parametersin the
CellProfiler pipeline, which are adjusted for each cell type based oniits
baseline morphology, the computational pipelines for data processing
and analysis were identical regardless of the cell type in the experiment.

Measuring quality of data points for subsequent analysis
We use treatment-level profiles for all the analysis that follows. Hence-
forth, ‘data points’ refer to treatment-level profiles unless indicated
otherwise. The specific transformation of the treatment-level profiles
(such as‘normalized_variable_selected’) is clarified when necessary.
Thereareinherent differencesinthebiological design (type of per-
turbation, cell line used and time point of exposure to perturbation) and
experimental parameters (different instrumentation, reagent batches
and personnel running the experiments creating distinct technical

artifacts such as batch effects) that lead to differences in the datasets.
Consistency of profiles of a single treatment across different batches
of experiment is considered a measure of data quality. We checked
this consistency as follows. After standardization of the replicate-level
profiles per plate, we calculate the Pearson correlation coefficient
between each pair of replicate-level profiles for the same perturbation.
The distribution of these coefficients for each dataset and modality is
illustrated in Supplementary Fig. 1. The corresponding blue curve to
each red curve is the null distribution showing the correlation coeffi-
cient between pairs of profiles that belong to different perturbations.
The nonzero dotted vertical line to the right shows the 90th percentile
of the null distribution. We considered the perturbations that had an
averagereplicate correlation more thanthe 90th percentile of the null
distribution as high-quality data points for subsequent analysis.

We note a source of systematic error present in all datasets that
may affect replicability metrics: for nearly every treatment, all its
replicates occurred at the same well position on the plate (because
replicates in such high-throughput experiments are created by repli-
cating the entire, and exact same, plate layout, for logistical reasons).
Thelocation of the well on the plate canimpact the cells in the well. For
example, wells on the edge are more likely to dry slightly, impacting
cell morphology. This effect—the impact of an experiment covariate
onthereadoutofthe assay—caninflate replicability quality metrics. In
our experience, well-positioned effects tend to be more pronounced
in CPthan L1000, and therefore the observed differences in data qual-
ity (Supplementary Data 2) can be a function of this batch effect. As
noted inthe discussion, correcting for batch effects couldimprove the
predictiontasks discussed herein, and also make such comparisons of
data quality more reliable.

Filtering data points

To remove noisy data points from the analysis, we used two filtering
strategies for each shared subspace and dataintegration analysis. For
cross-modality prediction experiments, we used the intersection of
higher quality data points according to both modalities. For the analy-
sis for data integration, we used data points that were higher quality
(thatis, >90th percentile of the null distribution, as defined above) in
atleast one of the modalities. A definition of higher quality data points
is provided in the previous section. A comprehensive description of
the datasizesin each modality, number of overlapping perturbations
across both modalities, size of intersection and union sets of higher
quality data points across both modalities are givenin Supplementary
1and highlights are summarized in Supplementary Table 1.

One ofthe chemical datasets (CDRP-BBBC047-Bray) has asubset of
compounds that are known to be bioactive. We referred to this subset
as CDRP-bio-BBBC036-Bray and reported the details independently
for this dataset (Supplementary Dataland 2). We only used CDRP-bio
and not the full CDRP set for the analysis, because we believe that the
quality of CDRP is insufficient for either of these analyses given that
very few data points remained after filtering for replicate reproduc-
ibility across both modalities (Supplementary Fig.1).

Cross-modality predictions

For prediction of each single landmark gene using CP profiles or each
single morphological feature using GE profiles, we used two regression
models of: CPto GE: y; = f(X,,) + e; inwhichy,isavector of expression
levels for the landmark gene /across all the perturbationsin a dataset
and X, is the whole morphological data matrix where each row is a
treatment-level CP profile. For this prediction direction, we used the
so-called ‘normalized variable-selected’ treatment-level CP profiles,
which resulted in 601 features for CDRP-bio dataset, 291 features for
LUAD dataset, 63 features for TAORF and 119 features for the LINCS
dataset. The variable selection step removes features with near-zero
variance and reduces redundancy in the feature set (ensuring that no
pair of features has a Pearson correlation coefficient > 0.9).
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GE to CP: y = f(X,) + e5; in which y;is a vector of morphological
feature [ across all the perturbations in a dataset and X, is the whole
GE data matrix where each row is a treatment-level L1000 profile. For
this prediction direction, we have not performed any dimensionality
reduction on the GE data.

For each prediction direction (CP to GE, GE to CP) and each base-
line linear (Lasso) and nonlinear (MLP) model for this regression prob-
lem, we used the coefficient of determination (R?) and nested k-fold
cross-validation over the data points for evaluating the prediction
model performance. Therefore, for each landmark gene (for CP to GE)
or each morphological feature (for GE to CP), we can form a distribu-
tion of k, R values. We also shuffled the vector y,for each gene [across
allthe data points and applied the same cross-validation procedure to
form a null distribution for each gene. The same procedure on y,will
result in the null distribution for each morphological feature. Model
parameters were selected using grid search and cross-validation on
each training set for each of the k test folds.

In Supplementary Data 4, the median prediction scores of each
model for eachlandmark gene for each dataset and according toeach
model are presented. The distribution of MLP model prediction scores
for the 50 landmark genes with the highest median scores in each
dataset isshownin Supplementary Data 3.

Percentage predictable

Percentage predictableis defined as the percentage of landmark genes
that have amedian of R? predictability score more thanadefined thresh-
old. The threshold is based on the null distribution of predictability
scores for each dataset. The dataset-specific nullis formed using medi-
ans of single gene null distributions. We take the 99th percentile of
this null distribution plus a 0.2 margin (t,, + 0.2) as the threshold for
calling a gene ‘predictable’. We reported the ‘percentage predictable’
values for each dataset in Fig. 2b.

Modality integration

For the analysis for MoA prediction, we used the data points that had
high quality according to their replicate-level profiles (that is, >90th
percentile of the null distribution; see above) in either modality. In
compound datasets, each perturbation is tested at multiple doses
and therefore there are multiple data points corresponding to each
compound. A data point hereis a treatment-level profile correspond-
ingtoa dose of acompound.

The LINCS dataset has MoA annotations for 1,401 overlapping
compounds across two modalities. Every compoundis tested at seven
different doses, increasing the chances of detecting the expected
behavior of the compound at one of them. Each compound can have
multiple mechanisms; therefore, we have multiple labels for a subset
of compounds. The set of labels comprises 478 unique MoAs. There are
568 unique combinations of these labels in the dataset. We started with
thefiltered unionset, and filtered it again to keep MoA classes that had
atleast five data points in their class. Because this process resulted in
only one MoA category that was a multi-label one (that is, composed
of multiple MoAs), we removed this category to simplify the problem
as being multi-class but single label; that is, we effectively used only
compounds labeled with a single MoA. The filtered set included 1,655
data points across 521 compounds in 57 MoA categories.

The CDRP-bio datasetincluded MoA annotations for 1,327 0f 1,916
overlapping compounds across two modalities. After passing data
points from three filters—union of higher quality data across modali-
ties, available MoA labels, and being in an MoA class that has at least
five compounds in the set—we were left with 123 compounds in 16
MOoA categories.

Unsupervised joint dimensionality reduction of modalities
and mechanism of action of cluster retrieval
k-means clustering (k=number of MoA classes) was performed on

eachmodality space and integrated spaces using representation-level
concatenation of modalities (early fusion) and seven state-of-the-art
modality integration methods?. Jaccard Index values between k-means
clusteringresultsand the MoA annotationlabels were used asameasure
of ground-truth cluster retrieval for this unsupervised clustering task.

Supervised mechanism of action prediction

For the multi-class MoA classification problem, two logistic regres-
sion and MLP classifiers were used as baseline models; we apply each
model for predicting MoA labels using each modality of dataindepen-
dently aswell as the baselines for integration of the two. We performed
stratified nested k-fold cross-validation (k = 5) to evaluate the clas-
sification performance using the F1-score metric. Note that all doses
of a compound should be in the same fold in this data partitioning
scheme. Model hyper-parameters were optimized using grid search
and cross-validation in each training fold.

Some MoAs have several tens of compounds, whereas others have
as few as five. To address this imbalance in the data, for both logistic
regression and MLP models, we oversampled data points in each class
to match the size of the majority class in the training set. The k-fold
cross-validationexperimentresulted in kvector of multi-class predictions.
We then calculated F1-scores for each class independently and the aver-
aged class-specific F1-scores within each fold formed kF1-scores (Fig. 4b).

For representation-level integration strategies, we simply con-
catenated CP and GE profiles in their original spaces (early fusion) or
projected into RGCCA space (RGCCA _EarlyFusion) to integrate both
modalities. On the other hand, late fusion is at the decision level and
averages predicted class probabilities (based on the output of classi-
fiers trained on each modality separately) for making the MoA class
decision for test compounds.

Gene Ontology terms search analysis
The goal of this analysis was to see if the observed CP-GE link is consist-
ent with the known functional characteristic of LI00O landmark genes
under study in this work. We used the DAVID** Functional Annotation
Tool (2021update) toformatable of GO annotation terms for 978 land-
mark genes in the LUAD, LINCS and TAORF datasets. For 921 DAVID IDs
detected, GO categories of GOTERM_BP_DIRECT’,'GOTERM_CC_DIRECT
and ‘GOTERM_MF _DIRECT were selected and the ‘Functional Annota-
tions Table’ was used as the source file for the following search analysis.
For each landmark gene and each CP channel, we searched for
all relevant keywords to that channel and formed channel-specific
annotation columns. While mRNA-level prediction of landmark genes
using specific categories of morphological features were created for
the LUAD dataset (Fig. 2d), we formed channel-specific GE prediction
scores by rearrangement of these categories to CP channels and taking
the maximum prediction score within each channel-specific category
of features. We then have access to channel-specific GO functional
annotations and channel-specific prediction scores for each of the
landmark genes. We discretized prediction scores into three catego-
ries of predictability: high (R*> 0.8), medium (0.1<R?><0.8), and low
(R*< 0.1). Using Fisher’s exact test, we calculated the odds ratio as a
measure of association between alandmark gene being predictable and
having channel-specific GO annotations. An odds ratio > lindicates an
increased chance of having an organelle annotation (using GO terms)
for ahighly predictable landmark gene.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Preprocessed profiles that are augmented with gene and compound
annotation are freely available through the ‘Registry of Open Data on
AWS’ on a public S3 bucket. Documentation on the folder structure,
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dataset details and instructions for accessing the data are available
at https://broad.io/rosetta/. Datasets are described and referenced
inSupplementary Data 1. Source data are provided with this paper.

Code availability

Source code to reproduce and build upon the presented results is
available at https://broad.io/rosetta/. We licensed the source code
as BSD 3-Clause, and licensed the data, results and figures as CC0O 1.0.
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Extended Data Fig. 1| Generalizability of the prediction model across
datasets. Prediction of each LI000 mRNA level by Cell Painting featuresin
dataset A, using amodel trained on dataset B. We have trained Lasso and MLP
models on each of LUAD and LINCS datasets and checked the prediction results
onthe other dataset which was not used in model training. Distribution of R2
prediction scores for all landmark genes are shown. Comparison of the results
here with Fig. 2 indicates weakness of the prediction model in generalizability
across datasets. This is an indication of dataset-specific technical variations
(batch effects) that need exploration of experimental alignment techniques

Lasso-shuffled Lasso

T

model = traind by LINCS
predicting LUAD

:

MLP-shuffled MLP
Model
(batch-effect correction), whichis an active area of research. We also observe that
the model’s prediction power is stronger when the model is trained on the LINCS
dataset and tested on the LUAD dataset. This is expected as the LUAD dataset is
limited to a narrow set of genes associated with lung adenocarcinoma cancer;
however, the LINCS dataset contains a wide variety of compounds with different
mechanisms and known phenotypes. The y-axis is trimmed at -1 for clarity.
Distributions are presented as boxplots, with center line being median, box limits
beingupper and lower quartiles and whiskers being 1.5x interquartile range;
n=978landmark genes for each boxplot.

Lasso-shuffled Lasso
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gene_group_name Genes gene_group_name Genes
LIM domain containing FHL2,PXN,TES SRY-box transcription factors SOX4
Receptor ligands C5,MMP1,RGS2 SNARESs YKT6
Basic leucine zipper proteins ATF1,CEBPD,JUN Minor histocompatibility antigens ERBB2
MicroRNA protein coding host genes ERBB2,GPC1,SMC4 AAA ATPases RUVBLI
Nucleoporins NUPS8,RAE1 Mannosidases alpha class 2 MAN2B1
Protein phosphatase 1 regulatory subunits AURKA,AURKB MCM family MCM3
Chromosomal passenger complex AURKB,BIRCS5 Cyclophilin peptidylprolyl isomerases PPIC
Cyclins CCNA2,CCND3 Condensin II subunits SMC4
Solute carriers SLC2A6,SLC35A1 Condensin I subunits SMC4
Pleckstrin homology domain containing GRBI10,NET1 Complement system activation components C5

MAP kinase phosphatases DUSP4,DUSP6 Class IIT Cys-based CDC25 phosphatases CDC25A
Ubiquitin conjugating enzymes E2 UBE2C,UBE2L6 Chemokine ligands CCL2
Ankyrin repeat domain containing ILK,RAI14 Cathepsins CTSD
Myb/SANT domain containing EZH2,MYBL2 Canonical high mobility group HMGA2
SH2 domain containing GRB10,STAT1 CD molecules ERBB2
Collagens COLI1A1,COL4Al CCAAT/enhancer binding proteins CEBPD
Purinosome PAICS C3 and PZP like, alpha-2-macroglobulin domain c... C5

RNA binding motif containing RNPS1 Blood group antigens ABCB6
R2TP complex RUVBLI1 Baculoviral IAP repeat containing BIRCS
Poly(ADP-ribose) polymerases TIPARP BCH domain containing ARHGAPI1
Protein tyrosine phosphatases non-receptor type ~ PTPN12 Armadillo-like helical domain containing RRP12
Polycomb repressive complex 2 EZH2 Abhydrolase domain containing ABHD4
Rho GTPase activating proteins ARHGAP1 ATP binding cassette subfamily B ABCB6
Phosphoinositide phosphatases INPP1 DEAD-box helicases DDX10
NuRD complex HDAC2 DNA helicases RUVBLI
Myosin light chains MYL9 DNA polymerases POLE2
Mitochondrial ribosomal proteins MRPL12 Glypicans GPC1
Regulators of G-protein signaling RGS2 ASAP complex RNPS1
SRCAP complex RUVBLI M10 matrix metallopeptidases MMP1
SET domain containing EZH2 Lysine methyltransferases EZH2
SIN3 histone deacetylase complex subunits HDAC2 L ribosomal proteins RPL39L
Zinc fingers ZZ-type SQSTM1 Jun transcription factor family JUN

WD repeat domain containing RAE1 INOSO complex RUVBLI1
Ubiquitin specific peptidases USP1 Histone deacetylases, class I HDAC2
Tudor domain containing LBR Glutaredoxin domain containing TXNRDI
Tropomyosins TPM1 DNAJ (HSP40) heat shock proteins DNAJB2
Topoisomerases TOP2A Erb-b2 receptor tyrosine kinases ERBB2
Tissue inhibitor of metallopeptidases TIMP2 Endothelins EDNI1
Structural maintenance of chromosomes proteins SMC4 EMSY complex HDAC2
Small heat shock proteins HSPB1 EF-hand domain containing MYL9
Serpin peptidase inhibitors SERPINEI Diphthamide biosynthesis pathway genes DPH2
Serine proteases PRSS23 Deoxyribonucleoside kinases DCK
Selenoproteins TXNRDI1 Dbl family Rho GEFs NET1
Scavenger receptors SCARBI1 tRNA-splicing endonuclease subunits TSEN2

Extended Data Fig. 2| Gene group names for top 100 predictable landmark
genes in LUAD dataset. Top 100 predictable landmark genes by MLP model
are shown along with their gene group names (based on HGNC Database41)

for the LUAD dataset, finding a diverse array represented, though we note the
perturbations in this experiment included only genes found mutated inlung
cancers.
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Extended DataFig. 3 | Over-Representation Analysis (ORA) of highly
predictable (top 100) landmark genes in LUAD dataset. Over-Representation
Analysis of top 100 highly predictable landmark genes according to the MLP

model applied on the LUAD dataset. ORA analysis was performed by WebGestalt
analysis toolkit 42. Nineteen enriched categories (FDR < 0.2) are labeled in the

volcano plot.
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Extended Data Fig. 4 | See next page for caption.
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Extended DataFig. 4 | Visualization of cellsin a cluster of landmark genes filtered perturbations to those that have low prediction errors prior to that

that are tightly correlated with RNA texture category of morphological selection. We can observe that cells that are predicted to have (and actually do
features. For the cluster of landmark genes shown in the top heatmap, whichisa have) high levels of these five genes’ mRNA all are associated with visible changes
partial snapshot of Fig. 2d, we have shown example cellimages for perturbations in the staining for mitochondria, even though only half of these genes already
that have high and low predicted values for each gene in that cluster. We have have functional annotations related to the mitochondria.
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High predictability Low predictability

QOdds Ratio QOdds Ratio
CP channel same channel rest of channels same channel rest of channels
DNA 2.188 0.643 0.720 6.953
RNA 0.952 1.004 1.375 1.165
AGP 0.851 1.042 0.741 0.974
Mito 0.578 1.381 0.896 0.946
ER 1.040 0.829 0.598 1.070

Extended DataFig. 5| Validation of the observed GE-CP relationship by
GO-terms search analysis. Landmark genes highly predictable according to
morphological features in each specific Cell Painting channel are more likely to
have GO annotation related to that channel compared to the rest of CP channels.
Foreach channelin the rows of the table, the first column shows the Odds Ratio
(OR) derived from the Fisher’s exact test for associations between the landmark
genes being highly predictable (R2 > 0.6) by CP featuresin a channel and having
GO annotations for that channel. The second column shows the association
between the same set of highly predictable genes and having GO annotation for
any channel but not the target row channel. Higher values in the first column
compared to the second column show that highly predictable genes according to
features in a CP channel are more likely to have GO annotations for that channel

compared to the rest of the channels. This pattern holds for DNA and ER channels
but not for the rest of CP channels. The third and fourth columns show the

same associations but for low-predictability genes (R2 < 0). Lower values in the
third column compared to the fourth column show that non-predictable genes
according to features ina CP channel are less likely to have GO annotations for
that channel compared to the rest of the channels. This pattern holds for all CP
channels except for RNA. The CP channel specific predictability map used for
this analysis was derived from the result of the experiment and results presented
partially in Fig. 2d. As we can observe from the map, usually multiple categories
of morphological features contribute to the predictability of agene, which
explains the lack of asimple relationship between a given channel’s predictability
and GO term associations presented in this table.
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Extended DataFig. 6 | Association between landmark gene predictability and
having gene ontology annotations related to Cell-Painting stains. Landmark
genes that are predictable according to at least three of the four datasets (59

genes.

genes shownin Fig. 2c) are more likely to have GO annotations related to any of
the stains in the Cell Painting assay compared to arandom subset of landmark
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Randomization  Treatments, including negative controls, were generally randomly distributed across well positions on the 384-well plates. We note two non-
random patterns

LINCS: All 6 doses of a treatment are in adjacent cells in the same row. This was due to constraints imposed by compound management
robotics

LUAD: All alleles of a gene are generally on the same plate. This was done intentionally so that comparing the wild-type and mutant forms of
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