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In brief

We tested 1,327 drug and tool
compounds across six doses in two
profiling assays: Cell Painting and L1000.
Extracting cell morphology and gene
expression readouts from the two assays,
respectively, we characterized the
assays’ reproducibility, signal diversity,
and information content, revealing their
complementarity for large-scale drug
profiling.
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SUMMARY

Morphological and gene expression profiling can cost-effectively capture thousands of features in thousands
of samples across perturbations by disease, mutation, or drug treatments, but it is unclear to what extent the
two modalities capture overlapping versus complementary information. Here, using both the L1000 and Cell
Painting assays to profile gene expression and cell morphology, respectively, we perturb human A549 lung
cancer cells with 1,327 small molecules from the Drug Repurposing Hub across six doses, providing a data
resource including dose-response data from both assays. The two assays capture both shared and comple-
mentary information for mapping cell state. Cell Painting profiles from compound perturbations are more
reproducible and show more diversity but measure fewer distinct groups of features. Applying unsupervised
and supervised methods to predict compound mechanisms of action (MOAs) and gene targets, we find that
the two assays not only provide a partially shared but also a complementary view of drug mechanisms. Given
the numerous applications of profiling in biology, our analyses provide guidance for planning experiments
that profile cells for detecting distinct cell types, disease phenotypes, and response to chemical or genetic

perturbations.

INTRODUCTION

In a profiling experiment, biologists measure high-dimensional
readouts from biological samples (e.g., single cells, organoids,
tissue, and whole organisms). The resulting profile contains mea-
surements of hundreds to thousands of individual features that
together form a systems biology representation of the sample
of interest. Automation now allows biologists to probe thousands
of chemical and genetic perturbations to assess their phenotypic
impact (Dixit et al., 2016; Keenan et al., 2018; Subramanian et al.,
2017). Therefore, perturbational profiling results in alarge number
of samples measured across a common set of high-dimensional
features. Biologists can then apply data mining and machine
learning to these datasets to detect and quantify the similarities
and differences among samples. These approaches have the po-
tential to advance drug discovery, functional genomics, and pre-
cision medicine, for example, by annotating uncharacterized
small molecules, cataloging the mechanistic outcome of gene

L)

editing, and testing the impact of specific perturbations on dis-
ease-associated phenotypes (Chandrasekaran et al., 2021; Ma-
lone et al., 2020; Musa et al., 2018).

Biologists can access different aspects of cell state through
multiple profiling assays that capture different biological land-
scapes: DNA, RNA, epigenetic marks, metabolites, microbiota,
proteins, kinases, and spatial information (Cazaly et al., 2019;
Di Minno et al., 2021; Litichevskiy et al., 2018; Ottestad et al.,
2020; Wang and Ma, 2015; Waylen et al., 2020; Yang et al.,
2020). Some profiling approaches measure multiple data modal-
ities in the same assay and are dubbed multi-omic or multi-
modal assays (Cao et al., 2018; Hu et al., 2018); others pool
and de-multiplex perturbations to increase throughput (McFar-
land et al., 2020); and still others test a single readout (e.g.,
viability) but across hundreds of cell types to yield a profile
(Garnett et al., 2012; Yu et al., 2016).

Gene expression and cell morphology are currently the two
highest throughput, lowest cost, high-dimensional profiling
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Figure 1. Cell Painting and L1000 data provide complementary measurements of compound perturbations across doses

(A) An example Cell Painting image of a single A549 lung cancer cell measured across five channels. We show a merged representation as well. ER, endoplasmic
reticulum; Mito, mitochondria; AGP, actin, Golgi, plasma membrane. Scale bar is 20 um.

(B) The percent replicating metric measures the percentage of profiles that correlate with each other to a level higher than a carefully matched and randomly
sampled null distribution. See methods for full details about sampling and data processing. The dotted blue line indicates the 95th percentile of the matched non-

replicate distribution.

(C) Median pairwise replicate Spearman correlations between profiles measured by the L1000 assay (y axis) and Cell Painting assay (x axis). The dotted black line
is the line y = x, so anything above is measured with a higher replicate correlation in L1000 and vice versa.
(D) The L1000 and Cell Painting assays reproducibly measure a complementary set of compound perturbations. The three numbers represent (from top to
bottom) the number of compounds unique to L1000, the number of compounds captured in both assays, and the number of compounds unique to Cell Painting
that have median pairwise replicate correlations above the randomized non-replicate correlation threshold.

data types for mammalian cells (Bray et al., 2016; Gustafsdottir
et al., 2013; Subramanian et al., 2017). These readouts measure
fundamentally different aspects of biology. In the L1000 bead-
based assay, probes targeting 978 genes measure mRNA tran-
script levels (gene expression) in a cell population (Subramanian
etal., 2017). In the Cell Painting assay, after treating cells with six
fluorescent dyes to mark eight cellular compartments (Figure 1A),
biologists use a microscope to image five channels and use
software to analyze and extract several thousand morphology
measurements from each cell (Bray et al., 2016). Both the gene
expression and morphology landscapes change as cells
respond to perturbations.

Scientists have used individual profiling modalities to advance
a variety of drug discovery applications, including improving
screening library diversity, predicting cytotoxicity, prioritizing
compounds for follow-up study, and inferring the mechanism
of action (MOA) of chemicals (Feng et al., 2009; Filzen et al.,
2017; Lapins and Spjuth, 2019; Ljosa et al., 2013; Nyffeler
et al.,, 2020; Perlman et al., 2004; Wawer et al., 2014; Way
et al., 2021b). Integrating gene expression and morphology pro-
files with chemical structures revealed that each data type pro-
vides complementary information for predicting a drug’s MOA
(Haghighi et al., 2021; Nassiri and McCall, 2018), for predicting
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the effects of perturbations (Caicedo et al., 2021), and for identi-
fying nuisance compounds that can lead to false hits (Dahlin
et al.,, 2021). As well, to some degree, gene expression and
morphology datasets contain sufficient information to predict
changes in each other (Haghighi et al., 2021; Nassiri and McCall,
2018; Wakui et al., 2022).

However, the field lacks a systematic study evaluating both
assays’ information content in terms of distinct versus overlap-
ping signals, diversity of cell states, and performance in useful
tasks. The ability of a profiling assay to accomplish a biological
task is a function of its technical reproducibility, its inherent infor-
mation content, properties of bioinformatics pipelines, and natu-
ral biological variation. Therefore, our goal in this study is to
determine how the assays compare with each other on useful
biological tasks, given all those sources of variation/noise and
current best practices in data processing.

In this study, we collected L1000 and Cell Painting readouts
from a common set of 1,327 different Drug Repurposing Hub
compounds and controls across six doses representing 511
different MOA classes and 720 different gene targets (Corsello
et al., 2017). After data processing, we observed that although
Cell Painting suffers from more batch and well position effects
that must be carefully adjusted, the assay showed higher profile
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reproducibility than L1000. Although L1000 includes more inde-
pendent feature groups than Cell Painting, the latter provides a
higher sample diversity. We test the practical implications of
these properties by predicting compound MOA and gene targets
using two approaches: an unsupervised matching approach and
supervised deep learning in which we train top-performing
models from a recent Kaggle competition (Kaggle.com et al.,
2020). Both assays predict a small set of mechanisms consis-
tently well, and certain mechanisms are better captured in one
assay or the other. MOA prediction is a challenging task where
even small improvements could impact drug discovery. In
summary, we find that Cell Painting and L1000 each reproduc-
ibly measure a partly overlapping, partly distinct set of
compound mechanisms. Based on this analysis, we conclude
that measuring both molecular and cellular phenotypes in-
creases the ability to capture relevant biological mechanisms
from unbiased compound screens.

RESULTS

Measuring and processing morphology and gene
expression data

One strategy to interrogate biological processes is to measure cell
responses to various perturbations in high-throughput, high-
dimensional profiling assays. Profiling assays vary in style and
measurement, and the sensitivity and resolution with which they
capture important biological signals depends on the assay cho-
sen. In this experiment, we asked whether measuring the same
perturbations using fundamentally different kinds of profiling as-
says provides advantages. We therefore created and analyzed
two profiling datasets that capture different types of information:
gene expression with the L1000 assay and cell morphology with
the Cell Painting microscopy assay (Bray et al., 2016; Gustafsdottir
etal., 2013; Subramanian et al., 2017). We show raw data for both
Cell Painting and L1000 assays in Figures S1 and S2, respectively.

We perturbed A549 lung cancer cells with a common set of
1,327 compounds and controls from the Drug Repurposing
Hub (Corsello et al., 2017). We selected compounds that were
in current clinical use or in advanced clinical testing and chose
them to represent a diversity of mechanisms based on Drug Re-
purposing Hub annotations (Corsello et al., 2017). We measured
a total of 1,258 compounds across six doses (usually, 0.04—
10 uM); the remainder had three to five doses. We provide com-
pound annotations for MOAs and gene targets in Table S1.

We perturbed the cells under consistent experimental condi-
tions, including the same 384-well plate layouts (Figure S3A).
We exposed cells to compounds for 24 h prior to L1000 profiling
and for 48 h prior to Cell Painting, using standard assay time
points based on past experience. At these time points and
doses, we did not observe high amounts of cell death, which
otherwise might have impeded our ability to acquire cell re-
sponses to perturbation (Figure S4).

The compounds were arrayed in 25 different plate maps (com-
pound layouts), and in most cases, we collected three replicate
plates per plate map for L1000 and five replicate plates per plate
map for Cell Painting, given its lower cost per plate. Each repli-
cate plate contained 56 different compounds in six doses plus
24 dimethyl sulfoxide (DMSO) negative controls and 24 protea-
some inhibitor positive controls.

¢? CellPress

We applied standard data processing pipelines for each assay
(see STAR Methods) to normalize and transform the data prior to
downstream analyses (Figure S3B). Due to the limitations of the
compound dispensing equipment, it was unfortunately infeasible
to control for plate layout artifacts by scrambling perturbation lo-
cations within each plate across replicates. Indeed, we observed
plate-position effects in the Cell Painting data, particularly in
edge wells (Figure S5). Therefore, we applied a spherize trans-
form using negative control dimethylsulfoxide (DMSO, a solvent
control) wells to combine data across batches and adjust for
these plate-position effects. Spherizing, also known as whit-
ening, adjusts all profiles such that the DMSO wells are trans-
formed to have an identity covariance matrix (Ando et al.,
2017; Kessy et al., 2018) (see STAR Methods for more details).
In all the downstream analyses, we use spherized Cell Painting
profiles and the original, unspherized L1000 profiles unless indi-
cated otherwise (L1000 did not benefit from spherizing, see Fig-
ure S5, bottom).

Assessing profile reproducibility in L1000 and Cell
Painting assays

To study a perturbation’s function, a scientist must reliably and
robustly measure its biological effect. Therefore, we introduced
and calculated a reproducibility metric, based on median pair-
wise Spearman correlations, which we call “percent replicating”
(Figure S6). Specifically, percent replicating captures the per-
centage of profile replicates (treatment of the same compound
measured at the same dose) that are more similar to one another
than to a randomly permuted null distribution that adjusts for
dose, sample size, and well position (see STAR Methods for
complete details).

As expected, percent replicating increased with dose in both
assays, as higher concentrations of drug are more likely to
impact cell systems (Figure 1B). However, we observed much
higher percent replicating scores in Cell Painting (57%-83%,
from lowest to highest dose) compared with L1000 (16%-35%,
from lowest to highest dose) (Figure 1B); 35% at the highest
dose for L1000 is consistent with prior observations (Subrama-
nian et al., 2017). We provide median pairwise correlations and
percent replicating p values for all compounds per assay in
Table S2.

We expected to observe higher percent replicating scores for
Cell Painting over L1000 because we had, typically, five repli-
cates of Cell Painting and only three replicates of L1000 per
treatment as per standard assay guidelines. Indeed, a subsam-
pling experiment that randomly sampled Cell Painting replicates
to match the number of L1000 replicates reduced percent repli-
cating (from 57% to 37% and 83% to 67 %, from lowest to high-
est dose), although still higher than L1000 (Figure S7). Another
possible explanation for higher Cell Painting reproducibility met-
rics is that plate layout effects artificially increased replicate cor-
relations preferentially for that modality versus L1000. Indeed,
we observed that percent replicating increased if we failed to
adjust our null distribution for well position and decreased if we
failed to correct for plate-position effects (Figure S7). However,
reproducibility metrics were robust to edge well filtering and
different null distributions, as we observed similar performance
if we (1) prefiltered edge wells as quality control, (2) adjusted
null distributions only for dose and not sample size, and (3)
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dropped dose altogether when sampling the null distribution
(Figure S8). These results underscore the importance of maxi-
mizing replicate treatments, proper construction of null distribu-
tions, and proper profile normalization in Cell Painting. The same
normalization did not improve scores for L1000.

Plate layout effects are a serious concern in profiling experi-
ments where practical reasons require scientists to measure
replicates of a sample at the same well position across physical
plates; it is known that the location on the plate, especially
distance from the edge of the plate, canimpact many cell pheno-
types. Therefore, to more closely study the impact of plate posi-
tion on pairwise correlations, we performed a non-replicate diffu-
sion analysis in which we systematically increased the well
neighborhood size in calculating the null distribution of non-repli-
cate correlations (see STAR Methods). Briefly, we started with a
diffusion size 0, which looks at the non-replicate correlations of
different samples that are in the exact same well position, across
different plate maps. As we increased diffusion (the well neigh-
borhood size) to include adjacent and nearby wells, we observed
a slight dampening of non-replicate correlations (Figure S9A).
Although this analysis revealed increased plate-position effects
in Cell Painting compared with L1000, this bias is relatively small
compared with the overall replicate correlation signal (Fig-
ure S9B). Taken together, plate layout effects do impact profiling
assays but are unlikely to have driven the signal we observed in
this experiment. Nevertheless, when possible, we recommend
scrambling replicates across well positions to avoid this poten-
tial confounding effect.

Comparing median pairwise replicate correlations across indi-
vidual treatments, we observed that most compounds have
higher correlations in Cell Painting compared with L1000, but
many compounds are highly correlated in both assays (Fig-
ure 1C). Interestingly, we observed that certain compounds con-
tained signal in only one assay or the other (Figure 1C). We
observed that 11% of compounds in the lowest dose (133/
1,258) and 34% of compounds in the highest dose (422/1,258)
produced signal in both assays. Combining both assays
together, we found that 62%-85% of compounds (from lowest
to highest dose) produced signal higher than random (Figure 1D).

Analyzing the diversity of perturbed cell states
manifesting in gene expression and morphology

Although percent replicating captures the proportion of com-
pounds that significantly change cell state, it does not quantify
the diversity of those cell states when considering the impact
of different compounds. Diversity of cell states is critical for
many applications, such as MOA matching as described below,
because more diversity indicates more potential for interesting
biological findings. For example, quantifying cell state diversity
is critical when selecting compounds for inclusion in a screening
library, as the goal is typically to maximize phenotypic diversity
among the compounds; strategies that reduce redundancy allow
inclusion of more diverse phenotypes and are therefore more
likely to result in drug discovery pipeline “hits” (Wawer
et al., 2014).

To qualitatively assess the diversity of profiles produced by
each profiling assay, we applied a unified manifold approxima-
tion (UMAP) transform (Mclnnes et al., 2018). We observed
that, in both assays, many compounds form distinct islands

914 Cell Systems 73, 911-923, November 16, 2022

Cell Systems

that consistently group specific MOAs, whereas a sizable set
of compounds are relatively similar to negative controls (Fig-
ure 2A). MOAs with higher correlations more often form
islands in either assay (Figures S10 and S11). The islands sepa-
rated more with increasing dose, and we identified similarly
distributed clusters using t-distributed stochastic neighbor
embedding (t-SNE) (van der Maaten, 2008) (Figure S12). Further-
more, a principal components analysis (PCA) grouped together
compounds with low replicate reproducibility, representing
drug treatments that failed to have a consistent phenotypic
impact (Figure S13).

The primary data collection for this project used a single cell
line, A549; a small dataset we gathered using three cell lines
(A549, MCF7, and U20S) showed more phenotypic separation
according to cell line and incubation period (Figure S14). This
separation demonstrated higher biological diversity induced by
inherent cell line differences compared with diversity induced
by different perturbations, which is consistent with observations
for L1000 data (Squires et al., 2020).

For a quantitative analysis, we fit different clustering algo-
rithms to approximate the number of unique groups of com-
pounds that manifest in each data modality. We observed
more distinct clusters in Cell Painting compared with L1000
readouts. This observation was consistent across different
clustering solutions (from k = 2 to k = 40), with different clustering
algorithms (k-means clustering and Gaussian mixture models)
and using three different metrics (Silhouette scores, Davies
Bouldin scores, and Bayesian information criterion) (Figure S15).
Observing global patterns of pairwise sample correlations in a
heatmap provides further evidence of increased diversity in
Cell Painting measurements as indicated by lower pairwise cor-
relations across different compounds (Figure 2B). Taken
together, this analysis suggests that morphology profiles
measured by Cell Painting capture more diverse cell states
than the gene expression profiles measured by L1000, under
the experimental conditions tested.

Assessing the complementarity of profiling morphology
and gene expression features

By design, different profiling technologies measure different bio-
logical features. L1000 is a gene expression assay and therefore
measures molecular features; specifically, mMRNA transcript
levels in a biological sample. Cell Painting is an image-based
assay that instead measures cell features—both morphological
and spatial. Nevertheless, biological signals are often related
or even tightly coupled. We therefore sought to approximate
how many independent groups of features exist in both modal-
ities. This is distinct from our analysis of the number of groups
of samples described in the prior section.

In general, we observed higher diversity of feature signals in
L1000 compared with Cell Painting (Figure 3A). Across doses, in-
dividual Cell Painting features had higher coefficient of variance
(CV) than L1000 features, but both assays had similar feature
variance between replicates (Figure S16). Much higher absolute
value pairwise correlations among Cell Painting features, even
after feature selection (see STAR Methods), indicate more
redundant measurements compared with L1000 (Figure 3B).
Indeed, the top principal components (PCs) explain a higher pro-
portion of variance in Cell Painting compared with L1000 data,
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Figure 2. Cell Painting captures a more diverse sample space than L1000

(A) Uniform manifold approximation (UMAP) coordinates of all perturbations (level 4 replicates) across all doses by Cell Painting (left) and L1000 profiles (right). We
highlight select MOAs that are consistently different from DMSO controls in either modality. Note that Cell Painting data are spherized, and L1000 data are not, as
explained in the main text; here, this manifests in quite different patterns for the negative control DMSO samples. In particular, many of the otherwise-distinct

islands of compounds for L1000 are populated by negative control DMSO.

(B) Heatmaps of pairwise Pearson correlations of all measured compounds’ consensus signatures (see STAR Methods) in either assay at the highest dose (10 uM)
plus positive-control proteasome inhibitors at 20 uM and DMSO negative controls.

providing further evidence of increased feature redundancy in
Cell Painting (Figure 3C). Both assays attempt to reduce redun-
dancy in some way. For L1000, scientists deliberately chose the
genes’ mRNAs (the 978 distinct molecular entities measured) to
minimize redundancy in measurements while maximizing the
ability to infer transcriptome-wide gene expression (Subrama-
nian et al., 2017). Following the standard image-based profiling
pipeline (Caicedo et al., 2017), we also removed highly corre-
lated features from the Cell Painting assay. Taken together,
this analysis suggests that there is a higher diversity of gene

expression features than morphology features, as measured
by these two assays.

Because we collected thousands of perturbations with repli-
cates, we can study the specific features, in either assay, that
were highly impacted by individual compound treatments.
Calculating a metric called “activity score” (Subramanian
et al., 2017), which combines both replicate reproducibility and
number of impacted features (see STAR Methods), we observed
that certain compounds disrupt L1000 and Cell Painting features
with different strengths in a dose-dependent manner

Cell Systems 13, 911-923, November 16, 2022 915
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Figure 3. Cell Painting morphology features are more redundant than L1000 gene expression features

(A) Heatmaps of pairwise Pearson correlations of 1,020 Cell Painting features and 974 L1000 features, in each case derived from feature-selected consensus
signatures of the same compound treatments at 10 uM.
(B) The same data plotted as a density plot show the distribution of correlations between pairs of L1000 or Cell Painting features.

(C) The percentage of variance explained for the top 30 principal components derived from a principal component analysis (PCA) in Cell Painting or L1000
readouts.
(D) Comparing activity scores for highly reproducible compound perturbations (as defined by having 3 or more doses passing the percent strong threshold)
reveals that most compounds induce a higher number of morphological changes than gene expression changes.

(E) The mean morphological activity score (MAS) and transcriptional activity score (TAS) for compounds that are reproducible in at least three doses, with labels
for compounds with the largest difference between MAS and TAS.
(F) Overrepresentation analysis (ORA) for gene ontology (GO) terms using the genes most impacted by each individual compound treatment. We selected these
compounds to include those that are reproducible in both L1000 and Cell Painting and that induce a high activity score in one assay, and a low activity score in the
other. Each point is a GO term, comprising L1000 landmark genes that were consistently modulated by that compound.
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(Figure 3D). Nearly all of the compound perturbations disrupted
more morphology readouts than expression readouts. This
observation was even more pronounced when we focused on
compounds with high reproducibility scores in both assays in
at least three different doses (Figure 3E). In particular, dasatinib,
alisertib, brequinar, aphidicolin, AT13387, and STA-5326 consis-
tently induced many morphological changes while changing
relatively few expression values. By performing separate
pathway analyses using the few genes most disrupted by each
of the aforementioned compounds, we observed compound-
specific associations with specific pathways: dasatinib altered
genes associated with sulfur compound biosynthetic process
(gene ontology [GOJ:0044272, p = 5.8 x 107%), alisertib
with serine/threonine protein kinase complex (GO:1902554;
p = 44 x 1073, brequinar with cellular response to UV
(GO:0034644, p = 1.7 x 104, aphidicolin with cellular response
to starvation (GO:0009267, p = 1.4 x 10~3), AT13387 with regu-
lation of endothelial cell migration (GO:0010594, p = 7.4 x 10~%),
and STA-5326 with cholesterol biosynthetic process
(GO:0006695, p = 6.7 x 1079 (Figure 3F). Conversely, I-ergo-
thioneine and lasalocid induced many more transcriptional
changes than morphological changes, which included genes
associated with regulation of RNA stability (GO:0043487, p =
6.1 x 107%) and cellular polysaccharide metabolic process
(GO:0044264, p = 7.8 x 10~%), respectively (Figure 3F). We pro-
vide pathway analysis results for all eight of these high differential
activity score compounds in Table S3. This type of analysis
opens the door to exploring relationships between particular
mRNA levels and specific morphologies when perturbing cells
(Haghighi et al., 2021; Nassiri and McCall, 2018).

Assessing the ability of cell painting and L1000 to
capture compound mechanism of action
We next tested a more demanding, application-oriented metric
based on a common use case when profiling compounds: deter-
mining a compound’s MOA. A large range of perturbation exper-
iments have mechanistic prediction as a central goal (Schenone
et al., 2013). As described in more detail in the discussion, this is
a “notoriously” challenging step in drug discovery where existing
methods are useful but have low success rates, usually so low
that they have not been calculated systematically. The most
common strategy in the pharmaceutical industry is to attempt
several painstaking methods and combine results to formulate
hypotheses for further testing. In fact, because determining a
compound’s mechanism is often time and labor intensive, exist-
ing annotations for a compound may be incomplete, incorrect, or
ignore off-target effects and polypharmacology (Proschak et al.,
2019; Rastelli and Pinzi, 2015). Nevertheless, MOA prediction is
one of the few biological applications where any modicum of suf-
ficient “ground truth” is available to test a variety of compounds
from diverse classes and perform a relative comparison of
profiling methods; thus, we use it here despite its limitations.
We introduced the metric “percent matching” to quantify how
often a profiling assay can group together compound profiles
that have the same annotations (see STAR Methods). Unlike
percent replicating, this metric is not influenced by plate layout
effects in our experiment because compounds with the same an-
notated MOA are not located in the same well location across
plate maps.
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Comparing MOAs within dose, we observed higher percent
matching scores for Cell Painting (ranging from 16% to 28%)
than for L1000 (7% to 21%) (Figure 4A). However, when we
compared MOAs across doses, we observed substantially
higher percent matching scores for both Cell Painting (44%)
and L1000 (50%) (Figure 4A). The increased scores highlight
the challenges of drug discovery, as many compounds may
have different effects at varying doses. Comparing percent
matching scores between assays, we observed many overlap-
ping, but also many assay-specific MOAs (Figure 4B). In general,
we observed stronger signals in L1000 from a smaller number of
MOAs, compared with weaker signals from a larger number of
MOAs for Cell Painting, as indicated by more points above the
dotted line for L1000 but higher percent matching scores for
Cell Painting (Figures 4B and 4C).

The overlapping MOAs, captured by both L1000 and Cell
Painting and including at least three different compounds,
ranged from 3% of MOAs at the lowest dose (4/127), 18% of
MOAs at the highest dose (23/127), and 27% of MOAs across
all doses (34/127). Moreover, when considering both assays
together, they collectively captured 20% of MOAs at the lowest
dose (25/127), 31% of MOAs at the highest dose (39/127), and,
remarkably, 69% of MOAs when comparing across doses (88/
127), although we caution that percent matching scores cannot
be directly interpreted as the ability to accurately predict MOA
(see next section) (Figure 4C). Assaying multiple doses, one
captures 19% more MOAs by adding Cell Painting to L1000
and 24% more MOAs by adding L1000 to Cell Painting.
These observations can guide researchers in selecting a partic-
ular profiling modality that provides more consistent measure-
ments when studying specific compounds or MOAs
(Figure S17A).

Because percent matching, which is based on the statistical
concept of recall, will not sufficiently address how distinguish-
able MOA classes are from each other (see STAR Methods
for more details), we also calculated average precision for all
MOAs. Many MOAs demonstrated high average precision
across assays and doses, including proteasome inhibitors,
MEK inhibitors, and glucocorticoid receptor agonists, but
many MOAs were assay specific (Figure 4D). MOA average
precision correlated strongly with median pairwise Spearman
correlations of MOAs (Figure S17B). Although we observed
increased percent matching when using all doses, we did not
observe corresponding increases in all dose average precision,
indicating an increase in false positive rate when all doses are
considered. Therefore, we advise a careful consideration of
both metrics when defining thresholds for follow-up
experimentation.

We note that in any MOA analysis, low matching scores may
result from noise or technical limitations of the assays, but they
may also reflect real biological signals resulting from either inac-
curate annotations, which is a known challenge (Lin et al., 2019),
or alternatively because the assay is capturing mechanistic dif-
ferences between compounds that are annotated with the
same MOA; such polypharmacology is common. We directly
observed this difficulty in matching MOAs, as we failed to reliably
measure between 102 and 88 different MOAs (80.3%-69.3%
from lowest to highest dose) (Figure S17C). Across all compari-
sons, we failed to reliably measure 29 different MOAs (23%),
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Figure 4. Cell Painting and L1000 differentially measure compound perturbations by mechanism of action (MOA)

(A) Percent matching metrics for median pairwise replicate correlations of groups of compounds with a given MOA annotation, measured in both assays and
across doses. The color of the point represents how many compounds were annotated to a given MOA class.

(B) Median correlation between compounds annotated with the same MOA. We derived the null threshold through a nonparametric permutation test of randomly
sampled compounds (see STAR Methods). The size of the points represent how many compounds belong to the MOA class.

(C-E) (C) The L1000 and Cell Painting assays reproducibly measure a complementary set of MOAs. The three numbers represent (from top to bottom) the number
of MOAs unique to L1000, the number of MOAs captured in both assays, and the number of MOAs unique to Cell Painting that have higher signal than a randomly
permuted null distribution control. The All* bar represents matched MOAs for the 127 MOA set (MOA classes with a minimum of 3 compounds) and the All bar
represents matched MOAs for the 210 MOA set (MOA classes with a minimum of 2 compounds). Average precision of Cell Painting and L1000 compounds with
different (D) MOA and (E) gene target annotations. We highlight certain high performing MOAs and targets.

some of which related to bacterial or fungal processes and
others to functions of specialized cell types (Figure S17D).
Repeating the average precision analysis using compound
gene targets (instead of MOA classes) also revealed high
complementarity, as evidenced by many gene targets with off-
diagonal precision (Figure 4E). L1000 captures activity of com-
pounds targeting MAPK family genes and heat shock protein
(HSP90AAT1) strongly, whereas Cell Painting captures aurora ki-
nase genes (AURKA, AURKB), PLK genes (PLK1, PLK2, and
PLK3), and BRD4 with high precision (Figure 4E). We provide a
full list of median pairwise replicate correlations, percent match-
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ing p values, and average precision metrics for compound MOAs
in Table S4 and compound targets in Table S5.

Different profiling modalities provide complementary
deep learning predictions of compound mechanisms
and gene target pathways

We next took a targeted approach and trained supervised ma-
chine learning algorithms to directly predict compound MOA
and gene targets annotated to Gene Ontology (GO) terms. Re-
purposing the top model architectures from a related Kaggle
competition to predict MOA from L1000 readouts and cell
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Figure 5. Predicting compound mechanisms of action (MOAs) in Cell Painting and L1000 reveals overlapping and complementary perfor-

mance for different mechanisms

(A) Deep learning workflow. We collected compound Cell Painting and L1000 data from compound perturbations and trained five different deep learning models

to predict compound MOA and gene ontology terms.

(B) Held out test set precision-recall curves for three well performing MOAs in both assays.

(C) Individual MOA performance by held out test set area under the precision-recall curve (AUPR) in the top-performing model using Cell Painting and L1000 data.
(D) Overall held out test set model performance measured by AUPR for MOA prediction for our multi-label, multi-class prediction framework. We trained models
from a recent Kaggle competition plus a K-nearest neighbors baseline model. The dotted bar chart represents a negative control in which we trained models with
shuffled labels. The solid lines indicate ensemble model performance by blending model predictions (see STAR Methods). We trained all models using level 4

replicate profiles.

viability data (Kaggle.com et al., 2020), we retrained four deep
learning models (feedforward neural network, ResNet, TabNet,
and a 1D convolutional neural network) and a K-nearest neighbor
baseline on multi-label objectives. We also averaged model
probabilities to form an ensemble model and considered com-
pounds that map to multiple MOAs and gene targets as positive
labels for all individual categories. We compared model perfor-
mance for training each model using L1000 and Cell Painting
readouts separately and merged together (Figure 5A).

Many individual MOAs could be predicted rather robustly by
both assays including MEK inhibitors, MTOR inhibitors, and
EGFR inhibitors (Figure 5B). However, some MOAs could be
consistently predicted better by L1000 (e.g., HSP inhibitors) or
by Cell Painting (e.g., PLK inhibitors), and many MOAs could

be predicted by neither assay (e.g., glucocorticoid receptor
antagonist) (Figure S18A). In the held out test set, the MOA pre-
dictions were correlated between the two assay modalities
(Spearman correlation = 0.70, p < 2.2e—16), but some MOAs
were predicted better in one assay compared with the other
(Figure 5C). In general, although performance across all MOA
predictions sufficiently improved over several baselines, overall
performance was relatively low, demonstrating the general diffi-
culty of the task (Figure 5D). Poor predictions might be a result of
noisy readouts or the ability of the data type to reveal more subtle
compound-specific signals such as off-target effects.

Overall, L1000 performed slightly better at MOA prediction
than Cell Painting across a wide range of different deep learning
architectures (Figure 5D). The Kaggle competition selected for
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models especially suited to L1000 and cell viability data; it is
possible that alternate architectures might favor Cell Painting
data. Concatenating features of both assays together and pre-
dicting MOA did not improve performance, but this may be
because of the need to randomly match replicates since there
is no one-to-one correspondence (see STAR Methods) (Fig-
ure S18B). Subsampling the Cell Painting data to match the sam-
ple count of L1000 slightly decreased performance, indicating
that collecting more than three replicates in either assay is likely
to increase performance (Figure S18B). We also observed
that performance increased in step with treatment dose
(Figure S18C).

In addition to MOA predictions, we also trained these same
deep learning architectures to predict gene pathways. The
genes that compounds target are often well characterized, and
we hypothesized that Cell Painting and L1000 could predict
compounds targeting genes in the same pathway. Therefore,
we mapped Drug Repurposing Hub compound gene target an-
notations to GO terms and retrained the same MOA models to
instead predict GO terms (Ashburner et al., 2000; Gene Ontology
Consortium, 2021). In our dataset, we assayed compounds that
targeted 720 different genes, which mapped to 5,822 unique GO
terms. After filtering GO terms that included 20 different com-
pounds or more, we trained models to predict different terms.

With slightly worse performance than the MOA predictions,
many individual GO terms could be predicted by either
assay including neuron differentiation (GO:0030182), chromatin
organization (GO:0006325), and steroid hormone binding
(GO:1990239) (Figure S19A). As expected, some GO terms
were better predicted using L1000 data (e.g., transmembrane re-
ceptor protein tyrosine kinase activity; GO:0004714), others with
Cell Painting data (e.g., positive regulation of G1/S transition of
mitotic cell cycle; GO:1900087), and others by neither assay
(e.g., cellular response to calcium ion; GO:0071277) (Fig-
ure S19B). However, GO term prediction performance was
highly correlated between the two assays (Spearman correla-
tion = 0.92, p < 2.2e—16; Figure S19C). We observed improve-
ments over baselines, but general poor performance overall
(Figure S19D). We provide all deep learning performance metrics
in Table S6.

DISCUSSION

Large-scale perturbational profiling experiments are time and
cost intensive; comparing their relative abilities is important in-
formation for experimental design and planning. We found that
mRNA profiling (via L1000) and morphological profiling (via Cell
Painting) were generally complementary, given their current
state of technical reproducibility and standard computational
pipelines. Cell Painting had a higher diversity of samples and
could match MOAs more consistently in an unsupervised
setting, whereas L1000 had a higher diversity of features and
better performance predicting MOAs in a supervised setting.
Cell Painting is less expensive, enabling larger experiments for
a given budget, but L1000 offers a larger pool of publicly avail-
able data to query (Subramanian et al., 2017). A wide variety of
biological pathways are readily captured by both data types,
but some are better observed in one modality versus the other.
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We had anticipated that morphological changes would gener-
ally not occur without concomitant changes in mRNA levels
(whether as a cause or consequence), particularly at low doses,
but found examples of compound treatments where this hap-
pens, and vice versa. It may be that the L1000 assay does not
capture the mRNAs in the cell that change, due to technical noise
or because it measures only ~5% of the transcripts in the cell. It
could also be that mRNA changes do occur but not at the short
timescale of the mRNA detection (24 h) compared with the image
capture (48 h). It is also possible that the different incubation
times for compound treatments increased our ability to detect
changes, but it is unlikely any single time point is optimal for all
treatments, given potential differences in cell and molecular
response times (Niepel et al., 2017).

MOA prediction is “notoriously challenging” and a major
bottleneck (Lill et al., 2021). No assay exists that can reliably suc-
ceed across a majority of known MOA classes (Pasquer et al.,
2020). Of course, one would not expect any assay in a single
cell line at a single time point or compound dose to capture
100% of all biological mechanisms. For this reason, in practice,
it is more typical to assess compounds of interest with various
strategies, each with low individual success rates. Our goal in
this analysis was not to prove the efficacy of MOA prediction
by mRNA and morphology profiling. Instead, in the MOA predic-
tion analyses, we aimed to compare the relative strengths of the
two assays because this is a direct comparison task with the
most available ground “truth.” In fact, both assays tested here
have the advantage of being sufficiently inexpensive; most other
strategies for MOA prediction report no success rates because
they are not practically scaled to test on thousands of com-
pounds systematically, for example, those that require modifica-
tion of the compound or customization of cells (Pasquer
et al., 2020).

One can imagine future developments in both assays that
could improve their performance in a variety of applications.
For perturbational profiling of mRNA expression, the L1000
assay offers a cost effective strategy for large-scale compound
experiments, with a huge library of publicly available profiles.
Fortunately, expression profiles from L1000 are similar to RNA-
seq equivalents: of 3,176 patient-derived RNA samples profiled
on both platforms, 3,103 (98%) had high quality cross-platform
correlations (Subramanian et al., 2017). The development of
novel methods that are even cheaper, more robust, and more
comprehensive would be welcome. For imaging assays, deep
learning-based segmentation and feature extraction offers
promise but deep learning is not yet routine for image-based
profiling (Chandrasekaran et al., 2021; Pratapa et al., 2021). As
well, the standard Cell Painting pipeline population-averages
measurements; methods that better leverage the assay’s sin-
gle-cell measurements are likely to improve information capture
from this assay. Using additional stains is another sensible route,
although initial testing indicates that it does not seem to dramat-
ically improve MOA prediction performance (Rose et al., 2018).
For both, screening additional cell types (Boyd et al., 2020;
Cox et al., 2020; Rose et al., 2018) and time points might in-
crease the ability to detect and characterize perturbations in
cell state. If experiments capture both profiling types, the profiles
might be integrated to increase their power and resolution (Cai-
cedo et al., 2021; Haghighi et al., 2021; Huang et al., 2017;
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Lapins and Spjuth, 2019). Overall, this paper will help re-
searchers to better understand the pros and cons of two of the
currently largest and cheapest methods of large-scale drug
profiling.
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Chemicals, Peptides, and Recombinant Proteins

Buffer TCL

Tetramethylammonium chloride (TMAC)
Puromycin

SAPE

DMEM

RPMI1640 Medium

100X penicillin-streptomycin-glutamine
Fetal bovine serum (FBS)

16% (wt/vol) Paraformaldehyde
(PFA), methanol free

HBSS (10x; Invitrogen)
Triton X-100

Sodium bicarbonate
Methanol

MitoTracker Deep Red

Wheat-germ agglutinin/Alexa
Fluor 555 conjugate

Phalloidin/Alexa Fluor 568 conjugate
Concanavalin A/Alexa Fluor

488 conjugate

Hoechst 33342

SYTO 14 green fluorescent

nucleic acid stain

DMSO

QIAGEN

RSA Corporation
Sigma-Aldrich

Lifetech

Fisher Scientific

Mediatech

Invitrogen

Sigma-Aldrich

Electron Microscopy Sciences

Invitrogen
Sigma-Aldrich
HyClone

VMR
Invitrogen
Invitrogen

Invitrogen
Invitrogen

Invitrogen
Invitrogen

Fisher Chemical

Cat# 1031576

Cat# 344

Cat# P9620

Cat# S21388

Cat# MT-10-017-CV
Cat# 10040CV

Cat# 10378-016
Cat# F4135

Cat# 15710-S

Cat# 14065-056
Cat# T8787

Cat# SH30033.01
Cat# BDH1135
Cat# M22426
Cat# W32464

Cat# A12380
Cat# C11252

Cat# H3570
Cat# S7576

Cat# D128-500

Critical Commercial Assays

384 TurboCapture Kit

HotStarTaq Kit

M-MLV Reverse Transcriptase Kit
Taq Ligase Kit

MagPlex Microspheres

Cell Titer Glo

QIAGEN
QIAGEN
Promega
NEB
Luminex
Promega

Cat# 72271
Cat# 203209
Cat# M1705
Cat# M0208L
N/A
Cat#G7573

Deposited Data

L1000 dataset (~1.3M profiles)

Auxiliary datasets and metadata

L1000 assay probes and analyte mappings

L1000 profiles

Cell Painting images

https://doi.org/10.1016/j.cell.2017.10.049

https://doi.org/10.1016/j.cell.2017.10.049

https://doi.org/10.1016/j.cell.2017.10.049

This paper

This paper
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https://www.ncbi.nim.nih.
gov/geo/query/acc.cgi?
acc=GSE92742
https://www.ncbi.nim.nih.
gov/geo/query/acc.cgi?
acc=GSE92742
https://www.ncbi.nim.nih.
gov/geo/query/acc.cgi?
acc=GPL20573
https://doi.org/10.6084/
m9.figshare.13181966.v2

Image data resource
accession number idr0125
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bulk Cell Painting profiles This paper https://doi.org/10.5281/
zenodo.5008187

Single-cell Cell Painting profiles This paper AWS cpg0004

Experimental Models: Cell Lines

MCF7 (Cancer cell line; Breast; Female) ATCC HTB-22

A549 (Cancer cell line; Lung; Male) ATCC CCL-185

U20S (Cancer cell line; Bone; Female) ATCC HTB-96

Oligonucleotides

LUA sequences IDT https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GPL20573

L1000 probe pairs IDT https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GPL20573

T7 biotinylated primer: /5Biosg/ IDT N/A

TAATACGACTCACTATAGGG

T3 primer: CAATTAACCCTCACTAAAGG IDT N/A

Software and Algorithms

Reprodicible analysis repository

LINCS Cell Painting image-based
profiling pipeline

CellProfiler

cytominer-database

https://github.com/broadinstitute/lincs-
profiling-complementarity

https://github.com/broadinstitute/lincs-
cell-painting
https://github.com/CellProfiler/CellProfiler

https://github.com/cytomining/
cytominer-database

https://doi.org/10.5281/
zeno0do.6522802

https://doi.org/10.5281/
zenodo.5008187

v2.3.1
v0.3.3

Pycytominer https://github.com/cytomining/pycytominer Github Hash: 4f37e01991825611
1933aed4e3b9afb50055b4al

Pandas McKinney et al., 2010 vi.2

scikit-learn Pedregosa et al., 2011 v0.24.2

cmapPy Enache et al., 2018 v4.0.1

GO.db Carlson, 2017a v3.14.0

org.Hs.eg.db Carlson, 2017b v3.14.0

topGO Alexa et al., 2017 v2.46.0

Python Van Rossum and Drake, 2009 v3.9.1

R R Core Team, 2021 v3.5.1

ggplot2 Wickham, 2016 v3.3.0

Anaconda Anaconda Inc., 2021 v4.10.3

Other

Detailed L1000 assay protocol
Detailed cell culture protocols
Detailed Cell Painting protocol

https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.cell.2017.10.049
https://www.nature.com/articles/nprot.2016.105

https://clue.io/sop-L1000.pdf
https://clue.io/sop-cell.pdf
Cell Painting protocol v2 (Bray et al., 2016)

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Anne Carpenter (anne@

broadinstitute.org).
Source data statement

All code to reproduce this analysis is located at https://github.com/broadinstitute/lincs-profiling-complementarity. All code to repro-
duce the Cell Painting image-based profiling pipeline is available at https://github.com/broadinstitute/lincs-cell-painting. The L1000
data are available at figshare. Cell Painting images are deposited to the Image Data Resource (https://idr.openmicroscopy.org/) un-
der accession number idr0125. Cell Painting images and single-cell profiles are available at the Cell Painting Gallery on the Registry of
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Open Data on AWS (https://registry.opendata.aws/cellpainting-gallery/) under accession number cpg0004. This paper also analyzes
existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
Code statement
All code to reproduce this analysis is located at https://github.com/broadinstitute/lincs-profiling-complementarity, which we
archived on Zenodo (Way et al., 2021a). All code to reproduce the Cell Painting image-based profiling pipeline is available at
https://github.com/broadinstitute/lincs-cell-painting, which we archived on Zenodo (Natoli et al., 2021b). For all analyses, we
used Python version 3.9.1 (Van Rossum and Drake, 2009) and pandas version 1.2 (McKinney, 2010). For visualization we used R
version 3.5.1 (R Core Team, 2021) and ggplot2 version 3.3.0 (Wickham, 2016). For versions of other critical software see our key re-
sources table and as discussed above. All computational environments can be reproduced in our github repository https://github.
com/broadinstitute/lincs-profiling-complementarity. We used conda version 4.10.3 and conda-forge to version all computational en-
vironments (; conda-forge community, 2015)

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Data and code availability
This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Selection of compounds for testing

We selected compounds annotated by the Drug Repurposing hub using two criteria: 1) Compounds known to be diverse in terms of
being annotated with a variety of annotated MOAs; 2) Compounds that are in current clinical use or in advanced clinical testing (we
deprioritized tool compounds). We did not filter our compound selection for prior performance-based observations based on past
datasets.

We exposed A549 cells to six different doses of most compounds. The six dose points include 0.04uM, 0.12uM, 0.37uM, 1.11uM,
3.33uM, and 10uM. For several compounds the calculated dose was slightly different than one of the six dose categories, and in
these instances, we rounded to the nearest dose category. The complete list of all compounds tested and their annotations can
be found in Table S1.

METHOD DETAILS

Sample preparation: Cell Painting
We generated Cell Painting data according to (Bray et al., 2016). Briefly, we cultured A549 cells in RPMI (Mediatech) on 384 well
plates and exposed them to compound treatment at various doses for 48 hours. After exposure, we fixed, stained, and then imaged
all cells. Specifically, we used Hoechst 33342 to mark DNA, concanavalin A/Alexa Fluor 488 conjugate to mark the endoplasmic re-
ticulum (ER), SYTO 14 to mark nucleoli and cytoplasmic RNA, phalloidin to mark F-actin cytoskeleton, wheat-germ agglutinin/Alexa
Fluor 555 conjugate (WGA) to mark Golgi and plasma membrane, and MitoTracker Deep Red to mark mitochondria. For complete
details about the Cell Painting procedure, see (Bray et al., 2016).

We performed all imaging using a Phenix Opera with a 20X/1.0NA water objective, 1x1 binning, and filter sets described in Bray
et al., (2016) Supplementary Note 1. For the second batch of Cell Painting data (Figure S14) we treated cells at the same doses for 6,
24, and 48 hours.

Sample preparation: L1000

We generated the L1000 data according to the protocol outlined in (Subramanian et al., 2017). Briefly, we cultured A549 cells in RPMI
(Mediatech) on 384 well plates and exposed them to compound treatment at various doses for 24 hours. After the incubation time, we
lysed cells and subjected them to ligation-mediated amplification (LMA) and detection. We captured mRNA using oligo-dT coated
beads and reverse transcribed the sequences into cDNA. We PCR amplified the cDNA using biotinylated, barcoded primers and
gene-specific juxtaposed probe pairs resulting in gene-specific, barcoded, and biotinylated PCR amplicons. We then hybridized
these amplicons to Luminex beads, stained them with streptavidin R-phycoerythrin (SAPE), and detected them using a Luminex
FlexMAP 3D scanner. Therefore, each bead reports the barcode, which determines gene identity, and we measure the SAPE fluo-
rescent intensity, which indicates transcript abundance.

L1000 data processing

We processed L1000 data into perturbagen-specific differential expression signatures as described in (Subramanian et al., 2017).
Briefly, we captured raw fluorescent intensities (Fl) from the Luminex FlexMAP 3D scanner for each of the 978 L1000 landmark genes
(Level 1 data). We then deconvoluted Fl data to extract the median FI (MFI) for the two genes being measured by each Luminex bead
barcode (Level 2 data). We loess-normalized the MFI values to the ten L1000 invariant gene sets within each well, and then quantile
normalized all wells on the same detection plate, which resulted in each sample having the same empirical distribution (Level 3 data).
We then computed gene-wise robust z-scores per sample, using all other samples on the same plate as the reference distribution
(Level 4 data). Lastly, we collapsed biological replicates into consensus signatures using a weighted average, where each replicate
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was weighted by its average correlation with the others (Level 5 data). We made all data and metadata publicly available on figshare
(Natoli et al., 2021a).

Image feature extraction

To extract image features, we built a CellProfiler (version 2.3.1) (Kamentsky et al., 2011) image analysis pipeline and ran it on Amazon
Web Services using Distributed-CellProfiler (McQuin et al., 2018). We also performed illumination correction to standardize readouts
and account for confounding factors by homogenizing light across all fields of view (Singh et al., 2014). The image analysis pipeline
segments cells by distinguishing nuclei from cytoplasm and then extracts measurements for specific features related to the various
channels captured (see Sample preparation: Cell Painting). Specifically, we measured fluorescence intensity, texture, granularity,
density, location, and various other measurements for each single cell (see https://cellprofiler-manual.s3.amazonaws.com/
CPmanual/index.html for more details). Following the image-analysis pipeline, we obtain 110,012,425 cells and 1,790 feature mea-
surements across 136 different plates. The pipelines are available online here https://github.com/broadinstitute/imaging-platform-
pipelines/tree/3eb4ff5676aa7889666f09b606cd915c8b9ea839/cellpainting_a549_20x_phenix_bin1.

Cell Painting image-based profiling

After extracting CellProfiler readouts from all Cell Painting images of segmented single cells, we applied an image-based profiling
pipeline to process morphology readouts (Figure S3B). In the first step of this pipeline, we used cytominer-database (https://
github.com/cytomining/cytominer-database) to collect and validate all CellProfiler output measurements from Cells, Cytoplasm,
and Nuclei compartments for every site (field of view). The output of this first step is a set of SQLite files that contain raw single
cell profiles per plate (level 2 data).

Next, we used pycytominer to process the single cell readouts (Way et al., 2021). We performed a standard image-based profiling
pipeline (Caicedo et al., 2017) consisting of profile aggregation, annotation (level 3 profiles), normalization (level 4a), feature selection
(level 4b), and forming consensus signatures (level 5). We performed median aggregation and normalized aggregated profiles using
the “mad_robustize” method, which scales features independently by subtracting each value by the median and dividing by the me-
dian absolute deviation. We normalized each plate using the DMSO controls only, which allows us to more easily compare profiles
across plates. We also performed several standard feature selection operations to remove features with missing data (“drop_na_-
columns”), remove features with low variance (“variance_threshold”), remove features that are highly correlated with other features
(“correlation_threshold”), and remove blocklist features (“blocklist”). These blocklist features include CellProfiler features that we’ve
previously observed to be unstable and noisy (Way, 2020).

Because the negative control DMSO profiles were noisy due to technical artifacts, we applied a spherize transform (also known as
whitening) to mitigate the impact of well positioning (Ando et al., 2017; Kessy et al., 2018). More specifically, we used the zero-phase
whitening filters (ZCA) solution calculated on the profile correlation matrix (ZCA-cor) to minimize the absolute distance between the
transformed profiles and the untransformed profiles (Bell and Sejnowski, 1997). We also formed consensus signatures (level 5) by
moderated z-score (MODZ) aggregating all replicate wells across plate maps into a single signature. We applied feature selection
to the consensus signatures and batch effect corrected profiles separately using the same operations as described above. We
applied the same pipeline to batch 1 (A549) and batch 2 (A549, MCF7, and U20S) Cell Painting datasets.

Different drug treatments induce differing amounts of cell death and cell growth rates. To predict the amount of cell death, we
applied a recently derived machine learning model to predict cell death readouts from Cell Painting features (Way et al., 2021b)
We specifically used the “percent dead” machine learning model originally trained using the cell viability panel of the Cell Health
assay to make predictions (see Figure S4).

We provide all the image-based profiles (level 3 and up) and the data processing pipelines in a versioned and publicly available
github repository at https://github.com/broadinstitute/lincs-cell-painting/ (Natoli et al., 2021b). We add single-cell Cell Painting pro-
files (level 2) to the Cell Painting Gallery on the Registry of Open Data on AWS under accession number cpg0004

Calculating reproducibility metrics - percent replicating

The first step in calculating percent replicating is to calculate the median pairwise Spearman correlation of all treatments (compound
and dose). We determined if this median correlation was greater than what we expected by chance by comparing it to carefully-
matched null distributions. We report the metric per assay (under different normalization and null distribution conditions). See Fig-
ure S6 for a graphic fully explaining this metric, and see below for a full description of how we designed the null distribution.

We designed null distributions to control for three things: 1) different replicate cardinalities between different compound treat-
ments, 2) well position on the 384 well plate, and 3) treatment dose. We controlled for replicate cardinalities to account for stability
in median values across sample counts, the position of the well on a plate to account for potential plate position effects, and treat-
ment dose to account for the higher likelihood that higher doses contain more non-specific signals, and would therefore result in
higher absolute correlations between unrelated compounds.

Specifically, for percent replicating, for a given perturbation x located on well w measured across n replicates and treated with dose
p, we randomly sampled n non-replicate profiles assayed in well w (but from different plate maps) from all perturbations that were
treated with dose p. We performed this sampling procedure 1,000 times per replicate cardinality (e.g. compounds with 3 replicates,
4 replicates, 5 replicates, etc.) with two additional restrictions: (1) the random sample did not include replicates for perturbation x, and
(2) no two compounds of the same non-x perturbation were included in the same null group. For example, in cases where a
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compound treatment at a specific dose had five replicates, we sampled 1,000 groups of five randomly sampled non-replicate profiles
of the same dose. We used level 4 profiles considering compound and dose information as replicates, and we considered a repli-
cating profile one in which the ground truth median pairwise replicate correlation was higher than 95% of the null distribution. We
therefore calculate the percent replicating metric as the proportion of all replicating profiles over all common perturbations. This
95% thresholding procedure is equivalent to calculating per-treatment non-parametric p values (by counting how many times the
replicate pairwise correlation was greater than the non-replicate null distributions) and reporting how many compounds were above
an alpha p-value threshold of 0.05. We report this percent replicating implementation in Figure 1.

We also calculated percent replicating by relaxing the two null distribution constraints separately. We performed the procedure as
described above except we 1) did not require the non-replicates be drawn from the same well position and 2) did not require the non-
replicates to be drawn from the same dose. We relaxed these constraints to observe the impact of well position and dose on percent
replicating interpretation. We compare these results in Figure S7.

Calculating reproducibility metrics - percent strong

We also introduced and calculated a second metric, which we called “percent strong” (see Figure S8). In percent strong, we
construct the non-replicate null distribution without adjusting for well position or replicate cardinality. We did still, however, calculate
both dose-specific and dose-independent null distributions. Specifically, for dose-specific metrics, for each modality and normali-
zation strategy independently, we calculate a single null distribution for each dose by randomly sampling 1,000 groups of non-repli-
cate profiles per replicate cardinality (the same null distributions for percent replicating, but we ignore replicate cardinality) and
compare them to median non-replicate pairwise correlations. For our dose-independent analysis, we do not restrict profiles from be-
ing measured at the same dose.

We subsequently calculate percent strong as the percentage of replicate median pairwise Spearman correlations greater than
95% of the full non-replicate null distribution. Percent strong provides more possible combinations of non-replicate sampling and
therefore is not as susceptible to sampling biases as percent replicating. In other words, because percent replicating strictly samples
non-replicates from the same well position, if a specific well, by chance, housed similar perturbations, the non-replicate distribution
might be unduly skewed and deflate percent replicating scores. Percent strong is the least constrained null distribution and is robust
to normalization strategy and subsampling (see subsampling subsection).

We calculated percent replicating and percent strong using Cell Painting and L1000 input data with five different normalization stra-
tegies: 1) Cell Painting level 4 spherized profiles; 2) Cell Painting level 4 non-spherized profiles (median aggregated features with
z-score normalization); 3) Cell Painting level 4 spherized subsampled profiles (see below); 4) L1000 level 4 spherized profiles; and
5) L1000 level 4 non-spherized profiles. We also calculated percent strong without dose-specific null distributions (dose-ind.) and
after filtering edge wells using spherized Cell Painting level 4 and non-spherized L1000 level 4 profiles.

Subsampling Cell Painting level 4 profiles to match L1000 replicate count

We collected fewer L1000 profiles than Cell Painting profiles. In most cases, with some exceptions, we collected three L1000 rep-
licates and five Cell Painting replicates. We collected samples according to standard operating procedures for both assays, which
pertain to sample handling and costs.

To determine the extent to which our percent replicating metrics were biased by replicate count, we performed a subsampling
experiment using the spherized Cell Painting profiles. Specifically, we randomly sampled Cell Painting profiles without replacement
to match exactly the same number of L1000 replicates for the individual compound of interest. Using this subsampled dataset, we
calculated percent replicating. We also recalculated the null distribution using subsampled profiles.

Plate diffusion analysis to test the impact of plate position effects

We performed a plate diffusion analysis to assess plate position biases in Cell Painting and L1000 data. Specifically, for a given well w
with treatment x collected on plate map P, we collected all non-replicate samples across all plate maps except P in a specific well
neighborhood as defined by diffusion parameter d. In other words, we selected all non-replicate wells in a predefined local neighbor-
hood around well w. We used five different diffusion parameters (0, 1, 2, 3, and 4) to define this neighborhood. For d=0, we only
included non-replicate samples from the same well position, for d=1, we included all adjacent neighbors of well w on different plate
maps, for d=2, we included all adjacent neighbors plus all neighbors’ neighbors on different plate maps, and so on. After defining
these non-replicate samples, we calculated all combinations of pairwise replicate correlations between treatment x and all non-repli-
cate samples and calculated the mean of the distribution of well-neighborhood pairwise correlations.

Furthermore, we not only considered the local neighborhood around well w, but also the local neighborhood around the hypothet-
ical plate-flipped version of well w (e.g. well P24 is the flipped version of well AO1) in collecting non-replicates to analyze. In practice,
the scientists collecting the data put the 384-well plate in the data collection machine in one of two orientations. Including this mirror
parameter ensures that our diffusion analysis captures any technical plate effects introduced by different plate orientations.

We used the same five level 4 input data sets with different normalization strategies as we defined in the percent replicating and
percent strong methods subsection. We report the mean of the total well-neighborhood pairwise correlations to determine consistent
plate position technical artifacts per well position. If a strong plate position effect were present, then we would expect to see neigh-
borhood correlations substantially drop with increasing diffusion.
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Quantitative assessment of profile clustering

Using spherized Cell Painting level 4 profiles and non-spherized L1000 level 4 profiles, we performed three iterative clustering ana-
lyses in which we fit algorithms across a range of cluster numbers between k = 2 and k = 40 and acquired three goodness-of-fit heu-
ristics (Silhouette scores, Davies Bouldin scores, and Bayesian Information Criterion (BIC) scores) for both datasets. Briefly, the
Silhouette score is a metric indicating how separable clustering solutions are, with a score of 1 indicating that the identified clusters
are clearly separable (Rousseeuw, 1987). The Davies Bouldin score quantifies the ratio of within-cluster distances to between-cluster
distances when comparing each cluster to their most similar neighboring cluster, and a lower value indicates more separable clusters
(Davies and Bouldin, 1979). BIC is a measurement of cluster likelihood and cluster predictability with an added penalty for increased
cluster number, and a lower value indicates better clustering (Schwarz, 1978). We visualize the tradeoff of these heuristics as we fit
clustering algorithms with increasing cluster numbers.

For each model fitting, we used all 1,327 common compounds transformed into PCA space using 350 components. Therefore, we
fit all clustering algorithms and calculated goodness-of-fit metrics using data of the same feature dimension, which, if not identical,
can skew metrics and make comparison difficult.

Specifically, we applied k-means clustering with a maximum of 1,000 random iterations, across the k=2 to k=40 cluster number
range, and calculated Silhouette and Davies Bouldin scores from the resulting cluster solutions. We also fit full covariance Gaussian
Mixture Models (GMM) with a k-means initialization and 1,000 maximum iterations, and we calculated BIC scores from the resulting
clustering solutions. We performed this procedure using profiles resulting from each of the six different treatment doses indepen-
dently, as well as using all profiles combined.

Calculating signature strength and activity score

To compare how different compound perturbations impacted individual feature measurements for both L1000 gene expression and
Cell Painting morphology assays, we calculated signature strengths and activity scores as previously described (Subramanian et al.,
2017). Specifically, signature strength counts the number of features that substantially change when a sample is perturbed with a
specific compound. We determined a substantially changed feature as one with a value greater than 2 after multiplying its z-score
(transformed with respect to all compounds) by the square root of the number of replicates. We multiply by the square root of the
number of replicates to enable more direct comparison of scores across compounds with different replicate counts.

Counting features in this fashion is equivalent to computing the absolute magnitude of change — we are implicitly transforming each
feature so that values above 2 (or below -2) are mapped to 1 (or -1) and the rest are mapped to 0 (a “hard” sigmoid), and are then
measuring the L1 norm (or L1 magnitude) of the resulting transformed vector. Intuitively, compounds that induce many features to
high absolute value z scores are disruptive of steady state, and compounds that don’t change many features are not broadly strong
perturbations. Instead, these compounds may either have little impact or be highly specific, meaning they only target one, or a few
features strongly.

Activity score, either Morphological Activity Score (MAS) or Transcriptional Activity Score (TAS) for the Cell Painting or L1000 as-
says respectively, is the geometric mean of signature strength and median replicate correlation, normalized by the square root of
number of features in the assay such that the resulting metric ranges between 0 and 1. A high activity score indicates compounds
that reproducibly induce large changes in many features for a particular assay readout.

Identifying independent groups of features in assay measurements
To analyze feature redundancy and estimate the number of feature modules per assay, we calculated pairwise Pearson correlations
of level 5 consensus profiles of Cell Painting (spherized) and L1000 (non-spherized) assays. We applied the same feature selection
procedure in both assays, using pycytominer (Way et al., 2021). Specifically, we removed redundant features (as defined as having
pairwise Pearson correlations < 0.9), features with low variance, and blocklist features (Way, 2020). This resulted in 1,020 Cell Paint-
ing features and 974 L1000 features. We calculated pairwise Pearson correlations of these features for all common compounds per-
turbed with 10 puM of compound. We visualized feature-level correlations using ComplexHeatmap (Gu et al., 2016).

Using sci-kit learn (Pedregosa et al., 2011), we applied principal component analysis (PCA) with n_components = 150 using
feature-selected level 4 profiles for each assay independently. PCA provides the percentage of variance explained for each orthog-
onal component, and we use this information to determine the variety of signals in each feature space (Jolliffe, 1986).

MOA prediction - calculating percent matching

For our percent matching metric, we performed a similar procedure as percent replicating (see above). The only differences were that
we (1) used level 5 consensus signatures from both data sets and (2) considered MOA and dose information as replicates. We used
level 5 consensus signatures instead of level 4 replicate signatures, because consensus signatures are less noisy and correct for po-
tential different replicate cardinalities per compound within an MOA. We only considered MOAs that had three or more annotated
compounds. This resulted in an analytical set of 127 unique MOAs. We considered compounds annotated with multiple MOAs as
independent entities.

We subsequently constructed dose and MOA compound cardinality-specific null distributions to compare against. Specifically, for
each MOA, we calculated its median pairwise replicate correlation. We next randomly sampled 1,000 groups of level 5 consensus
profiles of the same cardinality of the MOA compound count. For example, if an MOA contained 10 compounds, we formed one
group by randomly sampling 10 compounds from different MOAs. We only sampled compounds measured at the same dose,
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and we did not include any two compounds of the same MOA in each random sample. For each of the 1,000 randomly groups, we
calculated median pairwise correlations, which formed our percent matching null distribution. Lastly, we calculated a compound spe-
cific p value by dividing how many times the real median pairwise correlation of replicates was higher than all 1,000 randomly
sampled groups of median pairwise correlations. We considered a matched MOA one in which the ground truth MOA median pair-
wise correlation was higher than 95% of the null distribution. We therefore calculate the percent matching metric as the total number
of matched MOAs over all common MOAs.

We also repeated the above percent matching procedure without the same-dose requirement for 1) the replicate compounds
belonging to the same MOA and 2) the randomly sampled null distribution. To prevent overinflated metrics and to ensure signal is
driven by different compounds of the same MOA, we did not consider replicates of the same compound across different doses
when calculating median pairwise replicate correlations. In addition to calculating all-dose percent matching with the core 127
MOAs that passed the within-dose compound count filtering criteria, we also calculated percent matching with a relaxed MOA
filtering. Specifically, when we considered the “All” dose comparison, we relaxed the MOA count constraint to contain two or
more annotated compounds, which resulted in 210 unique MOAs. In effect, this enabled us to compare MOAs with two annotated
compounds across multiple doses (“All” vs. “All*” bars in Figures 4 and S17).

Calculating average precision for compound MOAs and compound gene targets

In a similar approach as described in the percent matching section above, we also calculated average precision as a metric to
compare similarity of profiles targeting the same MOA and the same genes. We used this additional metric because percent matching
measures cluster compactness and recall, and thus risks overlooking differences in separation among clusters of samples. Although
the degree of separation among clusters is captured to some degree by the null, especially when it includes other samples and not
just the negative control DMSO, this does not fully mitigate the issue. By contrast, average precision instead estimates the area under
the precision recall curve, by averaging precision at various recall thresholds, thus measuring cluster separation, or, how compounds
from the same MOA appear different from other compounds.

We used cmapPy version 4.0.1 to calculate pairwise Pearson correlations of all profiles within each dose and assay, independently
(Enache et al., 2018). To avoid false negatives and extremely low positive counts, we considered compounds annotated with multiple
MOAs or multiple gene targets as a positive match if one of their annotations overlapped with compounds with singleton annotations.

We calculated average precision by comparing Pearson correlation to ground truth annotations. Average precision calculates the
mean of precision at each threshold in a precision-recall curve. We used the default “macro” average method in scikit-learn version
0.24.2 to calculate average precision, which does not weight precision means per label. We repeated this procedure without the
same-dose constraint, designating repli

Supervised mechanism of action prediction: Multilabel-classification framework
We structured the classification task to predict compound MOAs and GO terms from different input profiling modalities. Specifically,
we created a binary label matrix for each individual MOA or GO term with corresponding labels for each compound. This formulation
created a multi-label framework because many compounds have previously been annotated with two or more specific mechanisms
(Corsello et al., 2017). For example, if a compound is annotated to mechanism “A” and mechanism “B”, the binary matrix would
include positive labels for two different columns.

We used Cell Painting and L1000 profiles to predict the same MOA or GO term binary matrix. In all cases, we used level 4 replicate
profiles as input for model classification. For Cell Painting, we used feature-selected spherized profiles (level 4bs) and for L1000 we
used non-spherized profiles. We treated each input datasets in exactly the same fashion as we describe in the subsections below.

Supervised mechanism of action prediction: Training and test splits

In order to prevent signal leakage from the training set into the test set, we carefully split the compounds as input into the training and
test sets. Specifically, we first split compounds based on MOA count. This means, for example, that if an MOA was represented by
just one compound, we placed that compound in the training set. However, if an MOA had more than one compound, we split the
compounds for that individual MOA between training and test set based on the 80/20 train/test ratio. Because some compounds are
annotated to more than one MOA (hence “multi-label’”’), we needed to iterate, repeating the random spilits, until these conditions were
satisfied for all MOAs. Ultimately, this results in zero overlap of compounds in the training set compared to the test set. We used the
same exact training and test set compounds for each assay.

To ascertain and verify that the classification models are learning from the training set and that they could generalize well on test set
data, we created a shuffle data set using data in the training set. The shuffle data set consists of the same features and data as the
normal training set, but we randomly shuffled target labels. We provided incorrect MOAs for all replicate profiles, and retrained and
reevaluated all models on the same tasks.

Supervised mechanism of action prediction: Cross validation and model selection

To account for class imbalance in compound replicates in each multi-label MOA in the training set, we divided the compounds into
two major groups based on treatment replicate count: less frequent and highly frequent. The same compound may be annotated to
multiple MOAs, but we considered each MOA label independently when splitting data for cross validation.
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We then applied a 5-fold double-stratified cross-validation strategy to the training set. We split compounds across cross-validation
folds balanced by MOA (or GO term) and according to compound replicate count. Specifically, we assigned replicates of less
frequent compounds to the same fold, but we distributed replicates of highly frequent compounds evenly across folds. The threshold
for dividing the compounds into less frequent and highly frequent categories is 20 for L1000 and 25 for Cell Painting. This threshold
number means if the compound is found in less than 20 or 25 replicates in the training set it is considered less frequent, otherwise it is
considered highly frequent. In practice, most compounds in our training set belonged to the “less frequent” category. This proced-
ure, termed “drug stratification” in the MOA Kaggle competition (Kaggle.com et al., 2020), caused our training folds to be evenly
distributed by MOA category and to mostly contain unique compound perturbations, which encourages models that generalize to
never-before-seen compounds. We used our cross validation strategy to select optimal hyperparameters, but only evaluated models
using a held-out test set of unique compounds.

Supervised mechanism of action prediction: Model architecture

We chose models for the multi-label MOA predictions from the top-2 winners from the MOA Kaggle competition (Kaggle.com et al.,
2020). The models included 1D-Convolutional Neural Network (1D-CNN), TabNet (Attentive Interpretable Tabular Learning), Residual
Neural Network (ResNet) and Simple Neural Network (Simple-NN) (Arik and Pfister, 2019; Fukushima, 1980; He et al., 2016; LeCun
et al., 2015). We modified the winning architectures to handle different assay input dimensions.

Specifically, the 1D-CNN architecture consisted of four convolutional layers with kernel sizes of 3 and 5, stride of 1 and padding
sizes of 2 and 1. We added adaptive and max pooling layers, as well as batch normalization (loffe and Szegedy, 2015) and drop-out
layers within the convolutional architecture to encourage better model generalization. The TabNet architecture consisted of a width of
64 for the decision prediction layer, a width of 128 for the attention embedding for each mask, 1 step in the architecture and gamma
value of 1.3. The ResNet architecture consisted of six fully-connected layers with batch normalization and drop-out layers included
within the architecture. We used rectified linear units (RELU) and exponential linear units (ELU) as activation functions between layers
(Agarap, 2018; Clevert et al., 2015). The Simple-NN architecture consisted of three fully connected layers accompanied with batch
normalization layers, drop-out and linear activation function layers. The optimization phase for all the models was done using Adam
Optimizer with varying learning rates (Kingma and Ba, 2014). We independently optimized each architecture using data from each
assay using the cross validation strategy as described above.

We also used an ensemble of the above-mentioned models in the MOA predictions by combining individual model predictions
(weighted equally), then averaging the predictions to get an ensemble/blended version of all the models. We used multi-label k-near-
est neighbors (K-NN) as a baseline model to compare performance (Altman, 1992; Fix and Hodges, 1951).

For complete details of all architectures and implementation instructions, refer to https://github.com/broadinstitute/lincs-profiling-
complementarity (Way et al., 2021a).

Supervised mechanism of action prediction: Feature engineering and data normalization

Prior to model training, we added features to the training and test sets. These features included principal components, UMAP fea-
tures, factor analysis components, and statistical features such as sum, mean, kurtosis and standard deviation of all the features, for
all four input datasets. Specifically, we added 25 UMAP features and 50 factor analysis components from the existing data prior to the
Simple-NN, and we added 25 principal components to the 1D-Convolutional Neural Network, TabNet and ResNet models. Lastly, we
added statistical features to the TabNet model. We normalized all features using z-score normalization prior to model training.

Supervised mechanism of action prediction: Model evaluation
The output of all the models is a probabilistic value between 0 and 1 corresponding to the probability of the model predicting a given
MOA class label. We evaluated models calculating area under the Precision-Recall curve (AUPR). AUPR is a threshold-invariant
metric that takes into account recall and precision, of which precision is particularly important because it measures the fraction of
correct predictions among the positive predictions. AUPR accounts for imbalanced datasets, which is useful for evaluating classi-
fication tasks in highly imbalanced datasets (Saito and Rehmsmeier, 2015). We also calculated AUPR in randomly shuffled MOA
class labels. To create this randomly shuffled matrix, we kept the MOA label count the same per MOA. To prevent unbalanced eval-
uation metrics in the test set, we removed bortezomib (positive control) from all evaluations.

We used micro-averaging in our AUPR calculation for both “global” performance and per-MOA metrics. For the “global” AUPR
(total performance) we aggregate the contributions of all compounds to compute the average metric. For the per-MOA AUPR we
aggregate the contributions of all compounds annotated to the specific MOA.

Supervised gene ontology term prediction
For predicting GO terms, we repeated the same supervised learning procedures as described above for compound MOAs. A major
step that was different for the GO term analysis was the requirement to map compound target annotations to GO terms.

In addition to MOA annotations, The Drug Repurposing Hub also includes gene target annotations for most compounds. We map-
ped these gene target annotations to all GO Biological Process, GO Molecular Function, and GO Cellular Component terms (GO.db
version 3.14.0 (Carlson, 2017a)) using topGO version 2.46.0 (Alexa, 2017; Alexa et al., 2006) and org.Hs.eg.db version 3.14.0
(Carlson, 2017b). The same compound may be annotated to multiple gene targets, and we considered each gene target label inde-
pendently. For example, if a compound targeted HDAC1 and PIK3CA, we considered that compound to belong to all GO terms
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containing both genes. We only considered GO terms for downstream supervised learning predictions if the term had 20 or more
unique compound annotations. This procedure resulted in a total of 773 GO terms to predict.

QUANTIFICATION AND STATISTICAL ANALYSIS
We performed all statistical analysis using the packages outlined in the key resources table and can be reproduced in full using the

details outlined in the computational reproducibility and data availability sections. We chronologically discuss complete descriptions
of all statistical procedures in relevant results and/or methods sections.
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