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Predicting compound activity from pheno-
typic profiles and chemical structures

Nikita Moshkov1,2, Tim Becker 1, Kevin Yang3, Peter Horvath2, Vlado Dancik1,
Bridget K. Wagner 1, Paul A. Clemons 1, Shantanu Singh 1,
Anne E. Carpenter 1 & Juan C. Caicedo 1

Predicting assay results for compounds virtually using chemical structures and
phenotypic profiles has the potential to reduce the time and resources of
screens for drug discovery. Here, we evaluate the relative strength of three
high-throughput data sources—chemical structures, imaging (Cell Painting),
and gene-expression profiles (L1000)—to predict compound bioactivity using
a historical collection of 16,170 compounds tested in 270 assays for a total of
585,439 readouts. All three data modalities can predict compound activity for
6–10% of assays, and in combination they predict 21% of assays with high
accuracy, which is a 2 to 3 times higher success rate than using a single
modality alone. In practice, the accuracy of predictors could be lower and still
be useful, increasing the assays that can be predicted from 37% with chemical
structures alone up to 64% when combined with phenotypic data. Our study
shows that unbiased phenotypic profiling can be leveraged to enhance com-
pound bioactivity prediction to accelerate the early stages of the drug-
discovery process.

Drug discovery is very expensive and slow. To identify a promising
treatment for specific disease conditions, the theoretical landscape of
possible chemical structures is prohibitively large to test in physical
experiments. Pharmaceutical companies synthesize and test millions
of compounds, yet even these represent a small fraction of possible
structures. Furthermore, although complex phenotypic assay systems
have proven valuable for identifying useful drugs for diseaseswhere an
appropriate protein target is unknown1–3, their reliance on expensive
or limited-supply biological materials, such as antibodies or human
primary cells, often hinders their scalability.

Chemoinformatics has a long history of studying the problem of
molecular property prediction4. The analysis of chemical structure
alone requires no laboratorywork for the compoundswhose activity is
to be predicted, and the compounds do not even need to exist phy-
sically, which is dramatically cheaper than physical screens and
enables a huge search space. This approach has been used to synthe-
size and test promising compounds, and has resulted in novel ther-
apeutics, including the discovery of a new antibiotic5. Many recent

advances leverage deep learning formulations6–19, but there are still
open challenges to realize the full potential of molecular property
prediction, including data sparsity and imbalance17, and activity cliffs20

among others. Using only chemical structures might have other lim-
itations due to lack of information on biological contexts or how living
organisms respond to treatments.

Considerable improvements might come from augmenting che-
mical structure-based features with biological information associated
with each small molecule, ideally information available in inexpensive,
scalable assays that could be run onmillions of compounds once, then
used to predict assay results virtually for hundreds of other individual
assays. Most profiling techniques, such as thosemeasuring a subset of
the proteome or metabolome, are not scalable to millions of com-
pounds. One exception is transcriptomic profiling by the L1000
assay21, which has shown success for mechanism of action (MOA)
prediction22, but is untested for predicting assay outcomes.

Image-based profiling is an even less expensive high-throughput
profiling technique23,24. It has proven successful inMOAprediction24 as

Received: 24 May 2022

Accepted: 23 March 2023

Check for updates

1Broad Institute of MIT and Harvard, Cambridge, USA. 2Biological Research Centre, Szeged, Hungary. 3University of California, Berkeley, USA.
e-mail: jcaicedo@broad.mit.edu

Nature Communications |         (2023) 14:1967 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9615-0799
http://orcid.org/0000-0001-9615-0799
http://orcid.org/0000-0001-9615-0799
http://orcid.org/0000-0001-9615-0799
http://orcid.org/0000-0001-9615-0799
http://orcid.org/0000-0002-2629-361X
http://orcid.org/0000-0002-2629-361X
http://orcid.org/0000-0002-2629-361X
http://orcid.org/0000-0002-2629-361X
http://orcid.org/0000-0002-2629-361X
http://orcid.org/0000-0002-1800-5112
http://orcid.org/0000-0002-1800-5112
http://orcid.org/0000-0002-1800-5112
http://orcid.org/0000-0002-1800-5112
http://orcid.org/0000-0002-1800-5112
http://orcid.org/0000-0003-3150-3025
http://orcid.org/0000-0003-3150-3025
http://orcid.org/0000-0003-3150-3025
http://orcid.org/0000-0003-3150-3025
http://orcid.org/0000-0003-3150-3025
http://orcid.org/0000-0003-1555-8261
http://orcid.org/0000-0003-1555-8261
http://orcid.org/0000-0003-1555-8261
http://orcid.org/0000-0003-1555-8261
http://orcid.org/0000-0003-1555-8261
http://orcid.org/0000-0002-1277-4631
http://orcid.org/0000-0002-1277-4631
http://orcid.org/0000-0002-1277-4631
http://orcid.org/0000-0002-1277-4631
http://orcid.org/0000-0002-1277-4631
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37570-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37570-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37570-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37570-1&domain=pdf
mailto:jcaicedo@broad.mit.edu


well as compound bioactivity determination during structure-activity
relationship synthetic chemistry cycles25. In an innovative study, Simm
et al.26 successfully repurposed images from a compound library
screen to train machine learning models to predict unrelated assays;
their prospective tests yielded 60- to 250-fold increased hit rates while
also improving structural diversity of the active compounds. More
recently, Cell Painting27,28 and machine learning have been used to
predict the outcomes of other assays aswell, usingCellProfiler features
for cell health analysis29, and convolutional neural networks for com-
pound bioactivity prediction30. Notably, these studies show how ima-
ging can be leveraged for assay prediction, but do not consider other
sources of phenotypic data in the process.

The complementarity and integration of profiling methodologies
and chemical structures to predict compound bioactivity holds pro-
mise to improve performance, and has been studied in various ways.
The relationships between chemical structures and phenotypic pro-
files (including cellmorphology and transcriptional profiles) have been
investigated to predict chemical library diversity31. Other studies have
looked at combinations of profiles, such as integrating imaging and
chemical structures to complete assay readouts in a sparse matrix32,
combining L1000 and Cell Painting for MOA prediction22, and inte-
grating morphology, gene expression and chemical structure for
mitochondrial toxicity detection33.

In this work, we aim to evaluate the predictive power of chemical
structures, cell morphology profiles, and transcriptional profiles, to
determine assay outcomes computationally at large scale. This study
does not aim to make predictions in specific assays, which may result
in anecdotal success, but rather aims to assess the relative potential of
data sources for assay prediction, to guide the design of future pro-
jects. Our goal is to train machine learning models that predict com-
pound bioactivity taking as input high-dimensional encodings of
chemical structures or with two different types of experimentally-
produced phenotypic profiles, imaging (Cell Painting assay) and gene
expression (L1000 assay) (Fig. 1). Our hypothesis is that data repre-
sentations of compounds and their experimental effects in cells have
complementary strengths to predict assay readouts accurately, and
that they can be integrated to improve compound prioritization in
drug-discovery projects.

Results
Chemical structure, morphology, and gene expression profiles
provide complementary information for prediction
We first selected 270 assays performed at the Broad Institute over
more thana decade (Fig. 1); the assayswerefiltered to reduce similarity
(Fig. 1D) but not selected based on any metadata and thus are repre-
sentative of the activity of an academic screening center. Then, we
extracted a complete matrix of experiment-derived profiles for 16,170
compounds, including gene-expression profiles (GE) from the L1000
assay34,35 and image-based morphological profiles (MO) from the Cell
Painting assay35,36. We also computed chemical structure profiles (CS)
using graph convolutional nets18 (Fig. 1 and Methods). Finally, assay
predictors were trained using a multi-task setting and evaluated fol-
lowing a 5-fold cross-validation scheme using scaffold-based splits
(Methods and Supplementary Figs. 1, 2 and 10). This evaluation aims to
quantify the ability of the three data modalities to independently
identify hits in the set of held-out compounds (which had compounds
of dissimilar structures to the training set, to prevent learning assay
outcomes for highly structurally similar compounds).

We found that all three profile types (CS, GE, andMO) can predict
different subsets of assayswith high accuracy, revealing a lackofmajor
overlap among the prediction ability by each profiling modality alone
(Fig. 2B, Supplementary Fig. 4). This indicates significant com-
plementarity, that is, each profiling modality captures different bio-
logically relevant information. In fact, only 11 of the 270 assays
“overlapped” and were predictable using more than one of the single

modalities, and none could be accurately predicted by all three of the
single profilingmodalities (medianoverlapover 5-fold cross-validation
is zero). CS shares threewell-predicted assays in commonwithMOand
two with GE, while MO and GE share six, indicating that CS captures
slightly more independent activity. MO profiles predicted 19 assays
that are not captured by chemical structures or gene expression alone,
the largest number of unique predictors among allmodalities (Fig. 2B).

MO is able to predict the largest number of assays individually (28
vs 19 for GE and 16 for CS) (Fig. 2C), although if a lower accuracy
threshold is sufficient (AUROC>0.7), CS can predict around the same
number of assays asMO, while GE still trails (Fig. 2A).We use the count
of predictors with AUROC>0.9 as our primary evaluation metric,
following past studies of assay prediction5,22,26, although 0.7 is not
unreasonable in practice; one would need to select more compounds
to obtain sufficient hits in follow-up testing. The results in Fig. 2 reveal
the extent to which profiling modalities capture specific bioactivity
and confirm that they are indeed mostly different from each other.

Combining phenotypic profiles with chemical structures
improves assay prediction ability
Ideally, combining modalities should leverage their strengths and
predict more assays jointly, by productively integrating data. Mor-
phology and gene-expressionprofiles requirewet lab experimentation,
whereas chemical structures are always available. Therefore, we took
CS as a baseline and explored the value of adding phenotypic profiles
to it. We used late data fusion, which builds assay predictors for each
modality independently, and then combines their output probabilities
using max-pooling (Supplementary Fig. 9). This is in contrast to early
data fusion, which builds assay predictors that concatenate the fea-
tures in the input (Methods—Data fusion). The goal of using these
simple data fusion strategies is to evaluate the extent to which data
modalities are complementary to each other and that combining them
can result in improved performance. Thus, late data fusion serves to
establish a baseline for future data integration research.

We first integrated data from different profiling methods using
late data fusion and evaluated the performance of combined pre-
dictors using the same 5-fold cross-validation protocol described for
individual profiling modalities. We found that adding morphological
profiles to chemical structures yields 31 well-predicted assays (CS +
MO) as compared to 16 assays for CS alone (Fig. 3C). By contrast,
adding gene expression profiles to chemical structures by late data
fusion increased the number of well-predicted assays as compared to
CS alone only by two assays (18 vs 16 respectively, Fig. 3C). For both
phenotypic profiling modalities, early fusion (concatenation of fea-
tures before prediction) performedworse than late fusion (integration
of probabilities after separate predictions, see Methods), yielding
fewer predictors with AUROC>0.9 for all combinations of data types
(Supplementary Fig. 9 and Supplementary Table 3). The results
represent an opportunity for enhancing computational fusion strate-
gies (see Methods—Data fusion).

Next, we counted the number of unique assays predicted by any
of the individual profilingmodalities using a retrospective assessment,
which estimates the performance of an ideal data fusion method that
perfectly synergizes all modalities. Note that this retrospective
assessment is not blind, and simulates a decision maker that chooses
the best predictor for an assay after looking at their performance in the
hold-out set. It is used here to report the total number of assays that
can be successfully predicted using one or another strategy. For
example, we found that using the best profiling modality from a given
pair can predict around 40 assays (Fig. 3D, row “Single”). We use the★
symbol to denote choosing the best among profiling modalities in
retrospect, and the + symbol to denote combining modalities by data
fusion.

In retrospect, there are six unique assays that are well predicted
using fused CS +MO that could not be captured by either modality
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Fig. 1 | Overview of the workflow and data. A Workflow of the methodology for
predicting diverse assays from perturbation experiments (more details in Supple-
mentary Figs. 1 and 2). B Types of assay readouts targeted for prediction, which
include a total of eight categories (Supplementary Fig. 15). C Structure of the input
andoutput data for assayprediction.D Similarity of assays according to the Jaccard
similarity between sets of positive hits. Most assays have independent activity

(Supplementary Fig. 13). E UMAP visualizations of all compounds in the three fea-
ture spaces evaluated in this study (Supplementary Fig. 10). CS (yellow) Chemical
Structure, GE (blue) Gene Expression, MO (green) Morphology. F Distribution of
assay readouts for assays in the horizontal axis sorted by readout counts. The
available examples follow a long tail distribution and the average ratio of positive
hits to tested compounds (hit rate) is 2.548%.
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alone, indicating complementarity to improve performance for these
six assays. Adding them to the list of assays that canbepredicted using
the singlebest fromCS★MOwould yield 44well-predicted assays total
(Fig. 3D, row “Plus fusion”), resulting in potential to predict almost
three times the number of assays compared to CS alone (16).
Improvements when adding MO to CS were consistently found across
other evaluation metrics (AUROC>0.7 in Supplementary Fig. 3 and
Supplementary Table 3) andwhen addingmorphological profiles to all
other data types and combinations (Fig. 3D).

At an AUROC>0.9, the 44 unique assays that are well predicted
with CS★MO represent 16% of the total. An AUROC of 0.7 could be
acceptable to find useful hits in real-world projects5,26; we found that
for assays with a low baseline hit rate, this accuracy level may be suf-
ficient to increase the ability to identify useful compounds in the
screen (Supplementary Fig. 3). If a cutoff of AUROC>0.7 was found to
be acceptable, 58%of assayswould bewell predictedwithCS★MO(157
out of 270, Supplementary Fig. 3).

The performance of CS★GE also increased the number of assays
that CS can predict alone from 16 to 33 at AUROC>0.9. There are four
more assays that are well predicted using fused CS +GE, which results
in 37 unique assays well predicted by both modalities in retrospect.
Gene expression also yields similar results when combined with mor-
phology, yielding 41 assays with GE★MO, and predicting seven

additional assays jointlywhenusing data fusion (GE +MO) for a total of
48 unique assays together.

Complementarity across all three profiling types
Wehypothesized that data fusion of all threemodalities would provide
the best assay prediction ability than any individual or subset. How-
ever, data-fused CS +GE +MO yielded 28 well-predicted assays
(Fig. 3C), which was the same as MO alone (28 assays) and fewer than
could be obtained by data-fused CS + MO (31 assays). All of these fall
short of the 52 unique assays that, in retrospect, could be identified by
taking the single best of any of the three data types CS★MO★GE
(Fig. 3D). This highlights the need for designing improved strategies
for data fusion; early fusion did not improve the situation (Supple-
mentary Fig. 9 and Supplementary Table 3).

Likewise, considering the best single, pairwise and all-fused pre-
dictors and their combinations, the three data modalities have the
potential to accurately predict 57 assays jointly at 0.9 AUROC, not a
dramatic improvement compared to 52 unique assays that, in retro-
spect, could be identified by taking the single best of any of the three
data types using CS★MO★GE (Fig. 3D). Nevertheless, 57 assays
represents 21% of the 270 assays considered in this study. With a
threshold of 0.7 AUROC (Supplementary Fig. 3), the three modalities
can predict 117 assays using data fusion (43% of all 270), and with their

Fig. 2 | Numberof assays that canbe accurately predicted using singleprofiling
modalities. All reported numbers are the median result of the five-fold cross-
validation experiments run in the dataset. A Performance of individual modalities
measured as the number of assays (vertical axis) predicted with AUROC above a
certain threshold (horizontal axis). With higher AUROC thresholds, the number of
assays that can be predicted decreases for all profiling modalities. We define
accurate assays as those with AUROCgreater than 0.9 (dashed vertical line in blue).
B The Venn diagrams on the right show the number of accurate assays (median
AUROC>0.9) that are in common or unique to each profiling modality. The bar
plot shows the distribution of assay types correctly predicted by single profiling

modalities. C Distribution of performance of datamodalities over all assays. Points
are the median AUROC scores of n = 270 assays. Box plot elements: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, all points presented using a swarmplot. D Number of assays well predicted
(median AUROC>0.9) by each individual modality (first row is the same as in
Fig. 3B). E Performance of chemical structure features on the assay prediction task:
graph convolutions are learned representations, while Morgan Fingerprints are
classical representations. CS Chemical Structure, GE Gene Expression, MO Mor-
phology, AUROC Area under the receiver operating characteristic, AUPRC Area
under the precision recall curve, Conv convolutions, FP fingerprints.
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retrospective combinations the list grows to 174 assays (64% of all
270).We therefore conclude that if allmodalities are available, they are
all useful to increase predictive ability, as they appear to capture dif-
ferent aspects of perturbed cell states.

Models can predict a diversity of assay types
The morphological and gene-expression profiles used for model
training derive from cell-based profiling assays. They can correctly
predict compound activity for mammalian cell-based assays, which
were the most frequent in this study (Fig. 1B, Supplementary Fig. 15),
but also other assay types, such as bacterial and biochemical (Figs. 2B,
3A, Supplementary Figs. 14, 15, SupplementaryTable 5). Still, cell-based
assays were the best-predicted by the phenotypic profiles as well as by
chemical structures: from 156 cell-based assays, 11, 18, and 21 are
accurately predicted by CS, GE and MO respectively (7%, 11%, 13%); by
contrast, from 59 biochemical assays, 4, 0 and 1 were predicted by CS,
GE and MO respectively (6%, 0%, 1.7%).

We nevertheless conclude that well-predicted assays include
diverse assay types, i.e., phenotypic profiling strategies are not
constrained to predict cell-based assays only, even though both

profiling methods are cell-based assays themselves. Each modality
predicted assays in 2-4 of the 8 assay categories when used
alone (Fig. 2B).

As noted above, only a few assays benefit from combining infor-
mation from various profiling modalities. We examined four assays
with increased fused accuracy more closely (Fig. 4). The CFTR activity
assay, a cell-based assay, can be predicted with an AUROC of 0.88
using CS alone, but when combined with MO using data fusion, the
performance increases to AUROC 0.97. Similarly, the Ras selective
lethality assay reaches a maximum accuracy of 0.69 using GE alone,
but when MO and GE are combined, accuracy increases to 0.90
AUROC, increasing performance from low to highly accurate. These
two assays have rare hits and benefitmore fromdata fusion, compared
to the other two examples in Fig. 4 (esBAF inhibitor and SirT5 activity)
which also benefit from data fusion but to a lesser degree (e.g.,
increasing performance from 0.79 to 0.83). These examples indicate
that fusing information from various modalities can improve pre-
dictive performance, but the fusion result may depend on several
factors such as the diversity and availability of training examples and
the biology measured by the specific assay.

Fig. 3 | Number of assays that can be accurately predicted using combinations
of profiling modalities. Accurate predictors are defined as models with accuracy
greater than 0.9 AUROC. We considered all four modality combinations using late
data fusion in this analysis: CS +MO (chemical structures andmorphology),CS +GE
(chemical structures and gene expression), GE +MO (gene expression and mor-
phology), and CS +GE+MO (all three modalities). A The Venn diagram shows the
number of accurately predicted assays that are in common or unique to fused data
modalities. Thebar plots in the center show thedistributionof assay types correctly
predicted by the fused models. All counts are the median of results in the holdout
set of a fivefold cross-validation experiment. B Performance of individual mod-
alities (same as in first row of Fig. 2D). C The number of accurate assay predictors
(AUROC>0.9) obtained for combinations of modalities (columns) using late data
fusion following predictive cross-validation experiments. D Retrospective perfor-
mance of predictors using oracle counts. These counts indicate how many unique
assays can be predictedwith high accuracy (AUROC>0.9), either by single or fused
modalities. “Single” is the total number of assays reaching AUROC>0.9 with any

one of the specified modalities, i.e., take the best single-modality predictor for an
assay in a retrospective way. This count corresponds to the simple union of circles
in the Venn diagram in Fig. 2B, i.e., no data fusion is involved. “Plus fusion” is the
same, except that it displays the number of unique assays that reach AUROC>0.9
with any individual or data-fused combination. This count corresponds to the union
of circles in the Venn diagram in Fig. 2B plus the number of additional assays that
reach AUROC>0.9 when the modalities are fused. For example, the last column
counts an assay if its AUROC>0.9 for any of the following: CS alone, GE alone, MO
alone, data-fused CS +GE, data-fused GE +MO, data-fused CS+MO, and data-fused
CS +GE+MO. EDistribution of performance of combinations of predictors over all
assays. Points are the median AUROC scores of n = 270 assays. Box plot elements:
center line, median; box limits, upper and lower quartiles; whiskers, 1.5x inter-
quartile range; points, all points presented using a swarmplot. CS Chemical
Structure, GE Gene Expression, MO Morphology, AUROC Area under the receiver
operating characteristic, + late fusion, ★ choose best.
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Assay predictors trained with phenotypic profiles can improve
hit rates
Predictive modeling using machine learning to reuse phenotypic
profiles in a large library of compounds can enable virtual screening to
identify candidate hits without physically running the assays. Here, we
compare the hit rate of testing only the top predicted candidates
obtained with a computational model, vs the empirical hit rate of
testing a large subset of candidate compounds physically in the lab
(Supplementary Fig. 6) using the enrichment factor37,38.

We found that predictors meeting AUROC>0.9 in our experi-
ments obtain on average an enrichment factor of 26 to 48 (Supple-
mentary Figs. 6 and 7) for assays with a baseline hit rate below 1%. A
baseline hit rate below 1% means that hits are rare for such assays, i.e.,
to find a hit we need to test at least 100 compounds randomly selected
from the library. Assays with low hit rates are the goal in real-world
screens, and therefore, more expensive to run in practice. With com-
putational predictions obtaining enrichment factors of around 30, the
speed and return on investment could be potentially high. We also
note that for assayswith higher baseline hit rates (e.g., 10% to 50%), the
machine learning models can reach the theoretical maximum enrich-
ment by accurately predicting all the hits at the top of the list (Sup-
plementary Fig. 7). We conclude that when assay predictors are
accurate enough, they make prioritizing and testing predicted

compounds worthwhile and can thus significantly accelerate com-
pound screening and reduce the resources required to identify
useful hits.

Discussion
Compound bioactivity prediction and virtual screens have a long his-
tory in drug discovery, and these strategies could be enriched
with ever-increasing rich phenotypic data and cutting-edge computa-
tional methods. Here, we used the Chemprop model for learning
predictors from chemical structures, and to combine the molecular
fingerprint with phenotypic profiles obtained from images (Cell
Painting) and gene expression (L1000).We conducted this study using
baseline feature representations, and arguably, the results could be
improved in future research by using alternative chemical structure
embeddings39–41, learned image features42–44, or latent spaces for gene
expression45,46.

The novelty of our study is not that compound bioactivity can be
predicted; previous studies have successfully reported evidence of
chemical structures and phenotypic data being useful for identifying
previously uncharacterized compounds5,26. Instead, we focused on
collecting and standardizing data to evaluate the individual strengths
of three different modalities for assay prediction using a unique
dataset with two types of phenotypic profiles in addition to chemical

Fig. 4 | Prediction performance of example assays where data fusion success-
fully improves prediction accuracy. Not all assays benefit from data fusion: see
Fig. 3 for summary statistics of all assays. The plots are Receiver Operating Char-
acteristic (ROC) curves and the area under the curve (AUROC) is reported for each
modality with the corresponding color. A Four example assays from left to right:
Cystic fibrosis transmembrane conductance regulator CFTR (cell-based), Ras

selective lethality (cell-based), esBAF inhibitor (cell-based), SirT5 (biochemical).
B Performance of predictors for the same assays when using combinations of
profiling methods. C Table of AUROC scores of the four example assays (rows)
according to predictors with individual and combined data modalities (columns).
Numbers in bold are the highest AUROC scores for each assay (in a row). Abbre-
viations. CS: Chemical Structure, GE: Gene Expression, MO: Morphology.
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structures. Our results indicate that these three modalities have dif-
ferent predictive abilities, opening the possibility to combine them for
improving performance. Assay prediction is a difficult problem
because there are many factors influencing success, including the
chemistry and biology of the disease of interest. Our study is one step
forward in understanding assay predictability using phenotypic pro-
filing, and provides historical data with a retrospective analysis to help
realize the potential of designing methodologies in the future.

We discovered that all three profile modalities—chemical struc-
ture, morphology, and gene expression—offer independently useful
information about perturbed cell states that enables predicting dif-
ferent assays. Chemical structure is always readily available for a given
compound. The two profiling modalities that require physical experi-
mentation bring different strengths to the assay prediction problem,
and they can be leveraged to run virtual screens to prioritize com-
pound candidates in drug-discovery projects. In retrospect, we found
that data fusion strategies increased the number of well-predicted
assays by 12–21%, depending on the subset of modalities tested, as
compared to simply using each profilingmodality independently. This
argues for further research on howbest to integrate disparate profiling
modalities, capturing the strengths of each individually, as well as the
complementarity of their combinations.

In our analysis, we set a high bar by calling successful predictors
only those that reach AUC>0.9. In practice, the accuracy of predictors
could be lower and still result in a useful ranking of candidates to
optimize hit search. Previous studies have found useful hits with pre-
dictors between0.7 and0.8AUC5,26.We observed 51–64%of all the 270
assays being predictable with an accuracy above 0.7 AUC, depending
on what modalities are combined. This is in contrast to 37% of assays
predictable with the chemical structure alone at the 0.7 AUC level,
confirming that phenotypic data significantly increase the chances of
creating successful predictors in practice. We also performed most of
the enrichment factor analyses on the top 1% of predictions, which is
very selective. In real-world projects, up to 10% of compounds might
be tested, which increases the chances of finding relevant hits when
combined with a sufficiently good predictor.

Phenotypic profiling is reusable across studies. A library of com-
pounds screened with imaging or gene expression can be reused to
predict future assays because profiling is unbiased (non-targeted),
making it a long-term investment rather than a recurrent cost. In our
study, we reused unbiased phenotypic data to predict 270 different
assays, highlighting the breadth of bioactivity that could be decoded
from a single phenotypic profiling dataset. These datasetsmay already
exist in the form of historical data, may be publicly available, or could
be acquired efficiently (e.g., Cell Painting). If the dataset covers a large
enough library of compounds, new assays could be tested in a sparse
subset of examples to create a training set for predicting and prior-
itizing the rest. It also remains to be explored what determines if an
assay is likely to be predictable, such as the target and assay type
(unavailable for this dataset), the specific biology of the disease, or the
correlations between the bioactivity of interest and profiling
modalities.

Based on our results, and depending onwhether anAUROCof 0.9
or 0.7 is the threshold for accuracy needed given the baseline hit rate
of the assay, 21-64% of assays should be predictable using a combi-
nation of chemical structures, morphology and gene expression, sav-
ing the time and expense of screening these assays against a full
compound library. Especially considering potential improvements in
data integration and machine learning techniques, this strategy might
accelerate the discovery of useful chemical matter.

Methods
Profiling datasets
We used a compound library of over 30,000 compounds previously
screened at high-throughput using Cell Painting and L1000

platforms35, which generate morphological and transcriptional profil-
ing data, respectively. Theoriginal study usedU2OS cells plated in 384-
well plates and treated themwith the libraryof 30,000compounds in 5
replicates, using DMSO as a negative control. Of all the compounds,
about 10,000 came from the Molecular Libraries Small Molecules
Repository, 2200 were drugs and small molecules, and the remaining
18,000 were previously uncharacterized compounds derived from
diversity oriented synthesis. These profiling datasets were publicly
available and accessible in various formats and levels of preprocessing
or aggregation beforewe started our project. In our study, we used the
well-level and treatment-level aggregateddata from themorphological
profiling dataset, and the treatment-level profiles of the transcription
profiling dataset for machine learning-based analysis.

Assay readouts
We collected a list of 529 assays from drug discovery projects con-
ducted at the Broad Institute at different scales, and we kept those
where at least a subset of the small molecules in the compound library
described above was tested. After administrative filtering and meta-
data consistency, we kept a subset of 496 candidate assays for this
study. We prepared assay performance profiles following a double
sigmoid normalizationprocedure to ensure that all readouts are scaled
in the same range47. Then, we computed the Jaccard similarity of hits
between pairs of assays to estimate the common set of compounds
detected by them, and then removed assays that measure redundant
compound activity (Supplementary Fig. 13). That resulted in a final list
of 270 assays with their corresponding readout results (Supplemen-
tary Fig. 12), and the compound-assay matrix had 13.4% of known
entries (86.6% sparsity).

Training/Test splits
We aimed to evaluate the ability of each data modality to predict
assays for chemical structures that are distinct relative to training data.
This is because there is little practical value to screen for additional,
similar structures (scaffolds) to compounds already known to have
activity; in drug discovery, any compounds with positive activity
undergo medicinal chemistry where small variations in structure are
synthesized and tested to optimize the molecule. We therefore report
results using cross-validation partitions that ensure that similar classes
of structures are not included in both the training and hold-out sets,
given that this scheme corresponds to the most practical, real-world
scenario (Supplementary Fig. 10).

We used 5-fold cross-validation using Bemis-Murcko clustering48,49,
and assigned clusters to training or test sets in each fold accordingly.
The main experimental design for the results reported in the main text
is illustrated in Supplementary Figs. 1 and 2. The distribution of che-
mical structure similarity according to the Tanimoto coefficient metric
onMorgan fingerprints (radius = 2) is reported in Supplementary Fig. 11
for each of the 5 cross-validation groups. As additional control tests, we
run 5-fold cross-validation experiments following the same design as
above but splitting the data according to k-means clusters in the mor-
phology feature space and in the gene-expression space (Supplemen-
tary Fig. 10 and Supplementary Table 4), as well as a control experiment
with fully random splits (Supplementary Table 4).

The control splits basedon randomizeddata aswell as theMOand
GE modalities were used to check for and identify potential biases in
the data. These splits do not have practical applications in the lab, and
were used as computational simulations to test the alternative
hypothesis that predictors have a disadvantage when the training data
are drawn from a distribution that follows similarities in CS, MO or GE.
The results in Supplementary Table 4 indicate that there is no major
change in performance when using CS, GE or random splits; however,
MO splits reduced performance significantly for all data modalities.
This process revealed the need to correct for batch effects in MO data
tominimize the influence of technical artifacts. All results presented in
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the main text were obtained from MO data that has been batch cor-
rected (see Image-based morphological profiles below).

When training models using the Chemprop software, we did not
use automatic data balancing. Data balancing is an important issue to
address, and has been investigated widely in molecular property
prediction17. In our preliminary experiments, we did not observe a
major impact, on average, when using or not using balancing in our
large-scale evaluation with all 270 assays (see Supplementary Table 1).
The data imbalance was addressed by sampling the same number of
positive and negative examples for each molecule during training,
using the built-in Chemprop balancing functionality. We observe a
moderate correlation between the number of available training
examples and the predictive performance of the model for assays
(Supplementary Fig. 5), suggesting that the amount of data is not as
important as the quality of the selected training examples.

Representation of chemical structures (CS) using Chemprop
We used the Chemprop software (http://chemprop.csail.mit.edu/) to
train directed-message passing neural networks for learning chemical
structure embeddings. The software reconstructs amolecular graphof
chemicals from their SMILES string representation, where atoms are
nodes and bonds are edges. From this graph, a model applies a series
of message passing steps to aggregate information from neighboring
atoms andbonds to create a better representation of themolecule. For
more details about the model and the software, we refer the reader to
prior work5,18,50. In addition to learning representations for chemical
structures, we used Chemprop to run all the machine learning models
evaluated in this work to base all the experiments on the same com-
putational framework. Also, we evaluated the predictivemodels for CS
using learned features as well as Morgan fingerprints computed with
the RDKit software (radius=2), and we found that both yield compar-
able results in our main experiments (Fig. 2E and Supplementary
Table 4, columns CS-GC [Graph Convolutions] and CS-MF [Morgan
Fingerprints]).

The representation of chemical structures is learned from the
set of ~13,000 training examples, unlike morphological or gene-
expression features, which were obtained without learning methods
(hand-engineered features). The scaffold split used in our experiments
may pose an apparent disadvantage to the learning of chemical
structure representations because it may not learn to represent
important chemical features in new scaffolds. Previous research by
Yang et al.18 has shown that Chemprop can generalize to new scaffolds
accurately. In addition, the chemicals may also generate new pheno-
types in the morphological and gene-expression space, which are not
seen by the models during training, resulting in a fair comparison of
representation power among all modalities. We tested the effect of
creating partitions with other modalities other than scaffolds from
chemical structures, and we discuss these results in the Train / Test
splits subsection above as well as in Supplementary Table 4 and Sup-
plementary Fig. 10.

Image-based morphological (MO) profiles from the Cell Paint-
ing assay
Before computing treatment-level profiles, we used the Typical
Variation Normalization (TVN)51 transform to correct for batch
effects using well-level profiles (see Supplementary Fig. 10). TVN is
calculated using DMSO control wells from all plates to compute a
sphering transform that reduces the data to a white noise distribution
by inverting all the non-zero eigenvalues of the matrix. This transfor-
mation is later used to project all treatment wells in a new space,
where controls have a neutral representation and treatments may
have phenotypic variations highlighted. This transform minimizes
batch effects by obtaining a feature space where the technical varia-
tions sampled from controls are neutralized to enhance the biological
signal.

After applying the TVN transform at the well-level profiles, we
aggregate them into treatment-level profiles to conduct our assay
prediction experiments. Supplementary Fig. 10 shows UMAP plots of
the morphology data before and after the TVN transformation. In our
study, we used treatment-level profiles in all experiments. For more
details about Cell Painting28, CellProfiler52, and the profiling steps23, see
the corresponding references.

Gene-expression (GE) profiles from the L1000 assay
The L1000 assay measures transcriptional activity of perturbed
populations of cells at high-throughput. These profiles contain mRNA
levels for 978 landmark genes that capture approximately 80% of the
transcriptional variance21. The assay was used to measure gene
expression in U2OS cells treated with the set of compounds in our
library. Both the profiles and the tools to process this information are
available at https://clue.io/.

Predictive model
The predictivemodel is a feedforward, fully connected neural network
with up to three hidden layers and ReLU activation functions. This
simple architecture takes as input compound features (or phenotypic
profiles) and produces as output the hit probabilities for all assays (see
Supplementary Fig. 8).When the representationof chemical structures
is learned, additional layers are created before the predictivemodel to
compute the message passing graph convolutions. These extra layers
and their computation follow the default configuration of Chemprop
models18 and are only used for chemical structures.

The model architecture described above is trained in a multi-task
manner7, allocating a binary output for each assay.We used the logistic
regression loss function on each assay output and the total loss is the
sum of losses for all assays. During training, the model computes this
loss for each assay output independently using the available readouts.
If the assay readout is not available for some compounds in the mini-
batch, these outputs are ignored and not taken into account to cal-
culate gradients. This setup facilitates learning predictive models with
sparse assay readouts.We use amini-batch size of 50 compounds with
a sparse matrix of 270 labels, and no explicit class balancing was
applied during training.

The hyperparameters of the network are optimized on the train-
ing data for each feature grouping and for each cross-validation round.
These parameters are: number of fully connected layers (choice
between 1, 2 or 3), dropout rate for all layers (between 0 and 1), and
hidden layer dimensionality (if applicable, between 100 and2500). The
best parameters are identified by further splitting the training set into
three parts, with proportions 80% for training, 10% for validation and
10% for reporting hyperparameter optimization performance. Then,
these parameters are used to train a final model that is used to make
predictions in the hold-out partition of the corresponding cross-
validation set.

Data fusion
The input to the neural network can be the features of one or all
modalities used in our experiments. To combine information from
multiple data modalities, we used two strategies (Supplementary
Fig. 9): (A) early data fusion, where feature vectors from two or three
modalities are concatenated into a single vector. (B) Late data fusion,
where each modality is used to train a separate model, and then the
prediction scores for a new sample are aggregated using themaximum
operator. Our results show that, despite its simplicity, late data fusion
works best in practice (see SupplementaryTable 3), but the results also
suggest that more research needs to be done to effectively combine
multiple data modalities.

Combining disparate data modalities (sometimes called multi-
modal or multi-omic data integration) is an unmet computational
challenge especially when not all the assays can be accurately
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predicted. Our results indicate that the three data modalities do not
predict any assays in common (Fig. 2B, no assays are predicted by all
modalities when used independently), suggesting that in most cases,
at least one of the data modalities will effectively introduce noise for
predicting a given assay.Whenoneof thedatamodalities cannot signal
the bioactivity of interest, the noise-to-signal ratio in the feature space
increases, making it more challenging for predictive models to suc-
ceed. This explains why late fusion, which independently looks at each
modality, tends to produce better performance.

Performance metrics
To evaluate the performance of assay predictors we used the area
under the receiving operating characteristic (ROC) curve, also known
as theAUROCmetric,whichhas a baseline randomperformanceof 0.5.
During the test phase, we run themodel over all compounds in the test
set to obtain their hit probabilities for all assays. With these prob-
abilities,wecomputeAUROC for each assay usingonly the compounds
that have ground truth annotations (either positive hits or negative
results), and we ignore the rest of the compounds that have no
annotation for that assay (unknown result or compound never tested).

We define a threshold of AUROC>0.9 to identify assays that can
be accurately predicted, and with this threshold, our second perfor-
mancemetric is focused on counting howmany assays, from the list of
270 in our study, can be accurately predicted. For comparison, we also
calculated Average Precision (AP) and area under the precision-recall
curve (AUPRC) which are reported in Supplementary Tables 1–4.

In addition, wemeasured the enrichment factor (EF) for individual
assays37. This metric was designed for evaluating early recognition
tasks and measures the ratio of positive hits in the top fraction of
tested compounds and the expected percent of total hits. For an
illustration of this performancemetric see Supplementary Figs. 6 and 7
for the results.

Statistics & reproducibility
This study used historical data collected in previous high-throughput
compound screening projects at the Broad Institute. The sample size
for cells, replicates and compounds were determined in the original
studies35,36. The final dataset analyzed in our work consists of 270
assays and 16,170 compounds after filtering (see below). We did not
perform biological or technical replication in this study as all data was
created in the previous studies. For the computational analysis of
machine learning algorithms, we performed cross-validation for all
settings of training experiments (see Training / Test splits subsection
in the Methods).

The total number of compounds in the library that had the three
types of information required to conduct the analysis in our project
(Cell Painting images, L1000 profiles, and assay readouts) was 16,978.
We applied all pan-assay interference (PAINS) filters53 implemented in
RDKit, which removed 786 compounds, resulting in 16,210 com-
pounds. Next, we removed all assays without hits reducing the set of
candidate assays from 496 to 437. Then, we calculated the Jaccard
score between assay hits to identify redundant assays, i.e., assays that
measure similar activity resulting in the same hits. The Jaccard simi-
larity matrix (437 × 437) was thresholded at 0.7 to remove highly
redundant assays, and hierarchical clustering with the cosine distance
metric was applied for determining further groups of redundant
assays. Finally, we removed frequent hitters, defined as compounds
that are positive hits in at least 10% of the assays (by being hits in 30
assays or more) and an additional step of removing assays that remain
without any hit. In the end, the final dataset consists of 16,170 com-
pounds and 270 assays.

To allocate compounds to experimental groups, compounds
were grouped into scaffolds. Scaffolds were randomly split into
training and test sets for model training (main result, splitting by
scaffolds). We allocated samples by similarity of morphological or

gene expression profiles using clustering, which is not random
because this allocation groups similar compounds together. The
scaffold-based approach is considered to be closer to a real-world
practical scenario (for predicting properties of previously unchar-
acterized compounds). We conducted an additional experiment by
sampling compounds at random for five-fold cross-validation together
with the corresponding random holdout test sets (random ~20% of
compounds, 10 repetitions). This experiment is reported as a baseline.
There was no blinding performed in this study because the samples
were not evaluated by human experts. Instead, we follow a cross-
validation approach for performance evaluation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The morphological and gene-expression profiles were originally cre-
ated and published by Wawer, M. J. et al.35, and can be downloaded
from: http://www.broadinstitute.org/mlpcn/data/Broad.PNAS2014.
ProfilingData.zip. The Cell Painting images were made available by
Bray et al.36, and canbe obtained from the following link: http://gigadb.
org/dataset/100351. They are also available on the Image Data
Resource (IDR) under accession number idr0016 and on the Cell
Painting Gallery of AWS Open Data at s3://cellpainting-gallery/
cpg0012-wawer-bioactivecompoundprofiling/. The subsets of gene
expression profiles and morphological profiles used in this study are
available on Zenodo: https://doi.org/10.5281/zenodo.7729583. The
assay data to reproduce the analysis in the paper is available in the
project GitHub repository: https://github.com/CaicedoLab/2023_
Moshkov_NatComm and Zenodo: https://doi.org/10.5281/zenodo.
7729583.

Code availability
The ChemProp software was used for training machine learning
models and can be found on GitHub https://github.com/chemprop/
chemprop (version from 2021, commit hash 93e0ae). For data filtering
and calculation ofMorgan fingerprints the RDKit v2021.09.4 was used.
The analysis code to reproduce the experiments reported in the paper
can be found in the following link: https://github.com/CaicedoLab/
2023_Moshkov_NatComm with https://doi.org/10.5281/zenodo.
7742610. All of those above packages and code operated with
Python3.7 + .
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