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Reference compounds for characterizing
cellular injury in high-content cellular
morphology assays

Jayme L. Dahlin 1,2,13 , Bruce K. Hua 2,13, Beth E. Zucconi3,
Shawn D. Nelson Jr4, Shantanu Singh 5, Anne E. Carpenter 5,
Jonathan H. Shrimp 6, Evelyne Lima-Fernandes7, Mathias J. Wawer 2,
Lawrence P. W. Chung2, Ayushi Agrawal 2, Mary O’Reilly8,
Dalia Barsyte-Lovejoy 7, Magdalena Szewczyk7, Fengling Li7, Parnian Lak9,
Matthew Cuellar 10, Philip A. Cole 3, Jordan L. Meier 6, Tim Thomas 11,
Jonathan B. Baell 12, Peter J. Brown 7, Michael A. Walters 10,
Paul A. Clemons 2, Stuart L. Schreiber2 & Bridget K. Wagner 2

Robust, generalizable approaches to identify compounds efficiently with
undesirable mechanisms of action in complex cellular assays remain elusive.
Such a process would be useful for hit triage during high-throughput screening
and, ultimately, predictive toxicology during drug development. Here we
generate cell painting and cellular health profiles for 218 prototypical cytotoxic
and nuisance compounds in U-2OS cells in a concentration-response format. A
diversity of compounds that cause cellular damage produces bioactive cell
painting morphologies, including cytoskeletal poisons, genotoxins, non-
specific electrophiles, and redox-active compounds. Further, we show that
lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles
can be distinguished from more selective counterparts. We propose that the
purposeful inclusion of cytotoxic and nuisance reference compounds such as
those profiled in this resourcewill help with assay optimization and compound
prioritization in complex cellular assays like cell painting.

Cellular nuisance compounds are a significant burden in high-
throughput screening (HTS), high-content screening (HCS), and che-
mical biology. These compounds can appear to be bioactive yet act
through nonspecific and poorly optimizable mechanisms of action
(MoA) such as redox cycling, nonselective reactivity, and

cytotoxicity1,2. Compounds causing cellular damage by more specific
MoAs (e.g., tubulin and electron-transport chain poisons) can also be
undesirable in certain contexts. Thus, cell-active compound prior-
itization can be difficult due to the uncertainty regarding the
mechanism(s) producing phenotypic readouts3. Cell-free assays for
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compound-dependent interferences are helpful, but they may not
model the ideal conditions for compound-mediated interference, such
as xenobiotic metabolism or specific cellular microenvironments4,5.
Instead, investigating cell-active compound MoA usually requires
resource-intensive cellular assays that may also need extensive cus-
tomization. Therefore, simple tools and resources, applicable to many
areas of biology, which would help prioritize chemicals in cell-based
assays without requiring extensive counter-screening are needed.

We previously participated in the development of an unbiased,
multiplexed high-content cellular morphology assay (“Cell Painting”,
CP), which labels DNA, ER, nucleoli, cytoplasmic RNA, F-actin, Golgi
apparatus, plasma membrane, and mitochondria6–8. The CP assay has
been used for its strong information content while being higher in
throughput and lower in cost relative to other profiling techniques like
transcriptomics9. Mechanistic hypotheses can be inferred from CP
data when compounds share similar phenotypic profiles10–13. Many
groupshaveusedCP tobiologically annotate novel synthetic andother
chemical libraries14–18.

An acknowledged and challenging aspect ofHTS is thatmany cell-
active compounds that emerge as hits result from undesirableMoAs19.
Effective triage of such compounds typically involves an extensive
post-screening cascade of secondary and tertiary assays. Despite
widespread use of HCS, there are still many unanswered questions
about the best practices and limitations of these assays, including CP,
as it pertains to addressing undesirable as well as cytotoxic/cytostatic
chemicals. The US Environmental Protection Agency used image-
based profiles from the CP assay to characterize selected environ-
mental chemicals’ bioactivity and toxicity, compared to more expen-
sive chemical safety assessments18 and PROTACs have been tested for
mitotoxicity using cell painting20. Groups have developed customized
high-content assays to detect nephrotoxicity, pulmonotoxicity, anti-
biotic toxicity in mammalian cells, and other toxicities21–23. We pre-
viously developed two cell health assays using specific stains and
antibodies and found, using CRISPR reagents targeting various cancer-
related genes, thatmany of their outcomes can be predicted using the
information in CP images24. None of these assays have been tested in
the context of a broad set of cytotoxic and nuisance compounds.

We have therefore profiled a series of prototypical cytotoxic and
nuisance compounds by the established CP assay to systematically
characterize outcomes associated with compound-dependent cellular
injury. These results demonstrate the utility of this approach in dis-
tinguishing low- from high-quality compounds, and provide a blue-
print for routinely detecting nuisance compounds in triage activities
during HTS.

Results
Characterization of cellular injury using cell painting
The relationship between cellular injury and cell-painting (CP) phe-
notypes was first examined by analyzing a published dataset of CP
images. Retrospective analysis of public data from 30,616 compounds
profiled by CP at 10μM concentrations as part of the NIH Molecular
Libraries Initiative (MLI) showed that wells with low cell counts tend to
have strong phenotypes in the CP assay as measured by Mahalanobis
distances (Fig. 1a)25. Similar trends have also been described
previously17.

Given this relationship between cellular health and bioactive
morphology, we then independently performed CP on 218 cytotoxins
and prototypical nuisance compounds in quantitative HTS (qHTS, or
concentration-response) format with a typical concentration range of
0.6 to 20μM26. The extracted morphological features were subjected
to feature reduction, unsupervised hierarchical clustering, and prin-
cipal component analysis (PCA). Notably, cell features directly and
indirectly based on cell numbers were excluded from these analyses.
Compounds associated with several cellular injury mechanisms pro-
duced distinctmorphological clusters (e.g., tubulin poisons [cluster 8],

genotoxins [cluster 6]; Fig. 1b, c; Supplementary Fig. 1). Other classes
were less active, possibly because nonspecific activity may occur only
at concentrations higher than the 20μM maximum concentration
profiled here (i.e., tannins, saponins). The cluster with the most var-
iance and occupying the largest area in the PCA plot was associated
with a diversity of compounds causing gross cellular injury such as
nonspecific electrophiles (“NSEs”), proteasome inhibitors, and mis-
cellaneous cytotoxins (cluster 9, “gross injury”; Fig. 1b, c) that could
not otherwise be assigned to a specific cytotoxic MoA. Similar to the
MLI dataset, CP activity score and clustering were inversely correlated
with cell number in this panel of cytotoxic compounds (Fig. 1d), even
more so than in the diverse panels of small molecules previously
studied.

Analyses were performed to estimate the generalizability and
reproducibility of the cellular injury CP phenotypes. First, we analyzed
the existing MLI dataset for correlation to clusters 1–9 from our
independent profiling of cytotoxins and nuisance compounds, using
the shared extracted features between the two datasets (Fig. 1e). We
then prospectively re-tested 285 compounds from the MLI dataset
with either high (MLI-HC)or nocorrelation (MLI-NC) to the gross injury
phenotype (cluster 9; Supplementary Fig. 2)25. We found that, upon
retesting, 98/119 (82%) and 21/166 (13%) of MLI-HC and MLI-NC com-
pounds were called bioactive upon retesting based on Mahalanobis
distances (Fig. 1e). Second, the performance of select cellular injury
compounds and CP controls was assessed in independent experi-
ments. The CP phenotypes were robust across independent experi-
ments (mean correlation = 0.87 ±0.06; Supplementary Fig. 3). These
results indicate that CP phenotypes associated with cellular injury are
reproducible and can be analyzed using historical datasets. Further-
more, the data suggest that characterizing the phenotypic signatures
of nuisance and cellular injury compounds could be used to alert sci-
entists about potential compound liabilities of HCS-bioactive
compounds.

Closer inspection of individual compound profiles corroborated
these general observations regarding CP activity and cell injury. For
prototypical compounds, there was a general trend of increased CP
activity scores and lower relative cell counts with increasing com-
pound concentrations (Fig. 1f). The images themselves demonstrate
the wide variety of morphologies exhibited by cellular injury com-
pounds. For compounds such as staurosporine (7) and gliotoxin (117),
the higher CP activity scores at higher compound concentrations
coincidedwith changes in the assigned phenotypic cluster, with higher
activities tending to be assigned to cluster 9. These data demonstrate
that prototypical cytotoxic compounds produce significant and
diverse CP-defined phenotypes.

Electrophiles and cell-painting phenotypes
There is a growing interest in targeted electrophiles (TEs) in drug
discovery and chemical biology27. A common concern of electrophiles
is cellular toxicity. We therefore profiled a series of NSEs, inactive
analogs (NSE-IAs), and 13 high-quality TEs targeting a variety of pro-
teins (e.g., BTK, EGFR, FGFR, KRAS G12C)27. The goal of this profiling
was to determine if there are differences in CP phenotypes between
specific/optimized versus nonspecific electrophiles that could be dis-
tinguished with the aid of profiling cellular injury reference
compounds.

Amongst this electrophile-focused subset, CP activity was also
inversely correlated with cell number after compound treatment
(Fig. 2a). Less/nonreactive analogs (NSE-IA) were generally inactive in
CP and did not affect cell number. By contrast, NSEs and some TEs
tended to decrease relative cell number and produce significant CP
activity scores when tested at higher compound concentrations. PCA
revealed that most of the NSEs and some TEs occupied the gross cell
injury feature spaces, but only at compound concentrations ≥10μM,
whereas most NSE-IAs were inactive (Fig. 2a). Notably, some of the TE
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targets are absent (KRAS G12C) or not highly expressed (BTK) in the
profiled U-2 OS cells. Many NSEs (13/18, 72%), a subset of TEs (3/13,
23%), and only oneNSE-IA (1/14, 7%) occupied the gross injury cluster 9
at 20μM compound concentrations (Fig. 2a). Examination of the CP
feature signatures showed gross similarities between NSEs and the
cluster 9 (cell injury) signature, especially at higher compound con-
centrations (Fig. 2b).

Inspection of individual electrophile profiles demonstrated
corroboration with these overall trends, where electrophile cluster-
ing tended to migrate towards the gross injury cluster 9 at higher
compound concentrations (Fig. 2c). Most TEs did not produce the
gross injury phenotype until concentrations in great excess of their
expected EC50 values. As with other cellular injury compounds, there
was a general trend of increased CP activity scores and lower relative
cell counts with increasing compound concentrations. These data

show that both NSEs and TEs can produce CP phenotypes associated
with cellular injury, and that cellular injury phenotypes may help to
identify highly reactive compounds, including TEs with off-target
toxicities.

Quality of KAT inhibitors are distinguishable by cell painting
In chemical biology, it is important to distinguish low- and high-quality
chemical probes as early as possible to avoid wasting scientific
resources and making erroneous conclusions. The utility of certain
compound classes, including lysine acetyltransferase (KAT) inhibitors,
has recently been questioned28–31. KATs are crucial components of
eukaryotic DNA repair and nucleosome assembly, and aberrancies in
histone acetylation and KAT function have been implicated in human
pathologies including many cancers32,33. Numerous small-molecule
KAT inhibitors have been reported34, but many of these “historical”

Fig. 1 | Characterization of cell injury compounds using cell painting. Com-
pounds associatedwith cell injurywere eachprofiledby cell painting (CP) after 24h
of compound exposure in U-2 OS cells. a Active CP compounds (by Mahalanobis
distance) are enriched for decreased cell number in the Molecular Libraries
Initiative (MLI) dataset25. Red highlight: compounds with the highest CP activity
generally have the lowest relative cell numbers. b Cell injury compounds cause
distinct CP phenotypes. Left: PCA plots showing unsupervised hierarchical clus-
tering of CP phenotypes into nine clusters (some annotated when grossly asso-
ciated with a compound category). Compounds causing gross cellular injury that
couldnot be grouped into amoredistinctMoAoccupiedwith the largest area in the
PCA plot. Right: reduced feature summaries for each cluster (all compound con-
centrations); rad dist, radial distribution. c “Dot plot” summary of cell injury
compound categories by each CP cluster. The dot locations denote cluster identity,
the dot sizes denote abundance within each compound subset, and the colors
denote average activity score for all compounds in the subset. d The CP clusters of
cell injury compounds correlate with cell number. Cluster 9, which is most

associated with gross cell injury, has the highest activity score and lowest relative
cell number. The cut-off is 3 SD from themean of DMSO-treated wells using the CP
activity (Mahalanobis distances). e Compounds from the MLI dataset with high
correlation (MLI-HC) to gross injury signature (cluster 9) are active upon re-testing
(red), whereas compoundswith no correlation to cluster 9were not active upon re-
testing (blue). Inset: heatmap and dendrogram shows pairwise correlation coeffi-
cients between each MLI CP compound profile and each of the nine clusters (red
arrowhead, enrichment of cluster 9). f Select CP profiles of cellular injury com-
pounds, demonstrating several different CP phenotypes of cell injury compounds.
Rainbow plots denote assigned cluster at each compound concentration; arrow
indicates compound concentration of representative image. For rainbow plots,
note that phenotypic trajectories do not have to progress through each cluster
before reaching the cluster 9 “gross injury” phenotype (dotted lines). Image scales:
50μm.Data aremean ± SDof four intra-run technical replicates each performed on
separate microplates. Source data are provided as a Source Data file.
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KAT inhibitors (hKATIs) are enriched for nonspecific electrophilicity,
aggregation, suboptimal potency and selectivity, and cytotoxicity31.
However, highly potent and specific “next-generation” KAT inhibitors
(ngKATIs) have nowbeen reported, including theKAT3 inhibitor A-485
(468) and its negative control analog A-486 (469), and the KAT6
inhibitors WM-8014 (470) and WM-1119 (471), and their negative
control analog WM-2474 (472)35–37. Given our previous experiences
characterizing hKATIs for assay interference and their association with
nonspecific activity, we sought to determine if differences in probe
quality could be distinguished by profiling the ngKATIs 468–472 and
hKATIs 473–501 using CP and cellular injury reference compounds.

We first profiled the ngKATIs 468–472 for the cell-free liabilities
characteristic ofmany hKATIs to determinewhether ngKATIsmight be
analyzed distinctly from hKATIs. In contrast to hKATIs, 468–472
showed acceptable profiles for potency, selectivity, reproducibility,
colloidal aggregation, redox cycling, nonspecific thiol reactivity, che-
mical instability, light absorption, fluorescence, and quenching (Sup-
plementary Figs. 4, 5; Supplementary Notes). Furthermore, 468–472
were nontoxic and decreased cellular H3K27ac levels as expected in
MCF7 and HEK293T cells (Supplementary Fig. 4). By contrast, the
interference compounds rottlerin (478) and plumbagin (486) also
decreased cellular H3K27ac levels, but in addition reduced total cel-
lular KAT3B (p300) levels. These data confirm the reported on-target
activities of 468–472 and indicate that they are unlikely to exhibit

common assay interference modes. The clean interference profiles of
468–472 support grouping ngKATIs as distinct from hKATIs.

The two KAT inhibitor categories produced distinct CP
morphologies. Whereas the ngKATIs 468–472 were CP-inactive and
had no effect on cell number, many hKATIs were active and strongly
reduced cell numbers in CP (Fig. 3a). More specifically, most hKATIs
resulted in significantly increased activity (19/26, 73%) and decreased
cell numbers (14/26, 54%) at 20μM. The ngKATIs occupied different
PCA feature-space frommost hKATIs, with the latter occupying cluster
9 (cell injury) when tested at higher concentrations that coincide with
their reported cellular KAT inhibition activities (Fig. 3a). The summary
morphological fingerprints were essentially null for ngKATIs while the
hKATIsmirrored cluster 9 (Fig. 3b).ManyhKATIs (6/26, 23%) produced
the gross injury phenotype (cluster 9) at 20μM, and even more so at
80μM (10/17, 59%); a notable subset of hKATIs (9/26, 35%) produced
the genotoxic phenotype (cluster 6) at 20μM.

Inspection of individual KAT inhibitor profiles agreed with these
overall observations, with the NSEs L002 (481) and NU-9056 (490)
producing gross injury phenotypes at concentrations similar to other
NSEs (Fig. 3c). The prototypical aggregators anacardic acid (487) and
MG149 (493) showed abrupt and concomitant increases in CP activity
and decreased cell numbers near their approximate critical aggrega-
tion concentrations (CACs). Again, there was a general trend of
increased CP activity scores and lower relative cell counts with

Fig. 2 | Nonspecific electrophiles and select targeted electrophiles produce
cellular injury phenotypes in cell painting. A selection of electrophilic com-
poundswere eachprofiled by cell painting (CP) after 24hof compound exposure in
U-2 OS cells. a Nonspecific electrophiles (NSEs) and some targeted electrophiles
(TEs) perturb cell number, are scored as bioactive in CP, and occupy gross injury
feature-spaces. The cut-off is 3 SD from the mean of DMSO-treated wells using the
CP activity (Mahalanobis distances).b Reduced CP feature summaries for NSEs and
TEs. NSE, but not inactive analogs, cause CP phenotypes similar to the gross cell
injury phenotype, especially at higher compound concentrations. Targeted

electrophiles do not cause as pronounced CP phenotypes as NSEs. c Select CP
profiles of NSEs and TEs. The NSE 144, but not the inactive analog 149, causes a cell
injury CP phenotype at the higher concentrations tested. Several targeted elec-
trophiles do not lead to the same gross cellular injury CP phenotype. Note the
tested electrophiles demonstrate gross cell injury at micromolar, but not nano-
molar, compound concentrations. Image scales: 50μm. Data are mean ± SD of four
intra-run technical replicates each performedon separatemicroplates. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36829-x

Nature Communications |         (2023) 14:1364 4



increasing compound concentrations. Notably, many hKATIs were
profiled at higher compound concentrations based on their reported
cellular potencies.

Interestingly, histone acetylation status and CP morphologies
were not correlated based on profiling cellular acetylated histones and
KAT3B levels under conditions mimicking the CP assay (Supplemen-
tary Fig. 6). These observations are consistent with previous reports
that in certain prostate and hematologic cancer cell lines, cellular
histone acetylation levels do not necessarily correlate with anti-
proliferative effects35. These data illustrate the subtle but important
point that quality, on-target probes do not necessarily produce
detectable CP phenotypes, whereas nonspecific compounds can gen-
erate significant CP phenotypes. Robust phenotypes for processes like
chromatin remodelingmay require longer compound treatment times
not amenable to standard CP conditions. Overall, the CP and inter-
ference profiling data support the use of ngKATIs 468–472 as quality
epigenetic probes. Other recently reported ngKATIs likely behave
similarly. For example, the KAT7 inhibitor WM-3835 contains the same
acylsulfonohydrazide scaffold as 470–47238. Neither WM-3835 or CPI-
1612 (a KAT3 inhibitor) contain red-flag interference chemotypes
found in many hKATis (e.g., quinones, polyphenols)31,39.

Cellular health and cell-painting compound profiles
We next sought to characterize the connection between CP-detected
cellular injury-based phenotypes and more specific cellular health
readouts by multiplexed live-cell imaging under CP-like conditions.

The CP activities and relative cell numbers of 254 profiled compounds
(218 cellular injury compounds plus KATIs and electrophiles, based on
sample availability and assay throughput) were correlatedwith culture
confluence (phase contrast), caspase-3/7 activation (GFP channel,
fluorogenic caspase 3/7 substrate), and cell viability (RFP channel,
CytoTox dye, whichmarks compromisedmembrane integrity) by live-
cell imaging (Fig. 4a). Compounds with the most pronounced changes
in cell confluence, caspase 3/7 activation, and compromised mem-
brane integrities were found in PCA clusters 7–9 (Fig. 4a, b). Similar
patterns occurred when analyzed by compound category, with hKA-
TIs, MLI-HC, and NSEs exhibiting cellular damage profiles in live-cell
imaging, whereas their respective ngKATI, MLI-NC, and NSE-IA coun-
terparts were largely inert (Fig. 4b). Individual compound profiles
agreed with these overall observations, where adverse changes in
cellular health biomarkers generally increased in magnitude and
decreased in time-to-onset with higher compound concentrations
(Fig. 4c). These data confirm the cell injury properties of the initial
compound profiling collection, and underscore a clear association
between strong CP activity scores (phenotypes) and cellular injury.

Live-cell imaging does not include washing steps prior to image
acquisition and can potentially enrich for compounds acting by
technology-related interferences like compound auto-fluorescence.
Indeed, reagent-free counter-screens identified several auto-
fluorescent compounds that were excluded from analyses (Supple-
mentary Fig. 7). These observations reinforce the need to carefully
inspect live-cell imaging images and time-course data for compound

Fig. 3 | Historical but not next-generation KAT inhibitors produce gross injury
phenotypes in cell painting. A collection of KATIs were each profiled by cell
painting (CP) after 24 h of compound exposure in U-2 OS cells. Compared to
ngKATIs, many hKATIs are associated with assay interferences, suboptimal speci-
ficity, and cytotoxicity. aMost hKATIs but not ngKATIs perturb cell number and are
scored as bioactive inCP and occupy different feature-spaces by PCA. The cut-off is
3 SD from the mean of DMSO-treated wells using the CP activity (Mahalanobis
distances). b Reduced CP feature summaries for hKATIs and ngKATIs. Several
hKATIs can produce CP phenotypes similar to the gross cell injury phenotype

(cluster 9), especially at higher compound concentrations. The ngKATIs do not
cause as pronounced CP phenotypes as hKATIs. c Select CP profiles of KAT inhi-
bitors. The ngKATIs 468–472 do not cause the gross cellular injury CP phenotype,
whereas many hKATIs produce the cell injury CP phenotype at higher compound
concentrations. Note the pronounced inverse relationship between relative cell
number and CP activity. Image scales: 50μm. Data are mean± SD of four intra-run
technical replicates each performed on separate microplates. h/ngKATI; historical/
next-generation lysine acetyltransferase inhibitor; PC, principal component.
Source data are provided as a Source Data file.
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interferences, and perform appropriate control experiments. This is
important in live-cell imaging when testing a large number of com-
pounds or nonoptimized compound collections that may be enriched
for properties linked to assay interferences (poorly soluble or highly
aromatic compounds).

Given the importance of electrophilic and oxidative stress on
cellular health, we profiled 99 select compounds at several con-
centrations to characterize the relationships between intracellular
glutathione levels under CP-like conditions. The ngKATIs did
not grossly perturb glutathione homeostasis, whereas many hKATIs
(10/26, 38%), TEs (10/13, 77%), NSEs (12/15, 80%), and cellular
injury compounds (14/26, 54%) lowered the GSH:GSSG ratio at 20μM
where most of these compounds were also active in CP (Fig. 4d).
Together, these data further demonstrate that CP activity is sus-
ceptible to various mechanisms of compound-mediated cellular
injury and can be used to refine our understanding of undesirable
compounds.

Time-dependence of cellular injury morphologies
Whilemost analyses focused on 24-h treatment times, we also profiled
a subset of compounds after 48-h incubation todetermine the effectof
compound treatment times on CP readouts. There was strong corre-
lation between replicate compound treatments at eachof 24- and48-h,
and high correlation between the pair-wise 24- and 48-h compound
treatments (Fig. 5a). There was also a strong correlation between
compound treatments with strong CP signals (i.e., CP activity/Maha-
lanobis distance >10), which could be attributed to the higher signal-
to-noise of their CP profiles (Fig. 5b). The individual CP clusters
deriving from 24- and 48-h compound treatments were also correlated
(Fig. 5c). Comparing the unsupervised clustering of compounds at 24
and 48h evinced general agreement (entanglement = 0.76; Fig. 5d).
Furthermore, cellular health biomarkers from the live-cell imaging
experiments were grossly correlated at 24- and 48-h treatment times
(Fig. 5e). Inspection of individual compound profiles supported these
trends, with most compounds exhibiting similar cell numbers and

Fig. 4 | Cellular healthandcell-paintingphenotypes are correlated.Compounds
tested in cell painting (CP) were profiled for cellular health biomarkers under CP-
like conditions to better understand the relationship between CP phenotypes and
cellular health. a CP activities and relative cell numbers correlate with cellular
confluence, caspase 3/7 activation, cell viability, and overlap (cells with caspase 3/7
activation and loss of membrane integrity) after 24-h compound treatment as
measured by live-cell imaging. AUCs were calculated from the live-cell imaging
assay concentration-response curves for each compound. b Breakdown of live-cell
imaging cellular health profiles (AUC) by CP phenotypic clusters and cell injury
compound groups. The CP phenotypic clusters associated with prototypical cell
injury compounds have decreased cellular confluence and increased caspase 3/7
activation and loss of membrane integrity. The cellular health biomarkers vary
depending on compound group. Object count indicates the number of cells
(“objects”) above the signal threshold for each biomarker. The top/bottom of the

boxes refer to the first/third quartiles; thewhiskers refer to either themost extreme
value or 1.5× inter-quartile range from the first/third quartiles, whichever has a
smaller absolute value. c Select live-cell imaging profiles for cellular health. Cell
injury compounds predictably decrease confluence, and can lead to increases in
caspase 3/7 activation and membrane disruption within 24h of compound treat-
ment. Data aremean ± SDof three intra-run technical replicates each performedon
separate microplates. d Cell injury compounds, most notably electrophiles,
decrease the intracellular glutathione (GSH):oxidized glutathione (GSSG) ratio.
Black, not tested; yellow, outlier (GSSG > 200%) or not calculated (GSH:GSSG, cal-
culated GSH<0%). Data are mean (±SD) of five intra-run technical replicates each
performed on separate microplates. h/ngKATI; historical/next-generation lysine
acetyltransferase inhibitor; NSE-(IA), nonspecific electrophiles (inactive analog);
TE, targeted electrophile. Source data are provided as a Source Data file.
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bioactivities at 24- and 48-h treatment times (Fig. 5f). These data
suggest that many grossly cytotoxic compounds can produce detect-
able CPmorphological changes by 24 h of treatment, and that in many
cases 24 h is a sufficient compound incubation time to detect gross
cellular injury in the standard CP protocol with U-2 OS cells.

Proposed cellular nuisance control compounds
While it may be tempting to discard compounds that result in low cell
numbers, onemay unnecessarily eliminate potentially useful bioactive
compounds from consideration (e.g., novel and potent anti-neoplas-
tics). In cellular assays, the causative factors for phenotypes are not
known a priori and require follow-up experiments3,40. Focused che-
mical libraries composed of bioactive reference compounds can be
highly useful for characterizing cellular readouts41. Interference char-
acterization is standard in clinical assay validation, and some industrial
screening centers even utilize “informer sets” composed of nuisance
and cytotoxic chemicals42,43.

Based on our data and cumulative experience with HTS, we
propose an informer set of control compounds to model cell injury
phenotypes in HCS and other phenotypic assays including
mechanism-based and nonspecific modes of gross cellular injury
(Fig. 6; Supplementary Data 1, column “Proposed informer set”). This
set would ideally include multiple concentrations of each compound
(i.e., nM to μM), focused active and inactive chemical analogs (if
available), and multiple chemotypes for each cell injury cluster
(especially for cluster 9). Such focused redundancy can mitigate
compound-specific effects and assess experimental imprecision44,45.
Such a proposed set could be adapted to a single 384-well microplate
in qHTS format and should only represent an incremental cost in the
context of larger-scale campaigns, especially if repeatedly used. This
set would ideally be used in parallel with an informer set composed
of FDA-approved drugs and high-quality chemical probes to assess
for overlapping phenotypes41.

Discussion
Hereweprovide a set of nuisance and cytotoxic compounds of various
mechanisms, a dataset documenting theirmorphological impacts, and
a strategy for using them as landmarks alongside novel compounds of
interest, or even for assessing an entire compound library. There is a
growing interest in phenotypic assays for drug discovery and chemical
biology due to their purported potential for improved in vivo and
clinical translation40,46. Phenotypic and high-content assays such as CP
are attractive, target-agnostic approaches for biological annotation of
compounds. However, active compounds in cellular assays can act by
on- or off-target effects, meaning that without detailed follow-up
experiments, readouts are essentially “black boxes”47. As a result, a
significant obstacle in cellular assays are bioactive compounds that act
via undesirable MoAs like cellular injury. Since complex phenotypes
are difficult to predict a priori, one practical solution is to include
known reference compounds.

To test this solution, we profiled 218 prototypical cytotoxic and
nuisance compounds in qHTS format, using CP and companion cel-
lular health assays, to characterize the relationships more system-
atically between morphology and cellular injury. Targeted and
nonspecific electrophiles, along with historical and next-generation
KAT inhibitors, served as important case studies. Several important
trends emerged: (1) there is a clear relationship betweenmany types of
cellular injury and CP activity, (2) nonspecific and suboptimal probes
such as hKATIs can produce profound CP phenotypes, (3) compound-
mediated cellular damage (e.g., tubulin poisons, genotoxins) can
produce robust CP phenotypes, and (4) compound concentration is a
key modifier of cellular injury phenotypes such as NSEs, aggregators,
and surfactants. The diversity of compounds in cluster 9 (often at high
concentrations) may be partially explained by the proposed “cyto-
toxicity burst” phenomenon whereby compounds are thought to
activate multiple stress responses rather than a singular molecular
target48,49. The clear association between CP activity and cellular

Fig. 5 | Additional analysis of cell injury compounds in cell painting. Cellular
injury compoundswere tested at 24- and48-h todetermine the effect of compound
treatment times on cell-painting (CP) readouts. a CP phenotypes after 24- and 48-h
compound treatments are correlated. b Replicates of active CP compounds are
correlated at 24- and 48-h compound treatment times. The replicate correlation is
defined by the average correlation between each replicate pair (6 comparisons
total). There are generally strong correlations between compound treatments with
strong signals (red). c CP clusters from 24- and 48-h compound treatments are
correlated. The horizontal- and vertical-axis correspond to the correlation of the 9
clusters to the 24- and 48-h treatment profiles, respectively. d CP profiles from 24-

and 48-h compound treatments are correlated. Tanglegram shows connections
between compound treatments from 24- and 48-h treatment dendrograms.
eCellular health biomarkers (AUC) are grossly correlated at 24- and 48-h treatment
times. Compounds that decrease confluence, active caspase 3/7, and decrease
membrane integrity at 24h generally produce similar changes at 48h. N.B., while
many points lie along the parity line, some have larger values at 48h. f Select CP
profiles comparing 24- and 48-h compound treatments. Note the trends of relative
cell number and CP activity scores are similar at both time points. Data are
mean ± SD of four intra-run technical replicates each performed on separate
microplates. Source data are provided as a Source Data file.
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damage suggests active compounds should be subjected to cellular
health profiling.

An important observation from testing the historical and next-
generation KAT inhibitors is that some high-quality bioactive com-
pounds do not lead to active CP profiles at concentrations at which
they modulate their target. This suggests there are limits to the
mechanistic space that can be captured by CP. In some cases,
bioactive compounds may simply not produce detectible morpho-
logical changes in cells, whether at all or within the usual 24- to 48-h
compound treatment windows of the conventional CP assay.
Therefore, it should not be assumed that a bioactive compound will
produce a CP phenotype. More sophisticated image analyses and/or
alternative experimental protocols may improve the number and
type of phenotypes that can be reliably detected with CP and similar
morphological assays. The large number of phenotypes caused by
cellular injury compounds (cluster 9) suggests a significant portion
of CPmorphologiesmay be affected by compound-mediated cellular
injury. For any givenmorphological assay, this could be estimated by
testing a diverse selection of bioactive probes and cellular injury
control compounds.

Future efforts could focus on the association between specific
chemotypes and CP profiles, as well as phenotypic profiles in general.
In this work, potent electrophiles (quinones, benzothiophene 1,1-
dioxides, unstable succinimides,maleimides, etc.) produced strongCP
profiles associated with cellular injury, whereas relatively weaker
electrophiles (acrylamides) occasionally produced similar profiles at
higher micromolar concentrations. Given our previous experiences
determining structure-interference relationships with problematic
chemotypes in biochemical assays2, the generalization of chemotypes
with specific CP profiles would benefit from testing a variety of analogs
with and without the suspected problematic structural feature.

This resourceexpands uponexisting open-sourceCPdatasets due
to its concentration-response format, time-coursedata, accompanying
cellular health profiling data, and the intentional profiling of proto-
typical cellular injury compounds. The large volumes of data gener-
ated by high-content assays is a practical barrier that hinders
reproducibility and scientific exchange in the field50. To address this
barrier, the entire 11 TB of raw images from this study (including all
solvent controls), representing 1.04 million images in total, and the

associated metadata are available via the open-source Image Data
Resource [https://idr.openmicroscopy.org]51. This resource should
enhance compound prioritization in complex cellular assays. Potential
uses for this dataset include HCS and image-processing method
development, MoA studies, informer set design, and compound
triage52,53. These data can be re-analyzed by alternative methods such
as focusing on individual features or more complex analyses such as
the point-of-departure metric18,54.

Compound-induced phenotypes may be cell line-dependent
phenotypes, and may also depend on other experimental factors
including treatment time, compound concentration, and culture
media composition55,56. Although we only profiled one cell line, this
approach is likely generalizable to other biological systems and pro-
filing assays. Supporting evidence includes: (1) the similar behaviors of
hKATIs and prototypical interference compounds in MCF7, HEK293,
and U-2 OS cells; (2) the profiled compounds were chosen based on
activities unrelated to U-2 OS cells; and (3) the biological targets of
these cellular injury compounds tend to be common amongst human
cell lines. Our findings are complementary to but consistent with
previous reports, including the robust phenotypes of cytoskeletal
poisons, genotoxins, and other classes of cellular injury
compounds13,45,55–58. Furthermore, reference compounds can show
similar phenotypes across different cell lines in HCS assays13,18,59,60.
Notably, our findings alsomirror a profiling effort that combined gene
expression and cell death profiles, which found compound clusters
consisting ofmicrotubulemodulators, electrophiles, and genotoxins61.

Lastly, we propose a framework (Supplementary Data 1, column
“Proposed informer set”) for constructing cellular injury informer sets
applicable beyond CP, from alternative high-content morphology
assays to orthogonal cellular assay technologies like gene-expression
profiling andmetabolomics. This proposed set should serve as a useful
starting point for practitioners, and could be subject to future
improvements as additional evidence is generated by the scientific
community. While practitioners could build their own custom sets,
using a common set (or even subset) of reference cellular injury
compounds may benefit the scientific community as a whole and
enable data harmonization. It is likely thatmodifications to the setmay
be needed for specific assays andmodel systems, such as the addition
of compounds with other cytotoxic MoAs, or the removal of

Fig. 6 | Proposed nuisance compound informer set for use in HCS assays. Left:
an informer set can be assembled using representative compounds from key cel-
lular injury and nuisance mechanisms of action (MoAs). Based on profiling
experiments, cellular injury compounds shouldbe tested at several concentrations.
The large number of cell-painting (CP) phenotypes associatedwith gross cell injury
(cluster 9, note relative area compared to other clusters) suggests users should
include a set of compounds that represent multiple undesirable MoAs, along with
several compounds per undesirable MoA. Right: When an informer set is used

during the assay optimization phase, more optimal experimental conditions can be
selected to reduce the incidence of unwanted MoAs such as nonspecific electro-
philes. When an informer set is used compound prioritization phase (“hit picking”,
“HTS triage”), compounds sharing phenotypes with unwanted MoAs can be
prioritized according to the desired compound characteristics. See also Supple-
mentaryData 1 for a proposed informer set forCP andpotentially other cellular and
high-content assays. HCS, high-content screen; HDAC, histone deacetylase.
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redundant compounds if throughput or cost is a concern. This set
could have several applications in cellular assays. During the assay
development and optimization phase, such a set could guide the
choice of experimental conditions to minimize the selection of
unwanted MoAs such as NSEs. During the screening phase, such a set
could guide compound triage and follow-up experiments, especially if
new compounds share phenotypes with unwanted MoAs. Used in
parallel with screening, such a set could facilitate real-time compound
evaluation of high-risk compounds, and potentially reduce the
necessity of certain follow-up counter-screens.

In terms of practical use, compounds that produce similar phe-
notypes as cellular injury compounds can be prioritized (i.e., if assay-
ing for novel or mechanism-based cytotoxins) or triaged (i.e., de-
prioritizing tubulin or mitochondrial poisons). In one study, com-
pounds profiled with the L1000 transcriptome profiling assay and CP,
cytotoxic compounds produced robust signatures in both
techniques45. This further suggests that the proposed approach can be
applied to other assays and cell types. Nuisance and cellular injury
compoundswill likely show someassay-dependent effects, as nuisance
compound behavior can vary between targets and technologies even
with comparatively simpler biochemical assays. This further supports
the value of repeatedly using an informer set. Given the complexities
of cellular nuisance compounds and their context dependence, it is
difficult at this point to quantify the sensitivity and accuracy of such an
informer set in predicting whether an active compound is acting by a
nuisance mechanism. The use of such a standardized set by the che-
mical biology and drug discovery communities should help to address
this important question.

Future iterations focused on cellular injury could include MoAs
not profiled, such as chelation, metal poisoning, membrane bilayer
disruptors, and lysosomotropic agents. Future work could also char-
acterize the effects of compound technology-related interferences
(“artifacts”) such as auto-fluorescent or quenching compounds62,63. We
envision that collaboration between academic, industry, and govern-
ment groups performing phenotypic screening can enhance our pro-
posed informer set by nominating additional compounds and
performing additional validation in orthogonal phenotyping assays
and biological systems64.

Methods
Compounds and reagents
Sources of KAT inhibitors are listed (Supplementary Table 1). Addi-
tional compounds were obtained from commercial vendors and the
Broad Institute chemical screening library. Test compounds were
typically prepared as 10mMstock solutions dissolved in neat dimethyl
sulfoxide (DMSO) and stored under vacuum seals in either −20 °C or a
light-shielded desiccation chamber at RT. All were subjected to inter-
nal quality control65; most demonstrated >90% purity and detection of
an expected parent ion by ultra performance liquid chromatography—
tandem mass spectrometer (UPLC-MS) (Supplementary Data 1).

Cell lines
HEK293T cells were gifted from Dr. Sam Benchimol (York University;
ATCC, cat # CRL-3216); MCF7 and U-2 OS cells were obtained directly
from ATCC (cat # HTB-22 and HTB-96, respectively). HEK293T and
MCF7 cells were used to remain consistent with our previous report31.
U-2 OS cells were used for CP because they form monolayers highly
amenable to single-plane high-content imaging and have been pro-
filed extensively at several institutions7,14. U-2 OS cells do not contain
significant genetic perturbations in KAT3 (Supplementary Notes).
Cell-line identities were confirmed by short tandem repeat profiling
(ATCC Cell Line Authentication Service or provided by vendor) upon
receipt, and Mycoplasma contamination was assessed monthly with
the MycoAlert PLUS Mycoplasma Detection Kit (Lonza, cat #
LT07-701).

Cell painting
Cell painting (CP) was adapted from previous reports6,7. New U-2 OS
cells were purchased directly from ATCC for each CP experiment and
usedwithin thefirst tenpassagenumbers.U-2OS cells were cultured in
DMEM (high glucose, GlutaMAX, HEPES; Thermo Fisher, cat #
10564011) supplemented with 10% fetal bovine serum (FBS, v/v; Gibco,
cat # 26140079), penicillin (100UmL−1), and streptomycin (100 µgmL
−1), and maintained in a 37 °C, 5% CO2 humidified incubator. Cells were
dispensed by Thermo Multidrop into 384-well clear-bottom imaging
plates (CellCarrier-384 Ultra; PerkinElmer, cat # 6057300). Each well
contained approximately 750 (48 h treatment) or 1,500 (24 h treat-
ment) cells in 50μL complete media. Cell counts were determined by
Countess II automated cell counter (Thermo Fisher) using 0.4% trypan
blue solution (Thermo Fisher, cat # T10282). Seededmicroplates were
incubated for 24h at 37 °C, then treated with compounds or vehicle
controls dispensed by pin tool transfer via CyBi-Well robot. Com-
pounds were typically tested at six concentrations with 2-fold serial
dilutions, ranging from 20μM to 625 nM final compound concentra-
tions. Each plate contained four positive control compounds (1–4;
colchicine, nocodazole, radicicol, wortmannin) at six concentrations
each and 116 vehicle control wells (Supplementary Notes). Following
the addition of compounds, cells were incubated at 37 °C for either
24 or 48 h.

A 1mM DMSO solution of MitoTracker Deep Red FM (Invitrogen,
cat # M22426) was added to pre-warmed complete media to make
staining solution 1 (SS1) with final concentrations 500 nMMitoTracker.
A 1mgmL−1 solution in 0.1M aqueous sodium bicarbonate of con-
canavalinA-Alexa Fluor 488 conjugate (Invitrogen, cat # C11252), a 200
U mL−1 methanol solution of phalloidin-Alexa Fluor 568 conjugate
(Invitrogen, cat # A12380), a 1mgmL−1 dH2O solution of wheat germ
agglutinin (WGA)-Alexa Fluor 555 conjugate (Invitrogen, cat #
W32464), a 16.2mM aqueous solution of Hoechst 33342 (Invitrogen,
cat # H3570), and a 5mMDMSO solution of SYTO 14 green fluorescent
nucleic acid stain (Invitrogen, cat # S7576) were combined in 1X HBSS
(prepared from 10X solution, Thermo Fisher, cat # 14065-056; filtered)
supplemented with 1% bovine serum albumin (BSA; m/v) to make
staining solution 2 (SS2) with final concentrations 100μgmL−1 con-
canavalin A, 0.5 UmL−1 phalloidin, 60μgmL−1 WGA, 8.1μM Hoechst,
and 3μM SYTO 14.

Compound-treated cells were prepared for fixation and staining
by first removing 40μL of media from each microplate well using a
BioTek ELK405 automated plate washer. To each well, 30μL of SS1
were dispensed by Multidrop, followed by incubation for 30min at
37 °C. Cells were then fixed by dispensing 10μL per well of 16% aqu-
eous paraformaldehyde via Multidrop, followed by incubation for
20min at RT. Next, wells were washed with 70μL 1X HBSS. Cells were
then permeabilized by adding 30μL per well of 0.1% Triton X-100 (v/v)
in 1X HBSS and incubated for 15min at RT. Wells were then washed
with 70μL 1x HBSS. Permeabilized cells were then stained by dispen-
sing 30μL SS2 per well via Multidrop followed by incubation at RT for
30min. Wells were washed with 70μL 1x HBSS without a final aspira-
tion, then the plates were manually sealed with adhesive foil for sub-
sequent imaging.

Cells were imaged using anOpera Phenix High-Content Screening
System (PerkinElmer) equipped with Harmony software (version 4.9)
in wide-field mode with a water-immersion 20x objective and five
excitation/emission laser wavelengths: 405/435-480 (Hoechst), 488/
500-550 (concanavalin A), 488/570-630 (SYTO 14), 561/570-630
(phalloidin and WGA), and 640/650-760 (Mito-Tracker) nm. Photo-
bleaching of low-intensity dyes was mitigated by imaging in the fol-
lowing channel order: MitoTracker, WGA, phalloidin, SYTO 14,
concanavalin A, and Hoechst 33342. Nine sites were imaged per well in
a 3 × 3 array with laser-based autofocus on the first site per well.
Concentration-response data are mean ± SD from four intra-run tech-
nical replicates each performed on separate microplates.
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Cell-painting analyses
Morphological featureswere extracted from the rawCP images using a
freely available CellProfiler software pipeline provided by the Broad
Institute Imaging Platform7,66. Images were corrected for uneven illu-
mination, then CellProfiler (version 2.1.1) was used to locate and seg-
ment cells into nuclei and cytoplasm, after which the size, shape,
texture, intensity, local density, and radial distributions were mea-
sured for nuclei, cytoplasm, and entire cells. To obtainprofiles for each
compound, the morphological features of compound-treated cells
were calculated for each well field, then averaged per well, and then
normalized by calculating robust z-score-like values based on the
population of individual DMSO-treated cells found on the same plate.

To determine the compound activities (“activity scores”), Maha-
lanobis distances of each compound profile were calculated from
vehicle-treated well profiles67. The profiles for all replicates of a com-
pound were first combined with the corresponding DMSO-control
wells into a matrix of dimensions m xn, where the rows m represent
the individual wells and the columns n represent the profiling features.
PCA was performed on this matrix to obtain a new matrix P with the
principal components as the columns. For each of these matrices, the
first qprincipal componentswere taken that could explain ≥90%of the
variance. This matrix P was separated into treatment and control
matrices and for each part a covariance matrix was calculated. Each of
the two covariance matrices (treatment and control) was weighted by
the number of samples in each matrix, and the sum of the resulting
matrices was used to calculate the Mahalanobis distance. The R cyto-
miner package was then used to reduce the number of redundant
features by removing those which were highly correlated. After pro-
cessing, 372 non-redundant cellular features were used in the sub-
sequent analyses.

The principal component analyses were performed using the R
stats package (version 3.6.1) using non-aggregated treatment profiles
(i.e., compounds, concentrations, and replicates separate) with scaling
and without centering. These principal components were used for all
PCA plots; for PCA plots containing only a subset of the data or using
aggregated data, points were transformed into this space using the
loadings of these principal components. Unsupervised hierarchical
clustering was performed using the R stats package (version 3.6.1),
using the values [1—Pearson correlation] as the pairwise distances
between each treatment condition and Ward’s method (minimal
increaseof sum-of-squares). Entanglementwas analyzedby comparing
hierarchical clustering of the 24- and 48-h compound treatment
duration CP data by Ward’s method using the R dendextend package
(version 1.13.2). To generate “dot plots,” the values for the activity
scores were averaged across all categories falling under a particular
cluster (obtained from hierarchical clustering). To calculate the simi-
larity of historical MLI CP data to the observed cellular injury pheno-
types obtained fromhierarchical clustering, only features belonging to
the reduced feature set and sharedbetween the historical data and this
study were considered. Phenotypes are calculated as the average sig-
nature of each cluster, where the average value for each feature across
all cluster members are taken, and the vector comprising these aver-
age values is used as the cluster phenotype (see also Supplementary
Fig. 2). The number of clusters was based manually on previous
experiences to optimize the quality of the tubulin compound cluster,
historically the most robust phenotype in previous experiments.

Live-cell imaging
U-2 OS cells were cultured similarly to the CP protocol but were
modified for seeding density (750 cells in 25μL media per well),
microplate (384-well, tissue culture-treated, black polystyrene, clear
flat-bottom microplates; Corning, cat # 3764BC), and media (F-12K,
ATCC, cat # 30-2004; supplemented with 10% FBS, 100U mL−1 peni-
cillin, and 100 µgmL−1 streptomycin). This media was selected because
it reduced background fluorescence in the GFP channel due to

riboflavin68. Seededmicroplates were then incubated for 24 h at 37 °C,
followed by the addition of sterile-filtered 25μL media to each well
containing live-cell imaging reagents (Incucyte Cytotox Red Reagent,
final concentration 250 nM, cat # 4632; Incucyte Caspase 3/7 Green
Reagent, final concentration 5 μM, cat # 4440). A reagent-free tech-
nology interference counter-screen was performed similarly, sub-
stituting the reagents with identical solvent control. Cells were then
immediately treated with 100 nL of compounds or vehicle controls
dispensed by pin tool transfer via CyBi-Well Vario with a constant
DMSO concentration of 0.2% (v/v). Most compounds were tested at
three concentrations (20, 10, and 5μM final concentrations). Each
microplate contained reagent-free control wells to correct for cellular
auto-fluorescence. Following compound addition, cells were incu-
bated at 37 °C for 60 h and imaged every 4 h with an Incucyte S3 Live-
Cell Analysis System (Essen Biosciences) utilizing 10x objective and
300 and 400ms GFP and RFP channel acquisition times, respectively.
Live-cell images were processed in Incucyte Analysis Software (Essen
Biosciences) using top-hat background correction. Images were ana-
lyzed for confluence, total area of green/red/green+red (overlap)
fluorescence, number of green/red/green+red (overlap)-positive
objects, and integrated green/red fluorescence. Data are mean ± SD
from three intra-run technical replicates each performed on separate
microplates. To analyze compounds tested in concentration-response
format, area under the curve (AUC) was calculated69.

Intracellular glutathione quantification
U-2 OS cells were cultured similarly to the aforementioned CP proto-
col, except for seeding density (750 cells in 25μL media per well) and
microplate (384-well, tissue culture-treated, low-volume, white poly-
styrene, flat-bottom microplates; Corning, cat # 8867BC). Seeded
microplates were then incubated for 24 h at 37 °C, then treated with
100nL compounds or vehicle controls dispensed by pin tool transfer
via CyBi-Well Vario with a constant DMSO concentration of 0.4% (v/v).
Most compounds were tested at three concentrations (20, 10, and
5μM final concentrations). Following the addition of compounds, cells
were incubated at 37 °C for 24 h. Each microplate contained triplicate
10-point GSH standards (6.4μM to 13 nM by 2-fold serial dilutions) for
quantifying GSH. After compound treatment, total intracellular glu-
tathione (reduced, GSH and oxidized, GSSG) concentrations and oxi-
dized glutathione (GSSG) were quantified in parallel on separate
microplates with the GSH/GSSG-Glo kit (Promega, cat # V6611) per
manufacturer protocol, except that all reagents were diluted three-
fold in PBS. Cell viability was quantified in parallel on separate micro-
plates by Cell Titer Glo (Promega, cat # G7570) per manufacturer
protocol. Luminescence was measured on an Envision 2105 plate
reader (PerkinElmer) with 400ms acquisition times. Data were cor-
rected for background luminescence using cell-free control wells and
for row/column effects by uniformity plates. Data are from five intra-
run technical replicates each performed on separate microplates.

Biochemical KAT selectivity
ngKATIs were tested for biochemical selectivity versus six KATs. Assay
conditions were as follows: KAT2A (hGCN5, 497-662 aa), 1 nM enzyme,
10μMbiotin-H3 1–25, 2.5μM [3H]-acetyl-CoA; KAT3B (P300, 1195-1662
aa), 2 nM enzyme, 5μM biotin-H3 1–25, 2.5μM [3H]-acetyl-CoA; KAT1
(HAT1, 20-341 aa), 1 nM enzyme, 1μMbiotin-H4 1–24, 5μM [3H]-acetyl-
CoA; KAT6A (MOZ/MYST3, 472-793 aa), 10 nM enzyme, 10μM biotin-
H4 1–24, 5μM [3H]-acetyl-CoA; KAT5 (TIP60, 1-513 aa), 10 nM enzyme,
1μM biotin-H4 1–24, 0.25μM [3H]-acetyl-CoA; KAT8 (HMOF/MYST1,
2-458 aa), 20 nM enzyme, 10μM biotin-H4 1–24, 1μM [3H]-acetyl-CoA.
For KAT3B testing, buffer conditions were 100mM HEPES, pH 8.0,
2mM DTT, 100mM KCl, 80μM EDTA, 40μgmL−1 BSA (m/v), 0.01%
Triton X-100 (v/v). For KAT1/3B/5/6 A/8 testing, buffer conditions were
20mM tris, pH 8.0, 5mM DTT, 0.01% Triton X-100 (v/v). Reactions
were performed at 23 °C for 20min. Final DMSO concentration was
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constant at 2.0% (v/v). Percent activity represents acetylation relative
to vehicle control reactions. Concentration responses were analyzed
by nonlinear least-squares regression fits to a four-parameter logistic
(“4PL”) equation. KAT profiling data are mean of two intra-run tech-
nical replicates. Concentration-response KAT6A data are mean ± SD
from three intra-run technical replicates.

Biochemical KAT3B activity
Inhibition of KAT3B acetyltransferase activity by ngKATIs was
assessed by a separation-based assay70. Reactions consisted of buffer
(50mM HEPES, pH 7.5, 50mM NaCl, 2mM EDTA, 2mM DTT, 0.05%
Triton-X-100) with KAT3B (P300, 150 nM) and FITC-Ahx-
RGKGGKGLGKGG [Ahx = 6-aminohexanoic acid] substrate (2μM)
were plated in 384-well microplates and equilibrated at RT for 10min
in the presence or absence of inhibitor. Reactions were initiated by
addition of acetyl-CoA (1μM final concentration) with 30μL final
assay volume and quenched during steady-state kinetics (<15% pro-
duct accumulation) by addition of 5 μL of 0.5M neutral hydro-
xylamine. Quenched reaction aliquots were then transferred to a
PerkinElmer Lab-Chip EZ-Reader instrument for microfluidic elec-
trophoresis and fluorometric analysis. Optimized separation
conditions were downstream voltage −500 V, upstream voltage
−2500V, and pressure −1.5 psi. Percent conversion is calculated by
ratiometric measurement of substrate/product peak heights, cor-
rected for nonenzymatic background acetylation. Percent activity
KAT3B represents acetylation relative to vehicle control. Con-
centration responses were analyzed by nonlinear least-squares
regression fits to a 4PL equation. Data are mean ± SD from three
technical replicates.

ALARM NMR
ngKATIs were tested by (a La assay to detect reactive molecules by
nuclearmagnetic resonance) for protein thiol reactivity as previously
described71. The human La antigen (aa 100–324, T302N) was
expressed in Escherichia coli Rosetta cells (Novagen) and cultured in
M9 minimal media. The La antigen was labeled by adding 13C-labeled
amino acid precursors ([3-13C]-α-ketobutyrate and [3,3′-13C]-α-ketoi-
sovalerate sodium salts; Cambridge Isotope Laboratories) to culture
medium 30min before IPTG induction. Bacteria were harvested after
induction at 25 °C for 8 h, followed by lysis via French press. Labeled
La antigen was purified by standard Ni-NTA bead purification. The La
antigen product was dialyzed (25mM sodium phosphate, pH 7.0,
5mM DTT) in three 16 h cycles at 4 °C with gentle stirring. Aliquots
were flash-frozen in liquid N2 and stored at −80 °C until further use.
Before use, hLa protein was reduced by incubating with 20mM DTT
at 37 °C for 1 h, then dialyzed (25mM sodium phosphate buffer, pH
7.0, no DTT) in three 16 h cycles at 4 °C with constant nitrogen
bubbling and with gentle stirring. The [1H-13C]-HMQC spectra were
acquired in 25mM sodium phosphate buffer, pH 7.0, 10% D2O (v/v;
CIL) ± 200μM test compounds ± 20mM non-deuterated DTT. Final
concentration of DMSO was 4.0% (v/v). Reaction solutions were
incubated at 37 °C for 1 h and then 30 °C for 15 h before obtaining
spectra. Data were recorded at 310K on a Bruker UltraShield
700MHz NMR spectrometer equipped with a Bruker 1.7mm TCI
Cryoprobe and Bruker SampleJet autosampler. Samples were tested
at 50μM protein concentrations using 16 scans, 2048 complex
points in F2, and 80 points in F1 using standard protein [1H-13C]-
HMQC and water suppression pulse sequences. Sample tubes were
inspected for gross compound precipitation. NMR data were ana-
lyzed in Bruker TopSpin (version 4.0.7). Reactions were normalized
to DMSO controls. Nonreactive compounds were identified by the
absence of chemical shifts or changes in peak intensities (13C-
methyl) ± 20mM DTT. Reactive compounds induced chemical shifts
and decreases in peak intensities in certain diagnostic peaks in the
absence of DTT.

Chemical stability and GSH adducts by UPLC-MS
Gross compound stability of ngKATIs was assessed by incubating
parent compound (20μM final concentrations) in PBS, pH 7.4 at 37 °C
for 4 and 24 h. Samples were spikedwith fluconazole internal standard
(10μM final concentration, Cerilliant), then diluted with equivolu-
metric amounts of MeOH to mitigate ion suppression by PBS, then
passed through 0.2μm pore size syringe filters. Samples were also
compared to otherwise identical samples containing parent com-
pounds incubated in neat MeOH instead of buffer. Samples were
analyzed using a Waters ACQUITY UPLC system using a BEH C18
2.1 × 50mm column. Samples were injected by an autosampler in 5μL
sample volumes. The flow rate was 0.250mLmin−1 with a standard
gradient starting at 95% Solution A (950mL H2O, 50mL MeCN, 1mL
formic acid) and ending with 100% Solution B (1000mL MeCN plus
1mL formic acid) over 2.0min. The samples were monitored simulta-
neously by a PDA detector and a ZQmass spectrometer (electrospray,
positive and negativemodes). Chromatograms andmass spectra were
qualitatively analyzed for the formation of new peaks and/or loss of
parent signal relative to internal standard. To detect GSH adducts, test
compounds (20μM final concentrations; 1 eq) and reduced
L-glutathione (20 eq) were incubated in PBS, pH 7.4 at 37 °C for 4 h.
Samples were prepared identically to the chemical stability studies,
but the internal standard was omitted to avoid possible interference
with detecting potential compound-GSH adducts. Chromatograms
and mass spectra were qualitatively analyzed for characteristic
compound-GSH adduct ions by examining the PDA chromatograms
for new peaks and the ion chromatograms for loss of the GSH ion (e.g.,
307m/z). CPM (Sigma, catalog # C1484) was used as a positive GSH-
reactive control compound. UPLC-MS data were analyzed in MestRe-
Nova (version 14.1.0-24037).

Fluorescence intensity thiol reactivity counter-screen
The ngKATIs were tested for non-proteinaceous thiol reactivity using
adaptions of previous procedures2,72. Thiol-free buffer (25mM sodium
phosphate, pH 7.0, 0.01% Tween-20 v/v) was dispensed in 10μL
volumes into black polypropylene 384-well round-bottommicroplates
(Agilent, cat # 201290-100) via Multidrop. DMSO, 10μM N-ethyl mal-
eimide (NEM, Sigma, cat # E1271), and 250μMBHQ-10 (carboxylic acid,
Biosearch) were used as negative, positive reactivity, and positive light
interference controls, respectively. Compounds and positive controls
(NEM) were transferred to assay plates in 100 nL volumes by pin-tool
via CyBi-Well Vario 384/60 (CyBio). Final DMSO concentration was
constant at 2.5% (v/v). GSH, CoA, and NAC were freshly prepared as
2μM solutions in buffer (25mM sodium phosphate, pH 7.0, 0.01%
Tween-20 v/v) and dispensed to the aforementioned microplates in
10μL volumes via Multidrop (1μM thiol, final concentration). After
thermal sealing (Agilent PlateLoc), microplates were incubated for
90min at 37 °C in an incubator oven, followed by the addition via
Multidrop of 10μL solution containing 12μMthiol-reactive probeCPM
(Sigma, cat # C1484) prepared in 1:1 DMSO:water. After incubation at
RT for 5min, thiol reactivity was quantified bymeasuring fluorescence
intensity (λex 405 nm, λem 530 nm) on a SpectraMax M3 plate reader
(Molecular Devices; PMT automatic gain, 10 flashes per well). Com-
pounds signals were background-corrected by subtracting the mean
negative-control plate control signals. Data are mean± SD from three
intra-run technical replicates performed on the same microplate.

AmpC aggregation counter-screen
KAT inhibitors were assessed for aggregation using a modified AmpC
β-lactamase counter-screen73. Recombinant E. coli AmpCwas obtained
from Rosetta cells using a published protocol74. The purified protein
product was >95%pure by SDS-PAGE analyses andmigrated identically
to an AmpC standard (Shoichet lab). The enzymatic assay was per-
formed in 50mM sodium phosphate, pH 7.0 in clear cyclic olefin
copolymer 384-well microplates (Aurora, cat # 3030-00330) in 75μL
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reaction volumes. Compounds were tested in triplicate at 4, 11, 33, and
100μM final concentrations in buffer ± freshly added 0.01% Triton
X-100 (v/v). Final concentration of DMSO was 1.0% (v/v). Compounds
were incubated with 5 nM AmpC in 73.5μL reaction buffer for 5min at
RT, followed by the addition of 1.5μL of nitrocefin substrate (Cayman,
cat # 15424) dissolved in DMSO (100 μM initial substrate concentra-
tion). Reaction solutions were gently mixed by multichannel pipette.
Reaction progress was continuously monitored by absorbance at
482 nm for 5min at RT on a SpectraMax M3 plate reader, and percent
activity was calculated from reaction rates (slope). Percent activity was
normalized to DMSO-only controls after background subtraction with
an enzyme-free reaction. Avibactam (Cayman, cat # 22825), non-
aggregation AmpC-positive control. Statistical significance (p < 0.05)
was evaluated without assuming consistent SD using two-tailed Stu-
dent’s t-test and the Holm-Sidak method to control for multiple
comparisons. Data are mean± SD from four intra-run technical
replicates.

MDH aggregation counter-screen
KAT inhibitors were also assessed for aggregation using a modified
malate dehydrogenase (MDH) counter-screen75. The enzymatic assay
was performed in 50mM sodium phosphate, pH 7.0 in clear cyclic
olefin copolymer 384-well microplates (Aurora, cat # 3030-00330) in
75μL reaction volumes. Compounds were tested in triplicate at
100μM final concentrations in buffer ± freshly added 0.01% Triton
X-100 (v/v). Final concentration of DMSO was 1.0% (v/v). Compounds
were incubated with 1 nM porcine heart MDH (EMD Millipore, cat #
442610) in 73.5μL reaction buffer for 5min at RT, followed by the
addition of 1.5μL of substrate (200μM oxaloacetate and 200μM
NADHfinal concentrations; derived from fresh 20mMstocks in 50mM
sodium phosphate, pH 7.0) and then gentle mixing with multichannel
pipette. Reactionprogresswas continuouslymonitoredby absorbance
at 340 nm for 5min at RT on a SpectraMax M3 plate reader, and per-
cent activitywas calculated fromreaction rates (slope) and normalized
toDMSO-only controls. Statistical significance (p <0.05)was evaluated
without assuming consistent standard deviation using two-tailed Stu-
dent’s t-test and the Holm-Sidak method to control for multiple
comparisons.Data aremean± SD from four to eight intra-run technical
replicates.

DLS aggregation counter-screen
Dynamic light scattering was performed as previously described75.
DMSO stocks of KAT inhibitors were diluted in filtered 50mM potas-
sium phosphate, pH 7.0, final concentration 1% DMSO (v/v). Light
scattering was recorded using a DynaPro Plate Reader II system (Wyatt
Technology) with a 60-mW laser at 830 nm, 158° detection angle, and
automatically adjusted laser power. Notably this instrument is con-
figured with a larger-width laser beam width optimized for detecting
large colloidal particles (BK Shoichet lab, USCF). Data were acquired
and processed by DYNAMICS software (Wyatt, version 1.7). Cut-off for
colloidal aggregation is 106 counts sec−1. Data are mean± SD from two
or three intra-run technical replicates performed on the same
microplate.

Redox activity counter-screen
ngKATIs were assessed for hydrogen peroxide production using a
horseradish peroxidase-phenol red counter-screen76. Testing was
performed in buffer (50mM tris, pH 7.0) plus 0.01% Triton X-100 (v/v)
in clear cyclic olefin copolymer 384-well microplates (Aurora, cat #
3030-00330) in 60μL reaction volumes. Compounds were tested at
250μM final concentrations. Final concentration of DMSO was con-
stant at 2.5% (v/v).Compoundswere incubated in 40μL reactionbuffer
(±1mM DTT final concentration) for 20min, followed by the addition
of 20μL solution containing phenol red and horseradish peroxide
(Sigma) dissolved in reaction buffer. Final concentrations of phenol

red and horseradish peroxide were 280μM and 60μgmL−1, respec-
tively. The reaction solution was allowed to incubate for 20min at RT,
followed by the addition of 10 μL of 1M sodium hydroxide via multi-
channel pipette to quench the reaction. After 10min incubation at RT,
hydrogenperoxidewasquantifiedbymeasuring absorbanceat610 nm
on a SpectraMax M3 plate reader. DMSO and 100μM hydrogen per-
oxide were used as negative and positive controls, respectively. NSC-
663284 (479; Cayman, cat # 13303) and 4-amino-1-naphthol HCl (67;
Oakwood Chemical, cat # 013411) were used as positive compound
controls77,78. Data are mean ± SD from three intra-run technical repli-
cates performed on the same microplate.

Light absorbance counter-screen
ngKATIs were assessed for light absorption between 200 and 750nm
at 100μM final compound concentrations in filtered sodium phos-
phate buffer (50mM sodium phosphate, pH 7.0). Final concentration
of DMSO were constant at 1.0% (v/v). Compounds were allowed to
incubate at RT in buffer for 10min in UV-transparent half-area 96-well
microplates (Corning, cat # 3679). Absorbance spectra were then
obtained using a SpectraMax M3 microplate reader at 25 °C using
buffer plus DMSO as blank.

Auto-fluorescence counter-screen
ngKATIs were assessed for auto-fluorescence using an adaption of
published procedures79. Briefly, fluorophore standards consisted of
AlexaFluor 350 (carboxylic acid, Invitrogen, cat # A33076), AlexaFluor
488 (carboxylic acid, Invitrogen, cat # A33077), AlexaFluor 647 (car-
boxylic acid, Invitrogen, cat # A33084), Texas Red (succinimidyl ester,
Invitrogen, cat # T6134), fluorescein (Sigma, cat # F2456), and resor-
ufin (Sigma, cat # 424455). Test compounds were tested in triplicate at
six final concentrations (32 nM to 100μMvia five-fold serial dilutions).
Fluorophores were tested in triplicate at five to seven final con-
centrations (0.5 nM to 3μM). Final concentration of DMSO was con-
stant at 2.0% (v/v). Compounds and fluorophore standards were
prepared as serial dilutions from 10mM DMSO stock solutions, then
transferred to 384-well non-binding surface black polystyrene micro-
plates (Corning, cat # 3575) via multichannel pipette. Plate arrange-
mentswerepurposefully designed tominimize optical crosstalk by the
various fluorophores and test compounds. All measurements were
performed at 25 °C in 60μL of 50mM tris, pH 8.0, dispensed into
microplates via multichannel pipette. Compounds were shaken for
2min on a plate shaker, centrifuged briefly for 1min at 500 × g, then
allowed to incubate at RT in light-reduced conditions for 10minbefore
measuring fluorescence intensity on a SpectraMax i3x plate reader
under reduced lighting. Instrument settings: excitation filter wave-
length (nm), emission filter wavelength (nm) with bandwidth filter
widths in nm denoted in parentheses: AlexaFluor 350, 340 (15), 450
(15); fluorescein, 480 (15), 540 (25); AlexaFluor 488, 480 (15), 540 (25);
resorufin, 525 (15), 598 (25); Texas Red, 547 (9), 618 (15); andAlexaFluor
647, 570 (9), 671 (15). Compound fluorescence intensity for fluor-
ophores and test compounds was measured at each of the six fluor-
ophore standard settings. Fluorophore standards present on each
microplate were then used to construct normalized fluorescence
concentration-responses (“fluorophore-equivalent concentrations”,
FEC) by nonlinear regression with 1/Y weighting. Lower limits of
quantification (LLOQ) had >3:1 signal:noise ratio. Fluorescence inten-
sities for each test compoundwere then converted to FECs. Calculated
concentrations below the lower limits of quantification were scored as
zero. Fluorophores prepared from independent dilutions as the cali-
brators were used as positive controls. Data are mean± SD from three
intra-run technical replicates performed on the same microplate.

Quenching counter-screen
ngKATIs were assessed for fluorescence quenching using adaptions of
previously published procedures79. Test compounds and individual
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fluorophore standards prepared separately in assay buffer were incu-
bated together, and the fluorescence intensity of these compound-
fluorophore mixtures was compared to vehicle controls. Compounds
were tested in triplicate at six final concentrations (32 nM to 100μM
via five-fold serial dilutions) at a fixed 250nM fluorophore final con-
centration. All measurements were performed in 50mM tris, pH 8.0 at
25 °C in 384-well black polystyrene microplates (Corning, cat # 3575)
with 60μL assay volumes. Compounds and fluorophore solutions
were dispensed into microplates via multichannel pipette. Final con-
centration of DMSO was constant at 4.0% (v/v). Solutions were shaken
for 2minon aplate shaker, centrifugedbriefly for 1min at 500 × g, then
incubated at RT in light-reduced conditions for 10min before mea-
suring fluorescence intensity on a SpectraMax i3x plate reader using
the filter settings for each fluorophore. BHQ-10 carboxylic acid (LGC
Biosearch Technologies, cat # BHQ-10-5) was used as a positive fluor-
escence quenching control compound. Significant fluorescence
quenching was defined as signal reduction >25% of the corresponding
fluorophore signal at any test compound concentration. Data are
mean± SD from three intra-run technical replicates performed on the
same microplate.

Immortalized cell-line histone acetylation assays
Select historical and next-generation KAT inhibitors were tested for
their effects on cellular proliferation and H3K27ac levels in HEK293T
and MCF7 cells as previously reported31. Cells were cultured in Dul-
becco’sModified Eagle’sMedium (DMEM) supplementedwith 10% FBS
(v/v; Winsent), penicillin (100UmL−1), and streptomycin (100 µgmL−1).
For cell growth analyses, cells were seeded in 96-well microplates,
treated with the indicated compounds, and continuously monitored
for 24 h using a live-cell Incucyte ZOOM imager (Essen Biosciences).
Nuclei counts were determined using Vybrant DyeCycle Green (Invi-
trogen, cat # V35004, dilution 1:5000). Data are mean± SD from three
technical replicates performed on the same microplate.

For western blot analysis of H3K27ac, cells were treated for 24 h
with compounds and lysed in ice-cold lysis buffer (20mM tris-HCl, pH
8, 150mM NaCl, 1mM EDTA, 10mM MgCl2, 0.5% Triton X-100 (v/v),
12.5 UmL−1 benzonase (Sigma, cat # E8263), complete EDTA-free pro-
tease inhibitor cocktail (Roche). After 3min incubation, SDSwasadded
to final 1% concentration (w/v). Total cell lysates were resolved using
4–12% bis-tris protein gels (Invitrogen) with MOPS buffer (Invitrogen)
and transferred onto PVDF membranes (Millipore) in tris-glycine
transfer buffer containing 10% MeOH (v/v) and 0.05% SDS (w/v).
Membranes were blocked for 1 h in blocking buffer (5% milk in 0.1%
Tween-20/PBS) and probed with the indicated primary antibodies
overnight at 4 °C: H3K27ac (Cell Signaling Technologies, cat # 8173,
dilution 1:1000), H3 (Abcam, cat # 10799, dilution 1:1000), and KAT3B
(Bethyl, cat # A300-358A, dilution 1:2000). The following secondary
antibodies were used according to manufacturer instructions: goat
anti-rabbit IgG (IRDye 800-conjugated, LI-COR, cat # 926-32211, dilu-
tion 1:5,000) and donkey anti-mouse IgG (IRDye 680-conjugated, LI-
COR, cat # 926-68072, dilution 1:5,000). The signal was acquired on an
Odyssey scanner (LI-COR) at 800 and 700nm.Antibody validationwas
provided by vendors (see “Reporting Summary”).

Western blots in U-2 OS cells were performed similarly as above.
Cells were cultured in DMEM (Thermo Fisher, cat # 10564011) sup-
plemented with 10% FBS (v/v; Sigma, cat # F6178), penicillin
(100UmL−1), and streptomycin (100 µgmL−1), and maintained in a
37 °C, 5% CO2 humidified incubator. Prior to compound treatment,
240,000 U-2 OS cells were plated per well in the above media in
6-well plates. The subsequent day, select compounds dissolved in
neat DMSO were added to each well to the listed final concentration.
The final DMSO concentration wasmaintained constant at 0.2% (v/v).
After 24 h treatment, cells were harvested in 4x SDS-PAGE lysis buffer
and boiled to denature. Cell lysates were separated on 16% tris-
glycine gels (Thermo Fisher, cat # XP00165) for smaller proteins. For

larger proteins, lysates were separated on 3–8% tris-acetate gels
(Thermo Fisher, cat # EA03785). All proteins were transferred to
membranes via iBlot (Thermo Fisher). For KAT3B, membranes were
blocked in 5% milk-TBS for 1 h, and then probed for KAT3B (Bethyl,
cat # A300-358A, dilution 1:10,000) overnight in 2.5% milk-TBST
(2.5% milk in 0.05% Tween-20/TBS). GAPDH (CST, cat # 2118S, dilu-
tion 1:2000) was also probed in 2.5% milk-TBST overnight at 4 °C. All
other proteins were probed in 2.5% BSA-TBST (2.5% BSA in 0.1%
Tween-20/TBS) overnight at 4 °C with the following dilutions: total
H3 (Abcam, cat # AB1791, dilution 1:5000); H3K14ac (Millipore, cat #
07-353, dilution 1:2000); and H3K27ac (CST, cat # 8173, dilution
1:2000). All blots were probed with an anti-rabbit HRP conjugated
secondary antibody (CST, cat # 7074S, dilution 1:5000) and washed
with TBST (0.1% Tween-20/TBS) before visualization with enhanced
chemiluminescence substrate. Antibody validation was provided by
vendors (see Reporting Summary).

Data analyses and figure preparation
All graphical data are expressed as mean± standard deviation (SD)
unless stated otherwise. Graphing and statistical analyses were per-
formed using Prism (GraphPad, version 8.4.2) or R (version 3.6.1). Final
figures were prepared in Adobe Illustrator (version 25.0).

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The investigators were not blinded to allocation during
experiments and outcome assessment.

For cell painting, the sample size of four technical replicates were
chosen based on previous recommendations7. Compounds were also
tested in concentration-response format (usually six concentrations).
For other experiments, the number of technical replicates (usually
three) are sufficient to determine significant differences between
compounds within a high-throughput experiment. Select compounds
were tested in multiple independent cell-painting experiments with
acceptable reproducibility (Supplementary Fig. 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The multi-terabyte collection of CP images, metadata, and associated
CellProfiler object-level files generated in this study have been
deposited in the Image Data Resource database under accession code
idr0133. The processed CP extracted feature data, the processed live-
cell imaging data, the processed intracellular glutathione data, the raw
ALARM NMR spectra, and the raw UPLC-MS data for KAT inhibitors
have been deposited in the Figshare database under accession code
20293992. Source data are provided as a Source Data file. Key
descriptors (categories, SMILES, purity, annotations) for study com-
pounds and the composition of the proposed cellular injury informer
set are provided in Supplementary Data 1. Source data are provided
with this paper.
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