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Predicting reprogramming-related gene 
expression from cell morphology in human 
induced pluripotent stem cells

ABSTRACT  Purification is essential before differentiating human induced pluripotent stem 
cells (hiPSCs) into cells that fully express particular differentiation marker genes. High-quality 
iPSC clones are typically purified through gene expression profiling or visual inspection of the 
cell morphology; however, the relationship between the two methods remains unclear. We 
investigated the relationship between gene expression levels and morphology by analyzing 
live-cell, phase-contrast images and mRNA profiles collected during the purification process. 
We employed these data and an unsupervised image feature extraction method to build a 
model that predicts gene expression levels from morphology. As a benchmark, it was con-
firmed that the method can predict the gene expression levels from tissue images for cancer 
genes, performing as well as state-of-the-art methods. We then applied the method to iPSCs 
and identified two genes that are well predicted from cell morphology. Although strong 
batch (or possibly donor) effects resulting from the reprogramming process preclude the abil-
ity to use the same model to predict across batches, prediction within a reprogramming 
batch is sufficiently robust to provide a practical approach for estimating expression levels of 
a few genes and monitoring the purification process.

INTRODUCTION
Human induced pluripotent stem cells (hiPSCs) are of growing im-
portance in both basic and translational biomedical research due to 
their capacity to differentiate into any cell type and proliferate in-
definitely. HiPSCs are derived from easily accessible somatic cells, 

like leukocytes or skin fibroblasts, using different iPSC reprogram-
ming methods (Buganim et al., 2013; Malik and Rao, 2013). Unfor-
tunately, currently available iPSC reprogramming methods are sto-
chastic, which leaves a subset of cells partially reprogrammed and 
with low pluripotency. Therefore, generating high-quality iPSCs re-
quires an extensive and time-consuming purification process to 
eliminate partially reprogrammed cells (Brown et  al., 2010; Mack 
et al., 2011).

During the purification process iPSC clones with high pluripo-
tency and stemness are selected based on either gene expression 
profiling data, such as RNA-seq, or cell morphology as evaluated by 
visual inspection or image analysis (Marx et al., 2013; Maddah et al., 
2014; Tokunaga et  al., 2014; Kato et  al., 2016; Hoshikawa et  al., 
2019; Doulgkeroglou et al., 2020; Piotrowski et al., 2021). Histori-
cally, gene expression profiling has been used as a primary cell qual-
ity indicator to improve protocols (Brown et  al., 2010; González 
et  al., 2011; Mack et  al., 2011; Wakao et  al., 2012; Teshigawara 
et al., 2017), whereas visual inspection or image analysis is used to 
monitor daily cell quality (Marx et al., 2013; Maddah et al., 2014; 
Tokunaga et  al., 2014; Kato et  al., 2016; Hoshikawa et  al., 2019; 
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Doulgkeroglou et al., 2020; Piotrowski et al., 2021). However, be-
cause of major limitations of these approaches, another evaluation 
method should be explored to make the purification process more 
efficient in the future. For example, although gene expression profil-
ing gives a direct readout of stemness and differentiation markers 
useful for improving iPSC culture protocols (Brown et  al., 2010; 
Mack et al., 2011; D’Antonio et al., 2017; Sekine et al., 2020), the 
method is destructive, precluding further analysis of the cell. There-
fore, the outcome can be estimated only through statistical interpre-
tation using multiple samples, which are costly to grow and propa-
gate. On the other hand, morphological analysis of cell images is 
nondestructive, with a qualitative relationship between cell quality 
and morphology as evidenced by the success of iPSCs to date 
(Wakao et al., 2012; Healy and Ruban, 2014; Tokunaga et al., 2014; 
Kato et al., 2016; Wakui et al., 2017); however, this method identi-
fies iPSCs with high pluripotency based on their morphology such 
as compact shape with less cytoplasm (Healy and Ruban, 2014; 
Wakui et al., 2017), thus using indirect readouts prone to errors and 
misinterpretation, with no clear link to underlying gene expression. 
Therefore, an improved quality evaluation method for identifying 
high-quality iPSC populations that overcomes limitations of the cur-
rent methodologies by bridging gene expression with morphology 
in a nondestructive manner would help address this major bottle-
neck in the iPSC generation process.

Very recently, several studies have demonstrated that morpho-
logical features can be used to predict gene expression in various 
contexts (Cutiongco et al., 2020; He et al., 2020; Schmauch et al., 
2020; Dawood et al., 2021; Haghighi et al., 2022). For example, su-
pervised deep learning models, such as a convolutional neural net-
work (CNN), were trained with data sets of pathological images and 
spatial gene expression profiles obtained by single-cell sequencing 
of the exact same sample to predict cancer gene expression from 
pathological images (He et al., 2020). The resulting models were 
able to accurately link morphology with gene expression, suggest-
ing that a similar strategy could be extended beyond cancer and 
applied to the iPSC purification process. However, these strategies 
require expensive single-cell sequencing measurements, which lim-
its their widespread adoption.

In this study, to overcome existing limitations and provide the 
community with a more robust, affordable, easy to implement eval-
uation method useful for more efficient iPSC purification, we devel-
oped a method to predict the expression of iPSC genes from bright-
field cell morphology during the iPSC purification process. Our 
method was designed to use multiple label-free, phase-contrast 
images of cells growing in culture vessels and bulk-level gene ex-
pression profiles of these cells, measured for each vessel. Thus, un-
like most previous studies, the gene expression profiles (by virtue of 
being at the bulk level) do not have a one-to-one correspondence 
with individual cells. Therefore, we employed an approach based on 
an unsupervised deep learning model to extract morphology fea-
tures from each image and then created a simple support vector 
regression (SVR) model to predict gene expression based on the 
image features of each vessel. We validate our approach on a 
benchmark data set, as well as data from iPSC samples obtained 
from experimental conditions designed to simulate the iPSC purifi-
cation process.

RESULTS
Gene expression data set assembly for predictive model 
building
To build a robust predictive model, we focused our initial efforts on 
acquiring high-quality imaging and bulk gene expression data un-

der conditions that simulate the iPSC purification process. We gen-
erated six data sets composed of 29 iPSC clones derived from pe-
ripheral blood mononuclear cells (PBMCs) of 15 donors. Data sets 
A1–A3 were obtained by culturing 15 iPSC clones derived from a 
single donor, and data sets B1–B3 were generated by culturing 14 
iPSC clones derived from 14 different donors (Supplemental Table 
S1). To simulate different stages of iPSC purification processes, all 
iPSCs were cultured for three passages with increasingly sized ves-
sels (six-well plate, T75 flask, and T150 flasks) for each passage re-
spectively (Supplemental Figure S1). In every passage, the cells 
were passaged on day 4, and phase-contrast imaging and gene 
expression measurements were performed before passaging.

Our gene expression analysis was done using targeted amplicon 
sequencing, a bulk RNA-seq strategy focused on a subset of genes. 
We measured expression levels for 980 genes related to stemness 
and pluripotency. We filtered the 980 genes by their average (mean) 
and coefficient of variation values (CV) across all the samples to 
identify genes with sufficient expression levels and significant vari-
ance, as those suggest predictive power needed for robust model 
building. The final list contained 218 genes, including three 
Yamanaka factor genes: KLF4, SOX2, and POU5F1 (Figure 1). Thus, 
these data represent the input gene expression data for our predic-
tive model training.

Image-based gene expression prediction pipeline
To develop a robust image-based gene expression prediction 
pipeline that would require a limited amount of bulk-level mRNA 
data, we adopted a two-stage approach (Figure 2). First, given the 
number of samples (87; 29 clones at three different time points), 
we treated each individual iPSC phase-contrast image as a collec-
tion of thousands of pieces of imaging information by splitting it 
into patches of 160 × 160 pixels (72 μm), resulting in 1024 patches 
per image, to suit the memory constraints of subsequent deep 
learning model training. To extract features from these patches, we 
used a modified VQ-VAE-2 model (Razavi et al., 2019) as a self-su-
pervised feature extraction method (Supplemental Figure S4). The 
variation of the cell quality inside a patch is negligible and can be 
represented by a latent vector of the VQ-VAE-2 model. Thus, in 
stage 1, we extracted vector-quantized feature maps by applying 
the trained VQ-VAE-2 model to all the patches (see Materials and 

FIGURE 1:  Distribution of gene expression levels and variation across 
samples. Each dot represents a gene expression of a single gene. After 
filtering based on the average (X-axis) and CV (Y-axis) of the gene 
expression level, we retained 218 genes out of the 980 genes (top 
right quadrant), including three genes of particular interest (red dots).
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Methods for details). Next, in stage 2, we used this feature extrac-
tion process together with SVR to obtain 128-dimensional feature 
vectors for each image patch, which were then averaged to pro-
duce a single 128-dimensional profile for each sample. Vector 
quantization inherent in the VQ-VAE-2 model enables easy preser-
vation of the feature distribution in a sample, whereas alternatives 
require statistical calculation, which may lead to loss of the feature 
distribution information, in order to integrate the features of the 
patches into a single profile.

VQ-VAE-2 model validation
To confirm that the trained VQ-VAE-2 model extracted sufficient im-
age features to reconstruct images, we evaluated the reconstruction 
accuracy for each data set using mean-squared error (MSE) between 
the original images and the reconstructed images (Figure 3). We 
used data set A3 for the VQ-VAE-2 model training. Then, we ran-
domly sampled 10 images (10,240 patches) of each data set to cal-
culate the MSE. All of the MSEs are lower than 36, which means that 
the average pixel-wise error for the eight-bit images (256 levels) is 
less than 6 (2.3%) for all images; little difference in the images was 
found by visual inspection across the data sets (Figure 3A). We thus 
concluded that our VQ-VAE-2 model was sufficiently trained, as it 
can extract the image features essential to reliably reconstruct the 
iPSC images.

Extracted image features relate to experimentally defined 
quality categories
To examine whether the VQ-VAE-2 model adequately extracted the 
meaningful image features related to biology, we investigated the 
relationship between the image features and the four morphologi-
cal categories (undifferentiation, cracked, built-up, and differentia-

tion) that are routinely used by iPSC culture experts to identify undif-
ferentiated “good” cells (Healy and Ruban, 2014; Wakui et  al., 
2017). As mentioned in the Introduction, these categories have no 
clear link to underlying gene expression, but they likely contain 
some information that is useful for predicting gene expression lev-
els. We selected a representative image (5120 × 5120 pixels) for 
each category from data set A3 and obtained 1024 image patches 
(160 × 160 pixels) for each of the categories (Figure 4A). Then, the 
patches were processed by the trained VQ-VAE-2 model to extract 
the image features, yielding 1024 image feature vectors in total. We 
visualized the distribution of the extracted image feature vectors for 
each category by t-SNE dimension reduction (Figure 4B). In addition 
to that unsupervised analysis, we evaluated the classification accu-
racy of the quality categories based on the extracted image feature 
vectors by a support vector machine (SVM) model (Table 1). The 
image feature vectors were split 3:1 for training and test, respec-
tively. We obtained 89.3% test accuracy for the quality categories, 
after optimizing hyperparameters by threefold cross-validation for 
gamma and C with RBF kernel. Taken together, this analysis pro-
vides additional validation of our image features as accurate repre-
sentations of iPSC quality and an excellent agreement between the 
VQ-VAE-2 model and expert curation.

Hierarchical clustering of gene expression levels and image 
features
To see the variance of the gene expression profiles across data sets, 
we performed hierarchical clustering analysis. We found that the 
gene expression profiles consisting of 218 genes have different 
characteristics between experiment A (one donor) and experiment 
B (14 donors) (Figure 5, top), also showing that the different samples 
derived from the same donor (#CL1-15 of experiment A and #CL16 

FIGURE 2:  Gene expression prediction pipeline. We split iPSC phase-contrast images of a sample into patches of 160 × 
160 pixels (72 μm) each, extracted feature maps using the VQ-VAE encoder, and integrated the maps into a feature 
vector. We constructed 218 SVR models corresponding to the 218 target genes. Np: Number of patches, Ni: Number 
of images.
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FIGURE 3:  Image restoration accuracy of each data set. The VQ-VAE-2 model was trained on a single data set (A3) and 
applied to all data sets to extract image features. (A) Comparison of the original images and the restored images by the 
model trained with data set A3. (B) Average MSEs calculated between the original images and the restored images 
(lower MSE is better). All MSEs were less than 36 (i.e., averages were less than 6) for eight-bit images, indicating good 
restoration performance regardless of the data set.

of experiment B) were classified into the different clusters. We also 
performed hierarchical clustering of the image features across the 
data sets. This analysis revealed that image features of experiment 
A and experiment B do not display clear clustering (Figure 5, bot-
tom). This suggests that batch (or possibly donor) effects and their 
impact on gene expression profiles may pose a significant challenge 
to developing a single predictive model that would accurately fit all 
the data sets and that multiple models may be needed.

Validation with public benchmark data set shows 
performance equivalent to that of an end-to-end approach
Before testing the VQ-VAE–based approach on the gene expres-
sion-from-bright-field-iPSC-images prediction task, we tested it on a 
distinct but related task—predicting gene expression using histo-
pathologic images from a public spatial transcriptomics breast can-
cer data set (He et al., 2020). This data set contains 30,612 spots with 
gene expression profiles in 68 breast tissue sections from 23 patients 
with breast cancer. The sections were scanned at 20× magnification, 
and 26,949 distinct mRNA expression levels were measured in spots 
with a diameter of 100 µm arranged in a grid with a center-to-center 
distance of 200 µm. We compared the prediction performances of 

our model and the end-to-end CNN model DenseNet-121 (Huang 
et al., 2017), which was previously used on this data set, by focusing 
on the expression of the 250 genes with the highest mean expres-
sion for all the spots (Validation Methodology in Supplement S1). 
The final prediction performance for each gene represents a median 
value of 23 correlation coefficients between measured gene expres-
sions and predicted gene expressions for each patient’s single cells, 
obtained by leave-one-out cross-validation of 23 patients. As shown 
in Table 2, three of the top five genes were consistent (p = 3.8e-5, 
Fisher’s exact test) and our model performed comparably to the 
end-to-end CNN model (He et al., 2020) (Validation Methodology in 
Supplement S1). These results gave us confidence that our method 
can predict gene expression from images with accuracy comparable 
to that of the current state-of-the-art but without needing labels to 
learn image representations.

Prediction of gene expression based on iPSC data sets
Having demonstrated the efficacy of the method on a benchmark 
task, we employed our method to predict gene expression values 
from extracted image features of iPSCs. We evaluated the predic-
tion performance for all iPSC data sets using SVR models trained 
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with either data set A3 (one donor, time point 3) or B3 (14 donors, 
time point 3) (Table 3). In both cases, threefold cross-validation 
within the training data set was performed to optimize SVR model 
hyperparameters for each gene as described in Materials and 
Methods. We then calculated the coefficient of determination (R2) 

and corresponding significance corrected by the Benjamini–Hoch-
berg method (false discovery rate [FDR]) between the predicted 
gene expression and the measured gene expression for every data 
set. Then, we picked the top 10 genes with the highest R2 value and 
that passed significance of α = 0.05.

FIGURE 4:  iPSC quality categories defined by the culture experts. (A) Typical morphology of each category. Four 
morphological categories are visually defined by iPSC culture experts. Undifferentiation: Good iPSCs with high stemness 
and pluripotency. Cells have little cytoplasm and prominent nucleoli. Cracked: Upper-middle quality. Cells still have a 
morphology similar to that of undifferentiated cells, but some kind of differentiation-related activity appears as cracks. 
Built-up: Lower-middle quality. Cells are crowded, stacking on top of each other, and cell morphology cannot be 
observed at all. Differentiation: Low quality. Totally differentiated and not useful for the subsequent differentiation 
process. Cells of this category have a flat, dark, and large appearance compared with the cells of the other categories. 
(B) t-SNE plot based on the image features extracted by the VQ-VAE-2 model trained with the A3 data set. Each color 
represents images of the quality categories defined by the experts, which mostly exist in different regions in the feature 
space despite this being an unsupervised analysis, which does not involve any training with expert annotations.
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When trained on the single-donor data set (A3, time point 3), the 
best-predicted gene was KLF4. For KLF4 (Figure 6A, top), the model 
obtained good predictions on the data sets A1 and A2 with R2 = 
0.607 and 0.685 (and A3 used for training = 0.834) but did not per-
form well on the data sets of experiment B. This indicates that train-
ing does not generalize well across the experiments either due to 
technical variation (batch effects) or due to the differing donors. For 
the other genes, the model had R2 > 0.3 for only one or two data 
sets other than the data set used for model training.

We wondered whether training on a larger set of donors might 
improve predictions. We therefore trained on the 14-donor data set 
(B3, time point 3) and found that the best-predicted gene was 
CSNK1E. For CSNK1E (Figure 6A, bottom), predictions were good 
in data sets B1 and B2 with R2 = 0.500 and 0.440, again demonstrat-
ing good generalizability across time points within a batch. This 
model did not perform well on experiment A data sets, however, 
which indicates that training on many donors does not improve gen-
eralization across the experimental batches. To investigate how spe-
cific morphological characteristics correspond to best-predicted 
gene expression levels, we selected patch images from the data 
sets that were particularly high- or low-expressing for the best-pre-
dicted gene for each batch. We observed that the cells show differ-
entiation-like morphology when the predicted expression level of 
KLF4 is low and undifferentiation-like (“good”) morphology as the 
predicted KLF4 expression level increases for images within experi-
ment A (Figure 6B). For images within experiment B, we also con-
firmed that as the predicted CSNK1E expression increases, the cells 
change their appearance from built-up–like morphology to undiffer-
entiated-like morphology, until they become larger and the cell 
boundaries become unclear (Figure 6B). Taken together, although 
batch- or donor-specific variations impact prediction performance, 
morphological analysis suggests that changes in image features cor-
relate with changes in predicted expression levels for the best-pre-
dicted genes.

DISCUSSION
In this study, we developed an evaluation strategy that provides in-
formation useful for improving the iPSC purification process by us-
ing cell morphology captured by phase-contrast microscopy. To 
achieve this, we introduced a new method to predict gene expres-
sion levels based on label-free images of cells that employs a re-
gression model trained on image features extracted using an unsu-
pervised deep learning model, VQ-VAE-2. This method enables the 
nondestructive evaluation of cell quality through prediction of gene 
expression levels, which can lead to further improvements in iPSC 
culture protocols in the future, unlike conventional evaluation strate-
gies that rely on destructive gene expression measurements such as 
RNA-seq or morphology-based methods that are nondestructive 
but difficult to relate to differentiation markers.

We benchmarked the performance of our method using a com-
pletely different setup—a public data set of tissue slide images 

and spatial gene expression data—and demonstrated a result 
similar to that of the state-of-the-art. We also investigated the re-
lationship between the image features captured by our method 
and the iPSC morphological quality categories experimentally de-
fined by the iPSC culture experts (Healy and Ruban, 2014; 
D’Antonio et al., 2017; Wakui et al., 2017). The results showed that 
there is a correspondence between the morphological quality cat-
egories and the image features extracted from unstained phase-
contrast images, allowing morphological quality categories to be 
predicted from the image features with 89.3% accuracy. It is diffi-
cult to examine the relationship effectively with a limited number 
of samples between gene expression and the quality categories 
because our bulk-level gene expression data set lacks spatial infor-
mation. However, because there exists a relationship between im-
age features and categories, as well as between gene expression 
and image features, our results suggest that the method we devel-
oped could also assist in linking image features with both gene 
expression and the quality categories. This would further facilitate 
visual inspection and iPSC purification and make the process more 
reliable.

When we employed our approach to predict gene expression 
from image features, we identified two top-predicted genes, KLF4 
and CSNK1E, from two different experiments. For KLF4, we ob-
served that as the predicted expression increases, the appearance 
of cells changes from differentiated-like to undifferentiated-like. This 
observation agrees with the known biology of KLF4, as it has previ-
ously been established that KLF4 is a key gene for iPSC reprogram-
ming and dedifferentiation process in somatic cells and that this 
process can be paused by manipulating the KLF4 expression 
(Nishimura et al., 2014; Bialkowska et al., 2017). For CSNK1E, we 
observed that as the predicted expression increases, the cellular 
morphology changes from built-up–like, to flat, undifferentiated-
like, to having an unclear cell boundary, indicating that the cells 
were progressively dissociating. This observation appears to be 
consistent with CSNK1E biology as this protein accelerates cell mi-
gration and cell dissociation (Simpson et al., 2008; Bar et al., 2018). 
Therefore, the gene expression predictions from image features for 
top genes are in good agreement with their established biological 
functions.

Our results also highlight that we obtained two significantly dif-
ferent predictions in two different experiments, experiment A, which 
included 15 clones from the same patient, and experiment B, which 
included samples from 14 different patients. This suggests that 
batch (or possibly donor) effects, that is, nonbiological factors in an 
experiment that are observable in the data and known to pose a 
major challenge in high-dimensional biology (Goh et al., 2017), play 
a significant role in our work as well. We observed that the predic-
tive model works well only when the training and test data set are 
from the same batch (i.e., the same experiment); training a model 
on many donors (experiment B) did not dramatically improve pre-
dictions versus training on a single donor. We also observed that the 

Number 
of patches

Predicted category

Undifferentiation Cracked Built-up Differentiation

True category 255 234 (91.8%) 13 (5.1%) 4 (1.6%) 4 (1.6%)

243 12 (4.9%) 208 (85.6%) 14 (5.8%) 9 (3.7%)

249 4 (1.6%) 11 (4.4%) 233 (93.6%) 1 (0.4%)

277 4 (1.4%) 29 (10.5%) 4 (1.4%) 240 (86.6%)

TABLE 1:  Classification performance for the quality categories based on the image features.
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FIGURE 5:  Hierarchical clustering results for the gene expression profiles (top) and the image features (bottom) across 
all 87 samples. The color of each sample name represents the experiment. Samples in blue: experiment A (clone 
#CL1-15). Samples in red: experiment B (clone #CL16-29). The color of each bar under sample names represents a 
different donor. Clones #1-15 of experiment A and #16 of experiment B are derived from the same donor. Image 
features do not show a clear difference between experiment A and experiment B, while gene expression profiles form 
distinct clusters between experiments.

list of genes with the best R2 values is different across the batches. 
This suggests that not only are the models nongeneralizable across 
the batches but also the relationships between morphology and 
gene expression appear to be different across the two batches. This 
discrepancy is consistent with the observation from our hierarchical 
clustering analysis, where we noted that strong batch (or possibly 

donor) effects are observed in gene expression data but not in the 
imaging data.

In our experience, batch effects are predominantly due to the 
stochastic nature of the iPSC reprogramming process itself (Hanna 
et al., 2009; Teshigawara et al., 2017). In fact, the iPSCs for the two 
experiments (A and B) were reprogrammed separately, so it is very 
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DenseNet Ours

1 *HSP90AB1
(0.325)

*FASN
(0.390)

2 *FASN
(0.324)

DDX5
(0.372)

3 *GNAS
(0.319)

*HSP90AB1
(0.343)

4 ACTG1
(0.317)

TPT1
(0.314)

5 FN1
(0.315)

*GNAS
(0.309)

Genes with top five prediction performances. Values in parentheses are the 
median of correlation coefficients between measured and predicted gene 
expressions obtained by leave-one-out cross-validation of 23 patients. Com-
mon genes are marked with an asterisk. Three of the top five predicted genes 
matched those of ST-Net.

TABLE 2:  Validation results on a published benchmark.

likely that the batch effects are indeed driven by the reprogramming 
process, although we could not eliminate the possibility of the do-
nor effects using our data set. Given this source of batch effects, our 
overall approach can be used to make predictions of expression 
levels only within a reprogramming batch. Despite this current ca-
veat, our methodology might be usefully implemented by collect-
ing gene expression data and training a model early in the iPSC re-

programming process and applying it to future time points of the 
batch, thus eliminating repeated gene expression profiling for the 
many subsequent rounds of cloning. For instance, a prediction 
model might be trained on a specific batch in the reprogramming 
process to be stored in a cell bank, then the model might be used 
to monitor cell quality for the cells taken out from the same bank.

The method might also be used in studies that aim to identify 
better culture protocols that yield cells having desired expression 
levels for specific genes. Using images instead of mRNA is nonde-
structive and additionally allows monitoring the spatial distribution 
of gene expression within a culture. This could allow adjusting the 
culture protocol more precisely based on the spatial information of 
gene expression, replacing the current methodology to develop 
culture protocols using bulk gene expression measurements. Fur-
thermore, batch-effect correction techniques applied to such data, 
together with a more diverse set of training data, may further im-
prove the ability to generalize the models, reduce the need for gene 
expression profiling, and enable automated reprogramming pro-
cesses based on live-cell imaging.

In conclusion, we explored the relationship between iPSC mor-
phology and gene expression within iPSC multi-clone data sets col-
lected during the iPSC purification process. We used phase-contrast 
images as a morphology readout and bulk RNA-seq as gene expres-
sion data and trained the models to use image features to predict 
gene expression. Although batch (or possibly donor) effects, driven 
by the iPSC reprogramming process, limit our ability to generalize 
the model across reprogramming batches, the proposed approach 

Experiment A (15 clones, 1 donor) Experiment B (14 clones, 14 donors)

Data set A1 Data set A2 Data set A3 Data set B1 Data set B2 Data set B3

Case 1
Trained with A3

KLF4 0.607 0.685 0.814 NS NS NS

FBLN2 0.452 0.258 0.787 NS NS NS

ROR2 NS 0.552 0.587 0.339 NS NS

COL11A1 NS 0.507 0.913 NS NS NS

BMP4 NS 0.457 0.596 NS 0.392 NS

ALCAM 0.445 NS 0.676 NS NS 0.088

C3 NS 0.445 0.728 NS NS 0.340

DAB2 NS 0.409 0.657 NS NS NS

COL1A1 NS 0.404 0.936 NS NS NS

PRSS23 0.393 NS NS NS NS NS

Case 2
Trained with B3

CSNK1E NS NS NS 0.500 0.440 0.626

COL2A1 NS NS NS 0.487 0.343 0.823

DLL3 0.112 NS NS 0.584 0.141 0.996

SLCO2A1 NS NS NS 0.317 0.365 0.471

DNER NS NS NS 0.631 NS 0.951

COMMD3 NS NS NS 0.604 NS 0.793

FZD7 NS NS NS 0.581 NS 0.750

COL11A1 NS NS NS NS 0.577 0.937

PCDH7 NS NS NS 0.575 NS NS

ROR2 NS NS NS 0.565 NS 0.954

Cells with R2>0.3 between predicted and measured gene expression levels are highlighted in green. NS: not significant with FDR correction (α = 0.05). Results for 
the training set are highlighted in light gray.

TABLE 3:  Prediction performance for the top 10 genes across experiments.
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may allow stem cell facilities to automatically track the iPSC purifica-
tion process using phase-contrast imaging alone.

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

Data acquisition
In this study, we used six data sets composed of 29 iPSCs clones 
derived from peripheral blood mononuclear cells (PBMCs) of 15 do-

nors. The culture of iPSCs was carried out in two phases. We first 
cultured 15 iPSC clones (experiment A) all derived from a single 
donor and then cultured 14 iPSCs clones derived from 14 donors 
(experiment B), which includes the same one donor used in experi-
ment A, one clone per donor, using the same iPSC culture protocol 
(Mack et al., 2011). To simulate the iPSC purification process, all iP-
SCs were cultured for three passages with different types of vessels, 
six-well plate, T75 flask, and T150 flasks for each passage, respec-
tively (Supplemental Figure S1). T150 flasks will continue to be used 

FIGURE 6:  Gene prediction results. (A) Prediction accuracy on each data set for KLF4 and CSNK1E. Predicted (y-axis) 
vs. measured (x-axis) expression levels (log2) for KLF4 and CSNK1E using the trained models as labeled. (B) Cell 
morphology and predicted gene expression levels for KLF4 and CSNK1E. The numbers represent the predicted gene 
expression levels corresponding to each image. The patches are collected from the data sets of experiments A and B 
for KLF4 and CSNK1E, respectively.

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e22-06-0215
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for a while thereafter in the actual purification process. In every pas-
sage, the cells were passaged on day 4, and phase-contrast imaging 
and gene expression measurements were performed before pas-
saging. As a result of these culture experiments, we obtained six 
data sets composed of 29 clones and three time points (87 samples, 
Supplemental Table S1).

Phase-contrast imaging
The images were obtained by a phase-contrast microscope (Nikon 
Ti2-E) with a 10× objective lens (Nikon Plan Fluor 10×/0.30 DL) and 
a 25 megapixel camera (25CXP1; CIS). We captured single-focal-
plane grayscale images of cells for each culture vessel. We captured 
60, 100, and 100 images for time point 1, time point 2, and time 
point 3, respectively. The resolution and the dimensions of each im-
age are 0.45 µm/pixel and 5120 × 5120 pixels, respectively.

Gene expression normalization method
To enable comparison of the expression levels between samples, 
measured expression profiles were normalized by the total number 
of reads for each sample. Then, we took a logarithm of base 2 after 
adding a pseudo count of 1 to prevent zeros.

VQ-VAE-2 model training
We trained a VQ-VAE-2 model as it is, with K of 64 and D of 64 on 
the images of a single data set using the Adam optimizer (Kingma 
and Ba, 2014) with a learning rate of 1e-4 to minimize MSE between 
the input patch and the restored patch. Specifically, we utilized the 
A3 data set for training as it generally provides a wider range of 
morphological variation in cells cultured in larger vessels at time 
point 3 compared with time points 1 and 2. To prepare the A3 data 
set for model training, we split all included images into small 160 × 
160 pixel patches. The model was trained for 50 epochs with a 
batch size of 32 using the PyTorch machine learning framework.

Extraction of image feature vectors
We extracted the latent feature vector of a sample by the following 
procedure. First, we split all the images of a sample into small patches. 
Image size is 5120 × 5120 pixels, and we adopted a patch size of 160 
× 160 pixels, so the number of patches per image is 1024. Each patch 
contains roughly 30 cells. Second, we extracted vector-quantized fea-
ture maps by applying the trained VQ-VAE-2 model to all the patches. 
Here we have two feature maps with different resolutions (20 and 40 
pixels each) per patch. Third, we counted the appearance frequencies 
of each embedding vector from the feature maps for all the patches. 
We totaled these and normalized the total frequency of embedding 
vectors by each resolution after adding a pseudo count of 1 to pre-
vent zeros from being used in the next step and then computed the 
logarithm of base 2 to get the sample’s profile.

Gene expression prediction model training
We applied SVR to predict the gene expression of each sample from 
sample-level image features using the scikit-learn machine learning 
library in Python. Training of SVR models and optimization of the 
model hyperparameters were done for each gene; in other words, 
we constructed as many SVR models as target genes (n = 218). For 
SVR models, the linear kernel function was adopted, and hyperpa-
rameters (C, epsilon) were searched from the following lists by a 
grid-search algorithm with threefold cross-validation in the training 
data set:

C: [1,2,3, …,100]

epsilon: [0, 0.05, 0.10, …, 0.50]

Hierarchical clustering
Hierarchical clustering was performed using the linkage function of 
the Scipy library. The Ward method was used to calculate distances. 
For images, clustering was performed on the image features of each 
sample. For gene expression, clustering was performed for the ex-
pression profiles of the extracted 218 genes after normalization.

Morphology feature association study
Gene prediction was performed for 10 representative images se-
lected from each sample. The VQ-VAE-2 model trained with the 
images of a single data set (A3) was applied to all patches of the 
selected images to obtain image features for each patch. Then the 
SVR models to predict genes were applied to the image features. 
Each SVR model was applied only to the image features calculated 
from the data set that the model was trained with. The KLF4 predic-
tion model was applied to the image features obtained from the 
data set of experiment A. The CSNK1E prediction model was ap-
plied to the image features obtained from the data set of experi-
ment B. To obtain gene expression levels patch-wisely, the feature 
averaging step was omitted.

Data and code availability
We used the VQ-VAE-2 implementation from https://github.com/
rosinality/vq-vae-2-pytorch and did not make any modifications. All 
the relevant parameters for model training and feature extraction 
are documented above.
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