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SUMMARY
A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating
the cellular programs affected by genetic risk variants and effector genes. Here, we introduce
LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables
evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes
and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance
of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepa-
tocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular
mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution,
and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward
and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification
of causal relationships between genetic variants and cellular programs relevant to human disease.
INTRODUCTION

With the rise of human genome sequencing data, the number of

genetic variants known to be associated with human diseases

has increased substantially; however, elucidating the patho-

genic mechanisms through which genetic variants impact dis-

ease remains limiting. Phenotypic profiling is a powerful tool to
This is an open access article under the CC BY-N
systematically discover external and internal regulators of bio-

logical processes in cellular systems in an unbiased manner.1–4

High-content imaging is an established multi-parametric

approach that captures and quantifies biological processes

from microscopy images, yielding a rich set of morphological

and cellular profiles.5 To date, image-based profiling has

been used in small-molecule screens to identify compound
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Figure 1. LipocyteProfiler creates rich morphological and cellular profiles in adipocytes that are informative for known cellular functions

(A) Schematic of LipocyteProfiler, which is a high-content imaging assay that multiplexes six fluorescent stains imaged in four channels in conjunction with an

automated image-analysis pipeline to generate rich morphological and cellular profiles in lipid-storing cell types (lipocytes), such as adipocytes during differ-

entiation.

(legend continued on next page)
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fingerprints, ascertain compound toxicity, and predict com-

pound assay activity6–9 and in gene expression screens to anno-

tate gene function.10 In all cases, the basic strategy is to match

the profile of a given sample based on similarity tomorphological

profiles of previously annotated samples.

In metabolism, lipid droplets represent a relevant feature that

is amenable to image-based profiling. Lipid droplets are storage

organelles central to both whole-body metabolism and energy

homeostasis. These droplets are highly dynamic and found in

all cell types.11 They are functional in either cellular homeostasis

in lipid-accumulating cells (lipocytes), such as adipocytes, hepa-

tocytes, macrophages/foam cells, and glial cells,11–15 or in path-

ophysiological processes in cells including vascular smooth

muscle cells, skeletal muscle cells, renal podocytes, and cancer

cells.16–20 Changes in lipid-droplet dynamics such as the num-

ber and size of lipid droplets and overall lipid content are associ-

ated with the progression of numerous metabolic diseases

including type 2 diabetes (T2D), obesity, and non-alcoholic fatty

liver disease.21

Here, we introduce LipocyteProfiler, a metabolic-disease-ori-

ented phenotypic profiling system for lipid-accumulating cells

bridging the gap between high-throughput generalizable assays

and low-throughput, highly customized, disease-focused read-

outs. LipocyteProfiler is an adaptation of Cell Painting5,22–24

that incorporates BODIPY to measure dynamic features of lipid

droplets and thus captures lipocyte-relevant phenotypes in

addition to generic morphological profiles.

Design
Elucidating cellular programs that underlie the association of ge-

netic variants, regulatory elements, and genes with diseases

largely remains a non-systematic, labor- and cost-intensive

endeavor that is biased toward hypotheses drawn from a priori

knowledge. High-content imaging captures and quantifies

numerous distinct biological processes frommicroscopy images
(B) Representative microscopy image of fully differentiated adipocytes for four in

10 mm.

(C) LipocyteProfiler extracts 3,005morphological and cellular features thatmap to

classes.

(D) Schematic of LipocyteProfiling in differentiating hWAT at four time points of

stained using LipocytePainting at four time points of differentiation (days 0, 3, 8,

(E) CytoplasmMedianIntensity Lipid, a measurement of lipid content within a cell,

CRISPR-Cas9-mediated knockdown of PPARG in differentiated white adipocyte

(normalized LipocyteProfiling [LP] values across three batches, see STAR Metho

(F) Number of large Lipid objects informative for large lipid droplets are absent in t

increase in later stages of differentiation (days 8 and 14). Number of large Lipid o

(data are shown for two guides used [g1 and g2]) and PLIN1, at day 14 of differen

STAR Methods).

(G) Morphological profiles of white (hWAT) and brown (hBAT) adipocytes at day 1

Features are clustered based on effect size. Features with the highest effect size in

Graph shows zoom-in for top ten features with largest effect sizes in hWAT (top

(H) Lipid Granularity measures, as spectra of 16 lipid-droplet size measures, sh

Figure S1H. Granularity features informative for larger lipid droplets (Lipid Granula

PLIN1-KO adipocytes. See also Figures S1I and S1J (PLIN2, FASN-KO). y axis sh

Methods).

(I) Brown adipocytes (hBAT) show higher Mito_Texture_InfoMeas1, a measure o

adipocytes (hWAT). CRISPR-Cas9-mediated knockout ofMFN1, amitochondrial f

[g1 and g2]). y axis shows LP units (normalized LP values across three batches [

(J) Mito_MedianIntensity is higher in brown (hBAT) compared with white (hWA

mediated knockout of PPARGC1A in hWAT. y axis shows LP units (normalized L
in an unbiased manner, yielding a rich set of morphological and

cellular profiles.5

Thus far the phenotypic data ascertained from scalable

morphological profiling assays has been limited to features infor-

mative for the generic organelles of the cell.5,22,23 This includes

structural information about nuclei, endoplasmic reticulum, cyto-

skeleton, and mitochondria, or generic processes, such as cell

growth or proliferation. It is currently unknown how gene and

compound effects translate to changes in specific cellular path-

ways and processes. Image-based deep cellular phenotypic

profiling tools provide a plethora of quantitative features. Howev-

er, narrowing down these high-dimensional data matrices to a

set of the most informative features that drive cellular processes

requires differentiating first-order from second-order relation-

ships among the features. As such, there is a pressing need to

develop foundational technologies that allow systematic linking

of genetic variation to disease-relevant cellular programs at

scale and in a broadly accessible way.

To quantitatively map dynamic and context-dependent

morphological and cellular signatures in lipocytes as well as

discover intrinsic and extrinsic drivers of cellular programs, we

developed a high-content image-based profiling approach

called LipocyteProfiler (Figure 1A). LipocyteProfiler is an unbi-

ased high-throughput profiling assay that generates rich generic

and lipocyte-specific cellular profiles from six multiplexed fluo-

rescent dyes imaged in four channels (Figure 1B) in conjunction

with an automated image-analysis pipeline (see STAR Methods

and Method S1).

LipocyteProfiler extracts 3,005morphological and cellular fea-

tures that map to three cellular compartments (Cell, Cytoplasm,

and Nucleus) across four organelles, namely nucleus (Hoechst),

Mito (MitoTracker red, which stains mitochondria), AGP (actin,

Golgi, plasma membrane; stained with phalloidin [F-actin cyto-

skeleton] and wheat germ agglutinin [Golgi and plasma mem-

branes]), and Lipid (BODIPY, which stains neutral lipids,
dividual channels and a merged representation across channels. Scale bars,

three cellular compartments and across four channels using four measurement

adipocyte differentiation (days 0, 3, 8, 14). Representative images of AMSCs

14). Scale bars, 10 mm.

significantly increases with adipogenic differentiation and decreases following

s. Data are shown for two guides used (g1 and g2), and y axis shows LP units

ds).

he progenitor state (day 0) and in early differentiation (day 3) and progressively

bjects is reduced following CRISPR-Cas9-mediated knockout (KO) of PPARG

tiation. y axis shows LP units (normalized LP values across three batches, see

4 of differentiation differ significantly across all feature classes (FDR < 0.1%).

hWAT and hBAT adipocytes are lipid- and mitochondria-related, respectively.

panel) and hBAT (bottom panel).

ow size-specific changes in hWAT and hBAT during differentiation. See also

rity 10–16) correlate positively with PLIN1 gene expression and are reduced in

ows autoscaled LP units (normalized LP values across three batches, seeSTAR

f spatial relationship between specific intensity values, compared with white

usion gene, changesMito_Texture_InfoMeas1 (data shown for two guides used

hBAT/hWAT] or normalized across CRISPR-KO data, see STAR Methods).

T) adipocytes throughout differentiation and decreased after CRISPR-Cas9-

P values across three batches, see STAR Methods).
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multiplexed with SYTO14, which stains nucleoli and cytoplasmic

RNA) (Figures 1C and S1A). Within each compartment and chan-

nel, features quantify morphological changes based on four

different measurement classes: Intensity, Granularity, Texture,

and Others (Figures 1C and S1A).

More specifically, Intensity features are a collection of features

that measure pixel intensities across an image using various

measurement types such as MedianIntensity, MaxIntensity,

and RadialDistribution of Intensity. Texture features describe

the complexity or homogeneity within an image of a compart-

ment using a plethora of different quantification approaches

including Entropy, AngularSecondMoment, and Variance mea-

surements. Granularity features are informative for a spectrum

of different structural elements (sizes 1–16) that fit into an image.

For example, Granularity Lipid features are indicative for small

(sizes 1–5), medium (sizes 6–10), and large (sizes 11–16) lipid

droplets. The fourth measurement class, referred to as Other

features, is a composition of different measurements that quan-

tify shape, size, and count of cells as well as correlations be-

tween different channel intensities (e.g., between Mito and

Lipid). In concert, these features build rich lipocyte-specific

cellular profiles that enable elucidation of cellular programs

that link genetic loci and variation to human disease.

To nominate LipocyteProfiler core features that drive cellular

processesweappliedan information theoreticalgorithm,which re-

duces the 3,005 LipocyteProfiler features, based on mutual infor-

mation (MI) between features, and prioritizes first-order interac-

tions indicative of direct interactions between features25–27

(Figure S1B). By representing features as nodes of a graph

and MI-based calculated interactions between features as

weightededges,weconstructedanMInetwork representing inter-

actions between the features. After ranking the nodes based on

their degree of connectivity (number of edges), we defined

LipocyteProfiler core features as those features among the 75%

upper quantile of the ranked nodes and the lower 25% percentile

of the average MI. The MI-based feature reductions allowed us to

nominate approximately one-third of the features as core features

(Figures S1B and S1C) that can be used to identify intrinsic and

extrinsic drivers of phenotypic changes in a concise way.

We demonstrate that our LipocyteProfiler tool can identify

diverse cardiometabolic-disease-relevant cellular mechanisms

by generating context-, process-, and allele-specific morpho-

logical and cellular profiles. We prototyped LipocyteProfiler in

adipocytes and hepatocytes, which are highly specialized cells

that store excess energy in the form of lipid droplets and have

key roles in cardiometabolic disease. First, we demonstrate

that LipocyteProfiler can identify meaningful changes in feature

profiles (1) during adipocyte differentiation, (2) across white and

brown adipocyte lineages, and (3) following genetic and drug

perturbations. Next, we correlated LipocyteProfiler features

with transcriptomic data from RNA sequencing (RNA-seq) to

link gene sets with morphological and cellular features,

capturing a broad range of cellular activity in differentiating ad-

ipocytes. We then applied LipocyteProfiler to connect poly-

genic risk scores for type 2 diabetes (T2D)-related traits to

cellular phenotypes and discover novel trait-specific cellular

mechanisms underlying polygenic risk. Finally, we used our

method to uncover cellular traits under the genetic control of
4 Cell Genomics 3, 100346, July 12, 2023
an individual genetic risk locus, demonstrated for the 2p23.3

metabolic risk locus at DNMT3A.28

RESULTS

LipocyteProfiler generates meaningful morphological
and cellular profiles in differentiating adipocytes
To test the ability of LipocyteProfiler to extract biologically mean-

ingful high-dimensional representations of morphological and

cellular programs, we used our metabolic-disease-oriented im-

age-based profiling tool to detect (1) changes associated with

adipocyte differentiation, (2) differences between white and

brown adipocytes, and (3) phenotypic effects of directed gene

perturbation using CRISPR-Cas9 to knock out key regulators

of adipocyte function.

First, we applied LipocyteProfiler to amodel of adipocyte differ-

entiation using an established white adipocyte line (hWAT),29

which undergoes phenotypic changes from fibroblast-shaped to

spherical lipid-filled cells during differentiation (days 0, 3, 8, and

14; Figure 1D). We mapped the phenotypic signature of progres-

sive lipid accumulation and cytoskeletal remodeling during adipo-

cyte differentiation in hWAT using tractable Lipid and AGP fea-

tures. We show that cytoplasmic intensity of Lipid, a proxy of

overall lipid content within a cell, increased with adipogenic differ-

entiation (Figure 1E). In addition, large Lipid objects (large lipid

droplets)wereabsent in theprogenitor state (day0)and inearlydif-

ferentiation (day 3), and the number of these objects increased in

later stages of differentiation (Figure 1F). We confirmed that

CRISPR-Cas9-directed perturbation of PPARG, the master regu-

lator of adipogenesis, decreases theoverallLipid Intensity in differ-

entiatedwhite adipocytes (guide 1 adjusted p [adj.p] = 2.03 10�3,

guide 2 adj.p = 2.0310�4; Figure 1E). Furthermore, large Lipid ob-

jects present at day 14 of differentiation were reduced when we

perturbed regulators of lipid accumulation, PPARG (guide 1

adj.p = 8.0 3 10�3, guide 2 adj.p = 1 3 10�2) and PLIN1 (adj.p =

8.0 3 10�2), a key regulator of lipid-droplet homeostasis (Fig-

ure 1F). These data demonstrate that LipocyteProfiler detects ex-

pectedchanges in lipiddynamicsassociatedwithadipocytediffer-

entiation. Another cellular change that occurs during adipocyte

differentiation is a drastic reorganization of the actin cytoskeleton,

which transitions fromwell-defined stress fibers in pre-adipocytes

to relatively thick cortical actin lining composed of patches of

punctate F-actin at the inner surface of the plasma membrane in

fully differentiated adipocytes30 (Figure S1D). This cytoskeletal re-

modeling is stimulated by insulin and essential for GLUT4 translo-

cation into the membrane to facilitate insulin-responsive glucose

uptake in the cell.30 Concordantly, we found that CRISPR-Cas9-

mediated disruption of the insulin receptor (INSR) and insulin re-

ceptor substrate 1 (IRS1) in pre-adipocytes altered AGP Texture

features (describing the smoothness of a given stain) inmature ad-

ipocytesatday14ofdifferentiation (FigureS1E).Specifically, INSR

and IRS knockout reduced variation of cytoplasmic AGP stain in-

tensities most significantly near the plasma membrane (Cyto-

plasm_RadialDisribution_RadialCV_AGP_4_of_4, IRS1 guide 1

adj.p = 8.0 3 10�3, guide 2 adj.p = 8.0 3 10�2; INSR guide 1

adj.p = 8.0 3 10�2, guide 2 adj.p = 2.0 3 10�2), indicative of less

punctuated AGP, which is in line with less cortical actin in INSR-

and IRS-knockout cells.



Figure 2. LipocyteProfiler identifies distinct depot-specific morphological and cellular signatures associated with differentiation trajec-
tories in both visceral and subcutaneous AMSCs

(A) Human AMSCs isolated from subcutaneous and visceral adipose depots were differentiated for 14 days, and LipocyteProfiler and RNA-seq profiling were

performed throughout adipocyte differentiation (days 0, 3, 8, and 14).

(legend continued on next page)
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Next, we used brown and white adipocyte model systems to

elucidate mitochondrial and lipid-related informational content.

Intrinsic differences distinguishing white and brown adipocytes

are known to be predominantly driven by differences in mito-

chondrial number and activity that translate into differential lipid

accumulation.31 Using an established brown adipocyte line

derived from human neck fat (hBAT) from the same individual

as for the hWAT line, we showed that morphological profiles

from differentiated hWAT and hBAT differ significantly in every

channel and feature category (Figure 1G). Lipid Granularitymea-

sures, a class of metrics that capture the typical sizes of bright

spots for a stain, predominated among those increased in

hWAT. During adipocyte differentiation, lipid droplets typically in-

crease first in number and then enlarge and fuse to form larger

lipid droplets over the course of maturation.32 We observed

that the number of small and medium-sized lipid droplets (Lipid

Granularity measures 1–9) present in early differentiating hWAT

saturate in early stages of differentiation (Figure 1H). Larger lipid

droplets (Lipid Granularity measures 10–16) increase in terminal

differentiation, indicating that lipid droplets form in early differen-

tiation and grow thereafter, a process that is reflected in Lipid

Granularity measures and Lipid objects count (Figures 1H and

S1F). Consistent with the notion that adipocytes from brown ad-

ipose have smaller lipid droplets, we found that during differenti-

ation, hBAT adipocytes accumulate fewer medium-sized and

large lipid droplets as seen by lower values across the spectra

of granularity (Figures 1H and S1G). Intuitively, LipocyteProfiler-

derived size estimates showed that white hWAT are larger than

brown hBAT adipocytes after 14 days of adipogenic differentia-

tion as cells become lipid laden (Cells_AreaShape_Area p =

5.13 10�5; Figure S1H). To test whether lipid-droplet-associated

perilipins can be linked to lipid-droplet sizes, we correlated Lipid

Granularity measures with mRNA expression levels of PLIN1,

which is specifically expressed in adipocytes where it directs

the formation of large lipid droplets33,34 and PLIN2, the only

constitutively and ubiquitously expressed lipid-droplet protein

that is associated with a range of lipid droplets in diverse cell

types.35,36 We observed that mRNA expression levels of PLIN1

positively correlated with the Lipid Granularity features informa-

tive for larger spot sizes (Lipid Granularitymeasures 12–16) (Fig-

ure 1H). PLIN2 correlated best with Lipid Granularitymeasures of

smaller and larger spectra (Figure S1I). Accordingly, when we

knocked outPLIN1 and FASN, genes involved in lipid-droplet dy-

namics and lipidmetabolism,we observed a size-specific reduc-
(B) LipocyteProfiler and transcriptome profiles show time-course-specific signat

resolves adipose-depot-specific signatures.

(C) Subcutaneous and visceral AMSCs at terminal differentiation (day 14) have dis

all channels. See also Figure S2C (volcano plot reporting the �log10 p value and

(D) Sample progression discovery analysis (SPD). Proportions of subgroups of fe

adipocytes and dynamically change over the course of differentiation. In both d

differentiation (days 0–3) whereas Lipid features predominate in the terminal pha

(E) The number of lipid droplets is higher in subcutaneous AMSCs than in visceral

across eight batches, see STAR Methods).

(F) Mature subcutaneous AMSCs have larger intracellular lipid droplets compared

autoscaled LP units (normalized LP values across eight batches, see STAR Meth

(G) Lipid Granularity from subcutaneous AMSCs at day 14 of differentiation corre

relationship for visceral adipose tissue, suggesting distinct cellular mechanisms

autoscaled LP units (normalized LP values across eight batches; x axis, histolog

6 Cell Genomics 3, 100346, July 12, 2023
tion of Lipid Granularity (Figures 1H andS1J), suggesting that

Lipid Granularity features are a suitable output measure of lipid-

droplet size spectra and an indicator of adipocyte differentiation.

Consistent with the relevance of mitochondria for brown

adipocyte function, mitochondrial measures were among the

features that increased the most in hBAT (Figure 1G), particularly

the Texture feature Cells_Texture_InfoMeas1_Mito (p = 1.0 3

10�3), which describes the overall information content based

on the smoothness of a given stain. Perturbation of MFN1, a

mitochondrial fusion gene, increased Cells_Texture_Info-

Meas1_Mito in hWAT adipocytes (adj.p = 4.0 3 10�2; Figure 1I),

suggesting that the higher values of this measurement in differ-

entiated hBAT could be indicative of higher mitochondrial fission

in hBAT compared with hWAT. This finding is consistent with

brown adipocytes elevating mitochondrial thermogenesis by

increasing mitochondrial fission.37 hBAT adipocytes are further

characterized by increased Mito Intensity compared with

hWAT adipocytes throughout differentiation, with the most sub-

stantial increase in the fully differentiated state (median, day 8

adj.p = 1.63 10�3, day 14 adj.p = 1.33 10�3; Figure 1J), demon-

strating that LipocyteProfiler can identify known cellular pro-

grams that distinguish different adipocyte lineages. Indeed,

when we perturbed PPARGC1A, the master regulator of mito-

chondrial biogenesis and thermogenesis in adipocytes, using

CRISPR-Cas9-mediated knockout in hWAT, mitochondrial in-

tensity decreased (guide 1 adj.p = 1.7 3 10�5, guide 2 adj.p =

8.83 10�7; Figure 1J). We also confirmed similar morphological

and cellular differences between brown hBAT adipocytes and

another established white adipocyte cell line, differentiated

SGBS (Simpson-Golabi-Behmel syndrome) cells (Figure S2A).

Taken together, our data demonstrate that LipocyteProfiler can

generate rich sets of morphological and cellular features that

correlate with cellular function.

LipocyteProfiler identifies distinct depot-specific
signatures associated with differentiation trajectories
in visceral and subcutaneous adipocytes
We next used LipocyteProfiler to distinguish phenotypes of pri-

mary human adipose-derived mesenchymal stem cells

(AMSCs) derived from the two main adipose tissue depots in

the body, namely subcutaneous and visceral, across the course

of differentiation (Figure 2A). We differentiated subcutaneous

and visceral AMSCs and generated morphological profiles at

days 0, 3, 8, and 14 using LipocyteProfiler and validated
ures revealing a differentiation trajectory, but only LipocyteProfiler additionally

tinct morphological and cellular profiles with differences that are spread across

the effect comparing subcutaneous and visceral adipocytes, t test).

atures characterizing differentiation differ between subcutaneous and visceral

epots, Mito features drive differentiation predominantly in the early phase of

ses (days 8–14). See also Figure S2D for SPD of hWAT and SGBS.

AMSCs at terminal differentiation. y axis shows LP units (normalized LP values

with visceral AMSCs at day 14 of differentiation (Lipid Granularity). y axis shows

ods).

lates positively with floating mature adipocyte diameter but shows an inverse

that lead to adipose tissue hypertrophy in these two depots. y axis shows

y adipocytes diameter [mm], see STAR Methods).
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successful differentiation in both depots by an increase of

adipogenesis marker genes (LIPE, PPARG, PLIN1, GLUT4) (Fig-

ure S2B). Concomitantly, we used RNA-seq to profile the tran-

scriptome on the same differentiation time points. We observed

that both the morphological and transcriptomic profiles show

time-course-specific signatures revealing a differentiation tra-

jectory; however, only morphological profiles generated by

LipocyteProfiler also resolved adipose-depot-specific signa-

tures throughout differentiation (Figure 2B). At day 14 of differen-

tiation, morphological differences between subcutaneous and

visceral adipocytes were spread across a large number of fea-

tures in all feature classes (Figures 2C and S2C).

To discover patterns associated with progression through

adipocyte differentiation in each depot, we performed a sample

progression discovery analysis (SPD).38 SPD clusters samples to

reveal their underlying progression and simultaneously identifies

subsets of features that show the same progression pattern and

are illustrative of differentiation. We discovered that subsets of

features distinguish the differentiation patterns of subcutaneous

and visceral adipocytes and that most dominant feature classes

were dynamically changing over the time course of differentia-

tion (Figure 2D). In visceral adipocytes, the early phase of differ-

entiation was predominantly associated with mitochondrial fea-

tures, whereas terminal phases of differentiation were primarily

associated with changes in lipid-related features (Figure 2D). In

subcutaneous adipocytes, we observed that the feature classes

(actin cytoskeleton, lipid, mitochondrial, and nucleic acid) were

more evenly involved through adipogenesis and that the contri-

bution of Lipid features started in early phases of differentiation,

consistent with an earlier initiation of lipid accumulation in subcu-

taneous compared with visceral adipocytes (Figure 2D). To

demonstrate that LipocyteProfiler captures consistent morpho-

logical patterns across white adipocyte models, we applied

SPD to differentiate white adipocytes and show that SGBS cells,

the immortalized subcutaneous hWAT line, and subcutaneous

AMSCs progress similarly throughout adipocyte differentiation

(Figure S2D). More specifically, we show that among the feature

classes, Lipid features contribute the most to dynamical

changes during adipocyte differentiation. SGBS cells begin the

differentiation process by initiating the formation of lipid droplets

(percentage of Lipid features between day 0 and day 3), which

grow in the later stages (contribution of AGP features between

days 8 and 14). These dynamic changes are similar to morpho-

logical changes of subcutaneous adipocytes and indicate

that LipocyteProfiler can capture cell-specific morphological

characteristics.

We next compared lipid-related signatures in mature AMSCs

and observed that subcutaneous AMSCs hadmore lipid droplets

than visceral AMSCs (Cells_LipidObject_count, Figure 2E, q =

3.2 3 10�4, false discovery rate [FDR] < 1%). More specifically,

mature subcutaneous AMSCs showed significantly higher Lipid

Granularity of small to medium-sized lipid objects, whereas

visceral adipocytes showed higher Lipid Granularity of very small

lipid objects, suggesting that mature subcutaneous AMSCs

have larger intracellular lipid droplets compared with visceral

AMSCs, which present higher abundance of very small lipid

droplets (Figure 2F). These apparent intrinsic differences in dif-

ferentiation capacity and lipid accumulation between subcu-
taneous and visceral AMSCs are consistent with previously

described distinctions between AMSC depot properties across

differentiation.39 Our data suggest that LipocyteProfiler can facil-

itate identification of distinct lineage differences and programs of

cellular differentiation.

Lastly, to assess the in vivo relevance of morphological fea-

tures of in vitro differentiated adipocytes, we correlated Lipid

Granularity features of adipocytes at day 14 of differentiation

with diameter estimates of tissue-derived mature adipocytes

from the same individual (see STAR Methods). We showed that

changes in Lipid Granularity of in vitro differentiated female sub-

cutaneous adipocytes correlated significantly with the mean

diameter of mature adipocytes (Figure 2G). More specifically,

medium-size granularity measures increased with larger in vivo

size estimates, suggesting that in vivo adipocyte size is reflected

by medium-sized lipid droplets in subcutaneous adipocytes that

have been differentiated in vitro. Strikingly, we found the oppo-

site effect between correlation of visceral Lipid Granularity and

diameter estimates from mature adipocytes, suggesting that

subcutaneous and visceral adipose tissues differ in cellular pro-

grams that govern depot-specific adipose tissue expansion,

which may account for different depot-specific susceptibility to

metabolic diseases. Indeed, white adipose depots have been re-

ported to differ in their respective mechanisms of fat mass

expansion under metabolic challenges, with subcutaneous adi-

pose tissue being more capable of hyperplasia whereas visceral

adipose tissue expands mainly via hypertrophy.40

LipocyteProfiler features reflect transcriptional states
in adipocytes
To identify relevant processes that manifest in morphological

and cellular features and to identify pathways of a given set of

features, we next used a linear mixed model to link the expres-

sion of 52,170 genes derived from RNA-seq with each of the im-

age-based LipocyteProfiler features in subcutaneous adipo-

cytes at day 14 of differentiation across 26 individuals

(Figure 3A and STARMethods). We found 20,296 non-redundant

significant feature-gene connections that were composed of

7,012 genes and 669 features (FDR < 0.01%, Figure 3B and

Table S1A; FDR < 0.1%: 44,736 non-redundant feature-gene

connections, 10,931 genes and 869 features, Figure S3A and

Table S1B), and mapped across all channels (Figure 3A).

Although features from every channel had significant gene corre-

lations, Lipid features showed the highest number of gene con-

nections compared with any other channel. This suggests that

lipid-droplet structure, localization, and dynamics in adipocytes

most closely represent the transcriptional state of the differenti-

ated cell (Figure 3B). Pathway enrichment analyses of lists of

genes connected to a feature at FDR < 0.01% add support to

the idea that genes that correlated with a particular feature are

biologically meaningful. For example, Mito Granularity associ-

ated with genes that are enriched for pathways such as the

tricarboxylic acid cycle (TCA), which oxidizes acetyl-coenzyme

A inmitochondria,41 and lipid and lipoprotein metabolism and tri-

glyceride biosynthesis, which are known to involve mitochon-

drial processes (pathway enrichment analysis FDR < 5%). This

connection between lipid and mitochondrial processes was

also detected in feature-gene associations for Lipid Intensity,
Cell Genomics 3, 100346, July 12, 2023 7
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Figure 3. Correlations between morphological and transcriptional profiles

(A) Linear mixed model (LMM) was applied to correlate 2,760 morphological features derived from LipocyteProfiler with 52,170 transcripts derived from RNA-seq

in matched samples of subcutaneous AMSCs at terminal differentiation (day 14). With FDR < 0.01%, we discover 20,296 non-redundant connections that map to

669 morphological features and 7,012 genes.

(B) Network of transcript-LipocyteProfiler feature correlations (significant connections FDR < 0.01%). Genes correlated with individual LipocyteProfiler features

are enriched for relevant pathways (FDR < 5%). Node size is determined by number of connections. See also Figure S3A for a network with a significance level

threshold of FDR < 0.1%.

(C) LipocyteProfiler signatures of adipocyte marker genes SCD, PLIN2, LIPE, GLUT4, TIMM22, and INSR recapitulate their known cellular function. Features are

clustered based on beta of linear regression.
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Figure 4. LipocyteProfiler identifies molecular mechanisms of drug stimulations in adipocytes and hepatocytes

(A) LipocyteProfiler was performed in visceral AMSCs (n = 3) treated with the b-adrenergic receptor agonist isoproterenol for 24 h.

(B) Isoproterenol treatment results in changes of lipid-related andmitochondrial traits in visceral AMSCs at day 14 of differentiation. See also Figure S3B (volcano

plot reporting the �log10 p value and the effect comparing isoproterenol-treated cells and DMSO-treated cells, t test).

(C and D) Isoproterenol treatment of visceral AMSCs increaseMito and Lipid TextureDifferenceVariance while decreasing the respective LargeLipidObjectmean

radius features. y axis shows LP units (normalized LP values across eight batches, see STAR Methods).

(E) Isoproterenol treatment reduces lipid-droplet sizes measured via lipid granularity. y axis shows autoscaled LP units (normalized LP values across eight

batches, see STAR Methods).

(F) Oleic acid treatment in PHH results in changes of lipid-related features.

(legend continued on next page)
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which associates with genes significantly enriched in oxidative

phosphorylation (OXPHOS) and b-oxidation (WikiPathway 368

and WikiPathway 143), and Lipid Granularity in the cytoplasm,

which associates with genes involved in fatty acid oxidation,

mitochondrial long-chain fatty acid b-oxidation, and the TCA cy-

cle. Finally, correlation features, which capture the overlap be-

tween lipid droplets, mitochondria, and AGP, were enriched for

cytoplasmic ribosomal proteins, genes involved in mitochondrial

long-chain fatty acid b-oxidation, and genes involved in insulin

signaling in human adipocytes (Figures 3B and S3A; Table S1).

In addition to examining genes connected to feature groups,

we also explored morphological features connected to specific

genes. We found that morphological signatures of SCD, PLIN2,

LIPE, GLUT4, TIMM22, and INSR revealed their known cellular

functions (Figure 3C and Table S2). For example, the expression

of TIMM22, a mitochondrial membrane gene, was most strongly

correlated with Mito Texture. Expression of the insulin receptor

(INSR) most strongly correlated with Lipid Intensity features

indicative of lipid accumulation. PLIN2 and GLUT4 showed the

highest positive and negative correlations with Lipid and AGP

features, respectively. Together, these data show that mecha-

nistic information gained from LipocyteProfiler features is not

limited to generic cellular organelles but reflects the transcrip-

tional state of the cell and can be deployed to gain relevant

mechanistic insights.

LipocyteProfiler identifies cellular processes affected
by drug perturbations in adipocytes and hepatocytes
To investigate whether LipocyteProfiler can identify effects of

drug perturbations on cellular profiles, we first compared subcu-

taneous and visceral adipocytes that had been stimulated with

the b-adrenergic agonist isoproterenol (Figure 4A). Isoproterenol

is known to induce lipolysis and increase mitochondrial energy

dissipation.42 We observed that visceral adipocytes responded

to isoproterenol treatment by changes in Lipid andMito features

(Figure 4B; Tables S3A and S3B). More specifically, we observed

that isoproterenol-treated visceral adipocytes were character-

ized by differences in mitochondrial Texture (Difference Vari-

ance, q = 4.4 3 10�2), indicative of a less-smooth appearance

of mitochondrial staining compared with DMSO-treated controls

(Figure 4C). This suggests that isoproterenol treatment results in

more hyperpolarized and fragmented mitochondria, which is a

reported mechanism of norepinephrine-stimulated browning in

adipocytes.37 Isoproterenol-treated visceral adipocytes are

further characterized by increased Lipid Difference Variance

(q = 1.8 3 10�2) and decreased area of large Lipid objects, i.e.,

decreased mean radius and area of large lipid droplets (q =

2.5 3 10�2) (Figure 4D) as well as decreased Lipid Granularity

across the full granularity size spectra, particularly at the smallest

lipid-droplet sizes (Figure 4E). In fact, LipocyteProfiler core fea-

tures highlight the importance of decreased lipid-droplet size

and lipid intensity (Table S3B). This pattern suggests less overall
(G) Oleic acid treatment in PHH affects lipid-related morphological features su

(normalized LP values across PHH data, see STAR Methods).

(H) Metformin treatment in PHH results in global changes affecting features acro

(I) Metformin effect in hepatocytes is suggestive of increased mitochondrial act

patocytes are also smaller and show reduced cytoskeletal randomness. y axis s
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lipid content in isoproterenol-treated lipolytic visceral adipo-

cytes. Finally, the phenotypic response following isoproterenol

treatment was predominant in visceral adipocytes, as we did

not observe a significant effect (FDR < 5%) in subcutaneous ad-

ipocytes (Figure S3B). Indeed, adrenergic induced lipolysis is

observed to be higher in visceral than subcutaneous in over-

weight and obese individuals.43,44

To test LipocyteProfiler in cell types beyond adipocytes, we

assayed the effects of oleic acid andmetformin in primary human

hepatocytes (PHH). Consistent with the finding that free fatty

acid treatment induces lipid-droplet accumulation in PHH,45

our results showed that treatment of PHH with oleic acid yielded

predominantly Lipid feature changes in the cell (Figure 4F and

Table S4), with a morphological profile indicative of increased

lipid-droplet number (LargeLipidObjects_Count, q = 3.4 3

10�10) and overall lipid content (Cells_MeanIntensity_Lipid, q =

1.5 3 10�5) as well as differences in Texture (Cells_Texture_En-

tropy_Lipid, q = 1.2 3 10�8; Cells_Texture_AngularSecondMo-

ment_Lipid, q = 1.8 3 10�6; Figure 4G). By contrast, treatment

of PHH with metformin caused morphological and cellular

changes that were spread across all channels (Figure 4H and

Table S5), with a profile suggestive of smaller cells (Cells_Area-

Shape_Area, q = 2.0 3 10�11; Cells_AreaShape_MinorAxi-

sLength, q = 7.2 3 10�12) with increased mitochondrial mem-

brane potential (Cells_MeanIntensity_Mito, q = 8.9 3 10�4),

and mitochondrial heterogeneity (Cells_Texture_AngularSe-

condMoment_Mito, q = 7.6 3 10�6; Cells_Texture_Entropy_-

Mito, q = 9.8 3 10�7; Cells_Texture_InfoMeas1_Mito, q =

3.3 3 10�13). Additionally, we observed reduced lipid content

(Cells_MeanIntensity_Lipid, q = 9.0 3 10�7), reduced lipid-

droplet number (LargeLipidObjects_Count, q = 4.8 3 10�8),

and differences in Texture (Cells_Texture_Entropy_Lipid, q =

7.1 3 10�5) (Figure 4I). This concerted effect of metformin on

mitochondrial structure and function as well as lipid-related fea-

tures is consistent with a less uniform appearance of the cyto-

skeleton, Golgi, and plasmamembrane in metformin-treated he-

patocytes compared with control (Cells_Texture_Angular

SecondMoment_AGP, q = 1.9 3 10�8, Figure 4I). Indeed, pro-

longed treatment with high doses of metformin leads to mito-

chondrial uncoupling, resulting in mitochondrial hyperpolar-

ization and diminished lipid accumulation in PHH.45–47

Together, these data demonstrate that morphological and

cellular profiles of drug perturbation in lipocytes yield cellular sig-

natures reflecting known biology and drug action in a single

concerted snapshot of cell behavior.

Polygenic risk effects for insulin resistance affects lipid
degradation in differentiated visceral adipocytes
Next, we used LipocyteProfiler to discover cellular programs of

metabolic polygenic risk in adipocytes. For systematic profiling

of AMSCs in the context of natural genetic variation (Table S6),

we first assessed the effect of both technical and biological
ggestive of increased lipid-droplet size and number. y axis shows LP units

ss all channels.

ivity, while lipid-droplet size and number are reduced. Metformin-treated he-

hows LP units (normalized LP values across PHH data, see STAR Methods).



Figure 5. Polygenic risk effects for insulin resistance affect lipid degradation in differentiated visceral adipocytes

(A) Donors from the bottom and top 25 percentiles of genome-wide PRS for three T2D-related traits (HOMA-IR, T2D, WHRadjBMI) were selected to compare

LipocyteProfiles across the time course of visceral and subcutaneous adipocyte differentiation.

(B) LipocyteProfiler applied to visceral and subcutaneous differentiating adipocytes reveals trait-specific polygenic effects on image-based cellular signatures for

HOMA-IR in differentiated visceral AMSCs (day 14; largely Lipid features) and WHRadjBMI in subcutaneous adipocytes (day 14, largelyMito and Lipid features),

but no effect for T2D. See also Figures S5A and S5D (days 0, 3, and 8).

(legend continued on next page)
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variance on LipocyteProfiler features. To obtain a measure of

batch-to-batch variance associated with our experimental setup,

wedifferentiatedhWAT,hBAT,andSGBSpreadipocytes48 in three

independent experiments and found no significant batch effect

(BEscore 0.0047, 0.0001, and 0.0003; Figure S4A). We also used

a machine-learning-based classification model49 to predict vari-

ablessuchasbatchandcell type,basedon themorphological pro-

file. We show that the accuracy of predicting cell type is substan-

tially higher than predicting batch (Figure S4A), indicating that our

LipocyteProfiler framework can detect intrinsic versus extrinsic

variance in our dataset with low batch effect and high accuracy.

Second, we performed a variance component analysis across 65

donor-derived differentiating AMSCs to assess the contribution

of intrinsic genetic variation compared with the contribution of

other possible confounding factors such as batch, T2D status,

age, sex, body mass index (BMI), cell density, and passage num-

ber. In total, we found that across all samples and batches, the

largest contributor to feature variance was donor ID, accounting

for 17.03% (interquartile range 11.45%–21.95%) of variance (Fig-

ure S4B). Other factors appeared to contribute only marginally to

overall variance of the data, including extrinsic factors such as

batch effect (6.02%, 3.94%–8.84%), plating density (3.75%,

1.55%–5.61%) and intrinsic factors such as sex (0.86%, 0.26%–

2.44%), age (0.55%, 0.15%–1.39%), BMI (0.41%, 0.07%–

1.33%), and T2D (0.19%, 0.03%–0.59%). These data suggest

that LipocyteProfiler allows us to detect and distinguish interindi-

vidual genetic feature variation to a similar degree as reported for

human induced pluripotent stem cells (iPSCs), where quantitative

assays of cell morphology demonstrated a donor contribution to

interindividual variation in the range of 8%–23%.50 To account

for the variable feature-specific contributions of batch, sex, age,

and BMI to overall feature variance, we corrected for those cova-

riables in our analyses. Together, these data suggest that

LipocyteProfiler features can beused to study the effect of genetic

contributions to morphological and cellular programs.

To ascertain the effect of polygenic risk for metabolic disease

on cellular programs, we used the latest genome-wide associa-

tion study (GWAS) summary statistics for T2D. We constructed

individual genome-wide polygenic risk scores (PRSs) for three

T2D-related traits that have been linked to adipose tissue:

T2D,51 insulin resistance by homeostasis measure assessment

(HOMA-IR52,53), and waist-to-hip ratio adjusted for BMI

(WHRadjBMI54). To evaluate whether HOMA-IR PRS effects

are confounded by BMI, we compared the distribution of BMI

between groups of high, medium, and low HOMA-IR PRS car-

riers and observed that HOMA-IR PRS appears to be largely in-

dependent of BMI (Kolmogorov-Smirnov tests: top 25% and

bottom 25% p = 0.797, Figure S4C). Next, we selected donors

from the bottom and top 25th percentiles of these genome-

wide PRS distributions (referred to as low and high polygenic

risk) and compared LipocyteProfiler features across the time
(C) HOMA-IR polygenic risk in visceral AMSCs manifested in altered lipid texture,

axis shows LP units (normalized LP values across eight batches, see STAR Meth

(D) Linear regression of gene expression levels of 512 genes known to be involve

(E) Pathway enrichment analysis of genes that correlate with HOMA-IR PRSs (FDR

metabolism, fatty acid transport, degradation, and lipolysis (KEGG pathways 20

(F) Representative genes that associate with HOMA-IR PRS in visceral adipocyte
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course of visceral and subcutaneous adipocyte differentiation

in high and low polygenic risk groups (Figures 5A, 5B, S5A,

and S5D; Tables S7 and S8).

We found significant effects on image-based cellular signa-

tures for HOMA-IR and WHRadjBMI, but no polygenic effect for

T2D (Figures 5B, S5A, and S5D; Tables S7 and S8). More specif-

ically, we observed an effect of HOMA-IR polygenic risk on

cellular profiles at day 14 in visceral adipocytes (38 features,

FDR<5%, Figure 5BandTable S7A), indicating a spatiotemporal

and depot-specific effect of polygenic risk for insulin resistance.

The features that differed between the high and low HOMA-IR

PRS carriers were mostly Lipid features (Figure 5B). Visceral ad-

ipocytes from high polygenic risk individuals showed increased

Lipid Granularity (q = 2.0 3 10�2), increased Cytoplasm_Textur-

e_SumEntropy_Lipid (q = 2.73 10�2), increased Cells_AreaSha-

pe_Zernike_8_4 (q = 2.7 3 10�2), decreased Cytoplasm_Textur-

e_InverseDifferenceMoment_Lipid (q = 2.73 10�2), and reduced

Cytoplasm_Texture_AngularSecondMoment_Lipid (q = 3.7 3

10�3) in the cytoplasm compared with low polygenic risk individ-

uals (Figure 5C). The data further reveal that the pattern that con-

trasts between high and low HOMA-IR polygenic risk carriers is

driven by lipid-informative LipocyteProfiler core features. Cellular

signatures of high HOMA-IR polygenic risk carriers include core

features that describe increased Lipid Granularity, increased

Lipid Radial Distribution in the middle rings of the cell, and

increased Cell Area (Tables S7B–S7D). These data indicate that

visceral adipocytes from individuals with high compared with

low polygenic risk for insulin resistance are characterized by a

lipid-rich cellular profile, driven by key features informative for

increased number of small to medium-sized lipid droplets, less

homogeneous lipid-droplet distribution, and larger adipocytes,

indicating excessive lipid accumulation in visceral adipocytes

from individuals at high polygenic risk. Notably, the pattern that

differentiates individuals at high and low polygenic risk recapitu-

lates signatures that resemble an inhibition of lipolysis, as

demonstrated by the inverse direction of effect in isoproterenol-

stimulated visceral AMSCs shown in Figure 4. Furthermore, we

observed that lower HOMA-IR PRS increases the number of

small lipid droplets in visceral adipocytes, which are precisely

the features affected in response to isoproterenol (Figures S5B

and 4E). Together, these image-derived rich representations of

cellular signatures describe a cellular program that is character-

ized by a metabolic switch toward lipid accumulation rather

than lipolysis in visceral adipocytes derived from individuals at

high polygenic risk for insulin resistance.

To further resolve the cellular program underlying HOMA-IR

PRSs in visceral adipocytes and ascertain the effects of polygenic

risk for HOMA-IR ongene expression, we integrated image-based

information from LipocyteProfiler with RNA-seq data from the

same donor-derived samples. Looking at mRNA levels for 512

genes known to be involved in adipocyte differentiation and
lipid granularity, and cell shape features, resembling an inhibition of lipolysis. y

ods). See also Figure 4B (isoproterenol stimulation).

d in adipocyte function with HOMA-IR PRS.

< 10%) in visceral adipocytes highlight biological processes related to glucose

19).
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function (gene set enrichment analysis hallmark gene sets for

adipogenesis, fatty acid metabolism, and glycolysis55,56), we

identified 51 genes under the polygenic control of HOMA-IR

(FDR < 10%) in fully differentiated visceral adipocytes (Figure 5D

and Table S9). Genes correlating with the HOMA-IR PRSwere en-

riched for biological processes related to glucose metabolism,

fatty acid transport, degradation, and lipolysis (Figure 5E and

Table S10). Negatively correlated genes include ACAA1 (p =

1.6 3 10�2, q = 9.5 3 10�2) and SCP2 (p = 9.0 3 10�4, q =

5.1 3 10�2) (Figure 5F), consistent with an inhibition of lipolysis

and lipid degradation in visceral adipocytes from individuals at

high polygenic risk for HOMA-IR. Positively correlated genes

includeGYS1,which isa regulator ofglycogenbiosynthesisshown

to causally link glycogen metabolism to lipid-droplet formation in

brown adipocytes57 (p = 5.5 3 10�3, q = 7.8 3 10�2, Figure 5F).

Additionally, multiple critical enzymes of the glycolysis pathway

(TPI1 [q = 9.2 3 10�2], PFKP [q = 9.2 3 10�2], PGK [q = 9.5 3

10�2], Figure 5F), and marker genes of energy metabolism (AK2

and AK4; Figure S5C) are positively correlated with HOMA-IR

PRS, suggesting a metabolic switch from lipolytic degradation of

triglycerides to glycolytic activity. Although a causal link between

visceral adipose mass and insulin resistance has been widely

observed,58 the mechanism behind this observation is not under-

stood. Together, orthogonal evidence from both high-content im-

age- and RNA-based profiling experiments in subcutaneous and

visceral AMSCs suggests that individuals with high polygenic

risk for HOMA-IR are characterized by blocking lipid degradation

in visceral adipocytes.

Polygenic risk for lipodystrophy-like phenotype
manifests in cellular programs indicating reduced lipid
accumulation capacity in subcutaneous adipocytes
To resolve polygenic effects on adipocyte cellular programs

beyond heterogeneous T2D and insulin resistance traits, we

used the clinically informed process-specific partitioned PRS

of lipodystrophy,59 and tested for association of the lipodystro-

phy-like PRS and LipocyteProfiler features throughout adipocyte

differentiation (linear regression adjusted for BMI, age, sex, and

principal component 1 [PC1], FDR < 5%; Table S11 and Fig-

ure 6A). The lipodystrophy PRS was constructed based on 20

T2D-associated loci that were grouped together as having

similar associations with a lipodystrophy-like phenotype, signi-

fying insulin resistance with a lower BMI59 (Figure 6A). We found

that polygenic risk of lipodystrophy associates with distinctive

features in theMito, AGP, and Lipid categories in subcutaneous

AMSCs at day 8 and day 14 of differentiation, whereas increased

lipodystrophy PRS associates primarily with Lipid features in

visceral adipocytes at nominal significance (Figures 6B–6D and

S6A; Table S11A). This highlights a depot- and spatiotemporal-

dependent effect of polygenic risk on cellular profiles captured

with LipocyteProfiler. Using the LipocyteProfiler core feature

set, we identified Mito Intensity, Texture, and Granularity fea-

tures, AGP Granularity features, and Lipid Intensity features to

be most informative for driving the lipodystrophy PRS cellular

process in subcutaneous adipocytes (Table S11B). More specif-

ically, the profiles that associate with lipodystrophy polygenic

risk include core features informative for increased mitochon-

drial membrane potential (e.g., Cells_Intensity_Integrated_Inten-
sity_Mito q = 3.43 10�2;Cells_Intensity_Mean Intensity_Mito q =

3.43 10�2; Table S11B), changes to the actin cytoskeleton indi-

cating decreased cortical actin at the plasma membrane (e.g.,

Cells_RadialDistribution_FracAtD_AGP ring 2 of 4 q = 3.4 3

10�2 and 3 of 4 q = 3.4 3 10�2; Figure S6B and Table S11B),

and decreased lipid accumulation in subcutaneous adipocytes

(e.g., Cells_RadialDistribution_RadialCV_Lipid_4of4 q = 3.4 3

10�2, Cells_Texture_DifferenceEntropy_Lipid_10_00 q = 3.4 3

10�2; Table S11B). Strikingly, representative images of subcu-

taneous adipocytes derived from individuals at the tail ends of

lipodystrophy PRS (high risk [25th percentiles] compared with

low risk [bottom 25th percentiles]) confirm that adipocytes from

high PRS carriers have increased mitochondrial stain inten-

sity—indicating higher mitochondrial membrane potential60—

accompanied by smaller lipid droplets on average compared

with adipocytes from individuals with low PRS (Figure 6D). We

also note that CRISPR-Cas9-mediated knockout of the mono-

genic familial partial lipodystrophy gene PLIN1 maps to features

informative for decreased number of medium- and large-sized

lipid droplets (Figure 1H), matching the polygenic risk effect.

To assess whether the identified cellular changes underlying lip-

odystrophy polygenic risk resemble cellular drivers of mono-

genic forms of lipodystrophy, we next correlated expression of

marker genes of monogenic familial partial lipodystrophy syn-

dromes (PPARG, LIPE, PLIN1, AKT2, CIDEC, LMNA, and

ZMPSTE24) with LipocyteProfiler features across subcutaneous

adipocytes from 26 individuals. We found similar cellular signa-

tures between profiles from monogenic lipodystrophy-associ-

ated genes and the polygenic lipodystrophy profile, with high ef-

fect sizes of Mito and AGP features (Figure S6C). These results

suggest that polygenic and monogenic forms of lipodystrophy

converge on similar cellular mechanisms involving increased

mitochondrial activity and decreased lipid accumulation in sub-

cutaneous adipocytes from high PRS donors. This finding is

consistent with the fact that different monogenic forms of lipo-

dystrophy showed similar consequences on mitochondrial

OXPHOS in patient samples.61

To further resolve the cellular pathways of lipodystrophy poly-

genic risk that could underlie themorphological signature in sub-

cutaneous adipocytes, we created a network of genes linked to

features identified to be under the control of lipodystrophy poly-

genic risk. This analysis identified 23 genes that had ten or more

connections to features derived from the lipodystrophy PRS

LipocyteProfiler (FDR < 0.1%, Figure 6E). Sixteen of those genes

are significantly (FDR < 10%) correlated with the lipodystrophy

PRS (Figure S6D). For example, we found EHHADH (a marker

gene of peroxisomal b-oxidation) and NFATC3 (a gene involved

in mitochondrial fragmentation and previously linked to a lipody-

strophic phenotype in mice62) to be positively correlated with

increased polygenic risk (q < 0.1 in both cases; Figure S6D), sug-

gesting that gene networks identified through LipocyteProfiler

signatures recapitulate mechanisms of polygenic risk and that

LipocyteProfiler can be used to identify molecular mechanisms

of disease risk.

Together, these data map aggregated polygenic risk for a lip-

odystrophy-like phenotype onto cellular programs characterized

by increasedmitochondrial activity and decreased lipid accumu-

lation in subcutaneous adipocytes, which is consistent with the
Cell Genomics 3, 100346, July 12, 2023 13



Figure 6. Polygenic risk for lipodystrophy-like phenotype manifests in cellular programs that indicate increased mitochondrial activity,
reduced actin cytoskeleton remodeling, and reduced lipid accumulation capacity in subcutaneous adipocytes

(A) Schematic of T2D process-specific PRS (left panel). Lipodystrophy-specific PRS consists of 20 T2D-associated loci contributing to polygenic risk for a

lipodystrophy-like phenotype.59 y axis: weights of individual loci; x axis: effect size of individual loci contributing to polygenic risk for a lipodystrophy-like

phenotype.

(B–D) Depot-specific effects on LipocyteProfiles in AMSCs at day 14 are under the polygenic control of the lipodystrophy cluster with a mitochondrial and AGP-

driven profile in subcutaneous AMSCs (B), whereas in visceral AMSCs mostly Lipid features were associated with increased polygenic risk (C). See also Figure

S6A (days 0, 3, and 8). Computationally averaged images of subcutaneous AMSCs from low- and high-risk allele carriers for lipodystrophy PRS show higher

mitochondrial intensity, reduced cortical actin, and reduced lipid-droplet size in high-risk carriers (D).

(E) Gene-feature connections for lipodystrophy PRS-mediated differential features are enriched for Mitochondrial Intensity features informative for mitochondrial

membrane potential in subcutaneous AMSCs at day 14 (FDR < 0.1%). See also Figure S6D.
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notion that limited peripheral storage capacity of adipose tissue

underlies polygenic lipodystrophy.63

Allele-specific effect of the 2p23.3 lipodystrophy-like
locus on mitochondrial fragmentation and lipid
accumulation in visceral adipocytes
To confirm that LipocyteProfiler can link an individual genetic risk

locus to meaningful cellular profiles in visceral adipocytes, we

investigated a locus on chromosome 2, spanning the DNMT3A

gene at location 2p23.3, which is one out of the 20 lipodystrophy

process-specific risk loci included in the lipodystrophy PRS an-

alyses. The 2p23.3 metabolic risk haplotype (minor allele fre-
14 Cell Genomics 3, 100346, July 12, 2023
quency of 0.35 in 1000 Genomes Phase 3 combined popula-

tions) is associated with a higher risk for T2D and WHRadjBMI

(Figure 7A). To map the 2p23.3 metabolic risk locus to cellular

functions, we compared LipocyteProfiler features of subcutane-

ous and visceral AMSCs from risk and non-risk haplotype car-

riers at three time points during adipocyte differentiation: before

(day 0), early (day3), and terminal (day 14) differentiation (Fig-

ure 7B). In visceral AMSCs, we identified 92 and 23 core features

that are significantly different between haplotypes at day 3 and

day 14 of differentiation, respectively (Figure 7C and

Table S12). At day 3, 70% of significantly different image-based

features are mitochondrial, and on day 14, 80% of differential



Figure 7. 2p23.3 lipodystrophy-like locus effect on mitochondrial fragmentation and lipid accumulation in visceral adipocytes

(A) PheWAS66 at the 2q23.3 risk locus shows associations with height, WHRadjBMI, T2D, and Calcium.

(B) LipocyteProfiler was performed in subcutaneous and visceral AMSCs of eight risk and six non-risk haplotype carriers across adipocyte differentiation (days 0,

3, and 14).

(C) In visceral AMSCs, 74 and 76 features were different between haplotypes at day 3 and day 14 of differentiation, respectively, with 70% of differential features

at day 3 being mitochondrial and 80% lipid-related at day 14.

(D)Representative imagesof visceralAMSCs fromrisk (top)andnon-risk (bottom)haplotypeatday3ofdifferentiationstainedusingLipocytePainting.Scalebars, 10mm.

(E) Mito MaxIntensity and Mito Texture Entropy were higher at day 3 of differentiation in visceral AMSCs from six risk haplotype carriers, suggesting more

fragmented and higher mitochondrial membrane potential. y axis shows LP units (normalized LP values across eight batches, see STAR Methods).

(legend continued on next page)
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features are lipid-related. These findings suggest that the 2p23.3

locus is associated with amitochondrial function phenotype dur-

ing early differentiation, which then progress to altered lipid-

droplet formation in mature visceral adipocytes. Representative

microscopic images from day 3 of differentiation show higher

mitochondrial stain intensities in risk haplotype carriers (Fig-

ure 7D). The top-scoring, most differential mitochondrial features

(Cells_MaxIntensity_Mito q = 3.5 3 10�2, Cells_Texture_Entro-

py_Mito q = 3.5 3 10�2, and Cytoplasm_Granularity_7_Mito

q = 3.8 3 10�2; Figures 7E and S7A) are increased in metabolic

risk carriers, suggestive of less tubular mitochondria with

increased mitochondrial membrane potential and altered func-

tion. At day 14 of differentiation, AMSCs from metabolic risk

haplotype carriers show smaller lipid droplets in representative

microscopic images (Figure 7F). More specifically, we observed

that risk haplotype carriers have decreased Lipid Intensity (q =

1.93 10�2; Figure 7G) in the cell and a smaller area of large Lipid

objects (LargeLipidobjects_AreaShape q = 3.5 3 10�2; Fig-

ure 7G), suggesting a lipid phenotype characterized by reduced

lipid-droplet stabilization and/or formation. Distinct core features

drive the genetic effect in visceral adipocytes at day 3, including

Mito Texture (e.g., DifferenceVariance and Entropy) and at day

14 Lipid Texture features (Table S12A), highlighting cellular

processes. This profile is associated with increased mature

adipocyte diameter estimates (Figure 2) and suggests that risk

haplotype carriers have a cellular profile that is consistent

with visceral WAT hypertrophy. We further note that our

findings in human adipocytes are corroborated by organismal

perturbation of the candidate effector transcript DNMT3A in

mice, where deletion of Dnmt3a results in changes of whole-

body fat mass (Figure S7B)64 and protects from high-fat-diet-

induced insulin resistance, which is mainly attributed to actions

in visceral adipose tissue.65 Together, these data demonstrate

that LipocyteProfiler captures complex cellular phenotypes

associated with genetic risk for cardiometabolic diseases and

traits and allows the effective resolution of spatial-temporal

context of action. With LipocyteProfiler, we generated a

resource that enables unbiased mechanistic interrogation of

the hundreds of cardiometabolic disease loci with unknown

functions. We have provided all data and software as open-ac-

cess and open-source for the community.

DISCUSSION

We present a novel high-content image-based profiling frame-

work, LipocyteProfiler, for enabling the identification of causal

relationships between natural genetic variation, effect of drugs,

and physiologically relevant stimulations, and the identification of

effector geneswith cellular programs in the context of cardiometa-

bolic disease. We provide proof-of-principle results showcasing

that we can link natural genetic variation to distinct morphological

andcellularprofilesusingLipocyteProfiler-baseddeepphenotypic
(F) Representative images of visceral AMSCs from risk (top) and non-risk (bottom

bars, 10 mm.

(G) LargeLipidObject MedianIntensitywas lower and Lipid Texture AngularSecond

haplotype carriers, suggesting a perturbed lipid phenotype characterized by

(normalized LP values across eight batches, see STAR Methods).
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profiles generated in primary AMSCs with a given genetic

background. This demonstrates that LipocyteProfiler is useful for

unraveling disease-relevant complex cellular programs beyond

hypothesis-drivencell-based readouts alone.Weshow that the in-

formation gained from LipocyteProfiler can report on both physio-

logical and pathological states of the cell and identify cellular traits

underlying cell-state transitions, providing a controlled toolkit

to interrogate dynamic rather than static programs. Using

LipocyteProfiler in defined cell states, we can robustly detect sub-

tle phenotypic differences driven by drug treatment, genetic

perturbation, and natural genetic variation. Our ability to detect

these subtle changes might be a consequence of cell traits

capturing the downstream manifestations of genomic, transcrip-

tional, and proteomic effects. We show that polygenic risk for

metabolic traits converges into discrete pathways and mecha-

nisms. LipocyteProfiler elucidates morphological and cellular sig-

natures underlying differential polygenic metabolic risk specific to

distinct adipose depots, metabolic traits, and cell-developmental

time points. For example, we observed polygenic effects on lipid

degradation in visceral adipocytes in the context of insulin resis-

tance, and mitochondrial activity and cytoskeleton remodeling in

subcutaneous adipocytes under the control of lipodystrophy-spe-

cificpolygeniccontributors toT2D risk.Wenote that themitochon-

drial and actin cytoskeleton informative cellular programs which

associate with a lipodystrophy-like phenotype show similarities

to morphological signatures associated with genome-wide poly-

genic risk for WHRadjBMI, a proxy of unfavorable fat distribution.

Futurework using other adiposity PRSs such as described inMar-

tin et al.67 will help to identify genetic drivers of cardiometabolic

disease and further deconvolve the cellular programs underlying

favorable und unfavorable adiposity.

LipocyteProfiler enables scalable, unbiased, mechanistic

interrogation of metabolic disease loci whose functions remain

unknown. By linking image-based profiles to transcriptional

states, we provide a rich resource of gene-cellular trait connec-

tions that relate image-based features to biological processes.

We envision that LipocyteProfiler-generated quantitative, high-

dimensional representations of morphological and cellular fea-

tures will complement the palette of omics-based profiling read-

outs. Combined with forward and reverse genetic screens, this

can link genetic perturbations to cellular programs in lipid-accu-

mulating cells. We also note that LipocyteProfiler may generate a

suitably complex readout to contribute to ongoing endeavors in

the community to improve differentiation protocols of iPSCs and

discover cellular programs underlying genetic perturbations in

high-throughput genetic screens. Moreover, we expect that

the power to identify genetic drivers for metabolic diseases will

be demonstrated using a plethora of univariate and multivariate

genome-wide polygenic scores to resolve the molecular hetero-

geneities of T2D and other cardiometabolic traits. Finally, we

expect that, with increased sample sizes, our approach will

help to pave the way to map cellular quantitative trait loci in
) haplotype at day 14 of differentiation stained using LipocytePainting. Scale

Moment was higher at day 14 of differentiation in visceral AMSCs from six risk

reduced lipid-droplet stabilization and/or formation. y axis shows LP units



Technology
ll

OPEN ACCESS
population-scale image-based profiling endeavors (GWAS-in-a-

dish) to link common genetic risk variation to lipocyte pheno-

types and accelerate therapeutic pathway discoveries. Our dis-

ease-oriented LipocyteProfiler image-based profiling tool can be

modified by swapping or adding different disease-relevant dyes

or antibodies of interest and could be applied to disease-relevant

models for any disease of interest.

Limitations of the study
A primary limitation in the current study is the low sample size to

link genetic variants to cellular and morphological processes,

and as such we were not able to stratify by sex or other covari-

ates. Findings presented here in our proof-of principle study

need to be replicated in larger population-scale experiments in

the future, which will help to evaluate reproducibility of our re-

sults and evaluate sex-specific polygenic risk effects in the

context of cardiometabolic traits. We further acknowledge that

the AMSCs are derived from patients undergoing abdominal

laparoscopic surgery, and as such the BMI distribution of the pa-

tient cohort is skewed to high BMI (mean 49.34 ± SD 11.28).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human adipose-derived mesenchymal stem cells Munich Obesity BioBank (MOBB) NA

Primary human hepatocytes BioIVT YNZ

Chemicals, peptides, and recombinant proteins

MitoTrackerTM Deep Red FM Molecular Probes, Inc. M22426

BODIPYTM 505/515 Molecular Probes, Inc. D3921

Alexa FluorTM 568 Phalloidin Life Technologies Corp. A12380

Hoechst 33342 Molecular Probes, Inc. H3570

Wheat Germ Agglutinin, Alexa FluorTM 555 Conjugate Molecular Probes, Inc. W32464

SYTOTM 14 Green Fluorescent Nucleic Acid Stain Molecular Probes, Inc. S7576

16% Paraformaldehyde, methanol-free Electron Microscopy Sciences 15710-S

Hank’s Balanced Salt Solution (1x), HBSS Life Technologies Corp. 14025076

Triton X-100 Merck KGaA X100

Phalloidin-Atto-565 Merck KGaA 94072

Critical commercial assays

Infinium HTS assay + GSA Bead Chips Illumina, Inc. NA

Deposited data

Raw data and code GitHub https://github.com/ClaussnitzerLab/

Lipocyte-Profiler

Experimental models: Cell lines

hWAT Xue et al.29 https://doi.org/10.1038/nm.3881

hBAT Xue et al.29 https://doi.org/10.1038/nm.3881

SGBS Wabitsch et al. 2001 https://doi.org/10.1038/sj.ijo.0801520

Cas9 expressing hWAT This paper NA

Oligonucleotides

guide sequences targeting:

PPARG: ATACACAGGTGCAATCAAAG

and CAACTTTGGGATCAGCTCCG;

PPARGC1A TATTGAACGCACCTTAAGTG

and AGTCCTCACTGGTGGACACG;

MFN1: CACCAGGTCATCTCTCAAGA

and TTATATGGCCAATCCCACTA;

PLIN1: TCACGGCAGATACTTACCAG

and TCTGCACGGTGTATCGAGAG;

INSR: TTATCGGCGATATGGTGATG

and AGTGAGTATGAGGATTCGGC;

IRS1 CCCAGGACCCGCATTCAAAG

and CCGAAGCACTAGATCGCCGT

This paper NA

non-targeted controls (control

guide sequences):

ATCAGGCCTTGTCCGTGATT;

TACGTCATTAAGAGTTCAAC;

GACAGTGAAATTAGCTCCCA;

GATTCATACTAAACACTCTAx;

CCTAGTTCATAAGCTACGCC

This paper NA

Software and algorithms

LipocyteProfiler This paper https://github.com/ClaussnitzerLab/

Lipocyte-Profiler

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

CRISPResso Pinello et al.68 https://doi.org/10.1038/nbt.3583

PLINK Purcell et al.69 and

Chang et al. 2015

https://doi.org/10.1086/519795

and https://doi.org/10.1186/

s13742-015-0047-8

SHAPEIT2 Delaneau et al.70 https://doi.org/10.1038/nmeth.2307

PRS-CS Ge et al.71 https://doi.org/10.1038/s41467-019-09718-5

LDpred Vilhjálmsson et al.72 https://doi.org/10.1016/j.ajhg.2015.09.001

igraph Csardi et al. 2006 https://igraph.org

Enrichr Chen et al. 2013 https://maayanlab.cloud/Enrichr/

FastQC Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

STAR Dobin et al.73 https://doi.org/10.1093/bioinformatics/bts635

DESeq2 Love et al.74 https://doi.org/10.1186/s13059-014-0550-8

CellProfiler 3.1.9 Carpenter et al. 2006 https://doi.org/10.1186/gb-2006-7-10-r100

Harmony 4.9 PerkinElmer Inc. HH17000010

ARACNE Margolin et al.75 https://doi.org/10.1186/1471-2105-7-S1-S7

UMAP R package 0.2.7.0 McInnes et al.76 https://doi.org/10.21105/joss.00861

ComplexHeatmap Bioconductor

package 2.7.7

Gu et al.77 https://doi.org/10.1093/bioinformatics/btw313

Sample Progression Discovery (SPD) Qui et al. 2011 https://doi.org/10.1371/journal.pcbi.1001123.

g001

BEclear Akulenko et al.78 https://doi.org/10.1371/journal.pone.0159921

R 3.6.1 The R Foundation

for Statistical Computing

NA

Other

CellCarrier Ultra 96 well plate,

black (now: PhenoPlateTM 96-well)

PerkinElmer Inc. #6005550

CellCarrier Ultra 96 well plate,

black (now: PhenoPlateTM 96-well);

collagen-coated

PerkinElmer Inc. #6055700

Opera Phenix� High-Content Screening System PerkinElmer Inc. NA

Leica DMi8 microscope with

HC PL APO 363/1.40 oil objective

Leica Microsystems

GmbH

NA

MGB Biobank data Partners HealthCare

hospitals

NA
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Melina

Claussnitzer (melina@broadinstitute.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The codes are publicly available on GitHub https://github.com/ClaussnitzerLab/Lipocyte-Profiler and https://zenodo.org/record/

7341916#.ZCtCjuzMKJ9. The high content imaging data are available at the Cell Painting Gallery on the Registry of Open Data on

AWS (https://registry.opendata.aws/cellpainting-gallery/) under accession number cpg0011. The transcriptomics data are available

on the GEO (Accession number GSE184089).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human primary AMSC isolation/abdominal laparoscopy cohort–Munich obesity BioBank/MOBB
We obtained AMSCs from subcutaneous and visceral adipose tissue from patients undergoing a range of abdominal laparoscopic

surgeries (sleeve gastrectomy, fundoplication or appendectomy). The visceral adipose tissue is derived from the proximity of the

angle of His and subcutaneous adipose tissue obtained from beneath the skin at the site of surgical incision. Additionally, human

liposuction material was obtained. Each participant gave written informed consent before inclusion and the study protocol was

approved by the ethics committee of the Technical University of Munich (Study No 5716/13). Isolation of AMSCs was performed

as previously described in.79 For a subset of donors, purity of AMSCs was assessed as previously described in.80 Briefly, cells

were stained with 0.05mg CD34, 0.125mg CD29, 0.375mg CD31, 0.125mg CD45 per 250K cells and analyzed on CytoFlex together

with negative control samples of corresponding AMSCs.

Differentiation of human AMSCs
For imaging, cells were seeded at 10K cells/well in 96-well plates (Cell Carrier, Perkin Elmer #6005550) and induced 4 days after

seeding. For RNAseq, cells were seeded at 40K cells/well in 12-well dishes (Corning). Before Induction cells were cultured in

proliferation medium (Basic medium consisting of DMEM-F12 1% Penicillin - Streptomycin, 33mM Biotin and 17mM Pantothenate

supplementedwith 0.13mM Insulin, 0.01mg/ml EGF, 0.001mg/ml FGF, 2.5%FCS). Adipogenic differentiation was induced by changing

culture medium to induction medium. (Basic medium supplemented with 0.861mM Insulin, 1nM T3, 0.1mM Cortisol, 0.01 mg/ml

Transferrin, 1mM Rosiglitazone, 25nM Dexamethasone, 2.5nM IBMX). On day 3 of adipogenic differentiation culture medium was

changed to differentiation medium (Basic medium supplemented with 0.861mM Insulin, 1nM T3, 0.1mM Cortisol, 0.01 mg/ml Trans-

ferrin). Medium was changed every 3 days. Visceral-derived AMSCs were differentiated by further adding 2% FBS as well as 0.1mM

oleic and linoleic acid to the induction and differentiation media. For isoproterenol stimulation experiments, 1uM isoproterenol was

added to the differentiation media and cells treated overnight.

Primary human hepatocyte culture
Primary human hepatocytes (PHH) were purchased from BioIVT. Donor lot YNZwas used in this study. PHHwere thawed and imme-

diately resuspended in CP media (BioIVT) supplemented with torpedo antibiotic (BioIVT). Cell count and viability were assessed by

trypan blue exclusion test prior to plating. Hepatocytes were plated onto collagen-coated Cellcarrier-96 Ultra Microplates (Perkin

Elmer) at a density of 50,000 cells per well in CP media supplemented. Four hours after plating, media was replaced with fresh

CP media. After 24 h, media was replaced with fresh CP media or CP media containing oleic acid (0.3mM) or metformin (5mM). He-

patocytes were incubated for an additional 24 h prior to processing.

MGB Biobank cohort
The MGB Biobank81 maintains blood and DNA samples from more than 60,000 consented patients seen at Partners HealthCare

hospitals, including Massachusetts General Hospital, Brigham and Women’s Hospital, McLean Hospital, and Spaulding Rehabil-

itation Hospital, all in the USA. Patients are recruited in the context of clinical care appointments at more than 40 sites, clinics, and

electronically through the patient portal at Partners HealthCare. Biobank subjects provide consent for the use of their samples

and data in broad-based research. The Partners Biobank works closely with the Partners Research Patient Data Registry

(RPDR), the Partners’ enterprise scale data repository designed to foster investigator access to a wide variety of phenotypic

data on more than 4 million Partners HealthCare patients. Approval for analysis of Biobank data was obtained by Partners

IRB, study 2016P001018.

Type 2 diabetes status was defined based on ‘‘curated phenotypes’’ developed by the Biobank Portal team using both structured

and unstructured electronic medical record (EMR) data and clinical, computational and statistical methods. Natural Language

Processing (NLP) was used to extract data from narrative text. Chart reviews by disease experts helped identify features and vari-

ables associated with particular phenotypes and were also used to validate results of the algorithms. The process produced robust

phenotype algorithms that were evaluated using metrics such as sensitivity, the proportion of true positives correctly identified as

such, and positive predictive value (PPV), the proportion of individuals classified as cases by the algorithm.82

a. Control selection criteria.
1. Individuals determined by the ‘‘curated disease’’ algorithm employed above to have no history of type 2 diabetes with NPV

of 99%.

2. Individuals at least age 55.

3. Individuals with HbA1c less than 5.7

b. Case selection criteria.

1. Individuals determined by the ‘‘curated disease’’ algorithm employed above to have type 2 diabetes with PPV of 99%

2. Individuals at least age 30 given the higher rate of false positive diagnoses in younger individuals.
Cell Genomics 3, 100346, July 12, 2023 e3



Technology
ll

OPEN ACCESS
Genomic data for 30,240 participants was generated with the Illumina Multi-Ethnic Genotyping Array, which covers more than 1.7

million markers, including content from over 36,000 individuals, and is enriched for exome content with >400,000 markers missense,

nonsense, indels, and synonymous variants.

METHOD DETAILS

LipocytePainting
Human primary AMSCs and PHHwere plated in 96-well CellCarrier Black plates (PerkinElmer #6005550). AMSCswere differentiated

for 14 days, and high content imaging was performed at day 0, day 3, day 8 and day 14 of adipogenic differentiation in replicates of 4

per donor/time point/depot (inter-replicate variance of 0.075). Primary human hepatocytes were stained after 48 h in culture, and 24h

following treatment with oleic acid or metformin. On the respective day of the assay, cell culture media was removed and replaced by

0.5uM Mitotracker staining solution (1mM MitoTracker Deep Red stock (Invitrogen #M22426) diluted in culture media) to each well

followed by 30 min incubation at 37�C protected from light. After 30min Mitotracker staining solution was removed and cells were

washed twice with Dulbecco’s Phosphate-Buffered Saline (1X), DPBS (Corning #21-030-CV) and 2.9uM BODIPY staining solution

(3.8mMBODIPY 505/515 stock (Thermofisher #D3921) diluted in DPBS) was added followed by 15min incubation at 37�C protected

from light. Subsequently, cells were fixed by adding 16% Methanol-free Paraformaldehyde, PFA (Electron Microscopy Sciences

#15710-S) directly to the BODIPY staining solution to a final concentration of 3.2% and incubated for 20 min at RT protected

from light. PFA was removed and cells were washed once with Hank’s Balanced Salt Solution (1x), HBSS (Gibco #14025076). To

permeabilize cells 0.1% Triton X-100 (Sigma Aldrich #X100) was added and incubated at RT for 10 min protected from light. After

Permeabilization multi-stain solution (10 units of Alexa Fluor 568 Phalloidin (ThermoFisher #A12380), 0.01 mg/ml Hoechst 33342 (In-

vitrogen #H3570), 0.0015 mg/ml Wheat Germ Agglutinin, Alexa Fluor 555 Conjugate (ThermoFisher #W32464), 3uM SYTO 14 Green

Fluorescent Nucleic Acid Stain (Invitrogen #S7576) diluted in HBSS) was added and cells were incubated at RT for 10 min protected

from light. Finally, staining solution was removed and cells were washed three times with HBSS. Cells were imaged using a Opera

Phenix High content screening system using confocal, 203 objective. Per well we imaged 25 fields.

Staining and microscopy of actin-cytoskeleton in subcutaneous AMSCs
To stain the actin cytoskeleton, and nuclei, cells were washed twice with ice-cold PBS and fixed with paraformaldehyde Roti-Histofix

4% (Roth, Karlsruhe,Germany) for 15min.Cellswerewashed twicewith ice-coldPBS for 5min and incubatedwith ice-cold0.1%Triton

X-/PBS (Roth, Karlsruhe,Germany) for 5min.Cellswerewashed twicewithPBSandstainedwith0.46%BisbenzimideH33258 (Sigma-

Aldrich, Steinheim, Germany), and 1% Phalloidin-Atto-565 (Sigma-Aldrich, Steinheim, Germany). Cells were incubated for 1 h at RT in

the dark. Afterward, cells were washed twicewith PBS for 5min and kept in PBS at 4�C until imaging. Imageswere acquired on a Leica

DMi8 microscope using the HC PL APO363/1.40 oil objective. Images were processed using the Leica LasX software.

Isolation and adipocyte diameter determination of floating mature adipocytes
Mature adipocyte isolation was carried out as described earlier.83 Immediately after isolation, approximately 50 mL of the adipocyte

suspension was pipetted onto a glass slide and the diameter of 100 cells was manually determined under a light microscope.

CRISPR-Cas9-mediated knockout of adipocyte marker genes
We generated a hWAT cell-line stably expressing Cas9 as previously described in Shalem et al.84 We validated the generated line by

assessing Cas9 activity (90%) and adipocyte differentiation capacity using adipocyte marker gene expression and morphological

profiling. CRISPR-Cas9mediated knockdown of PPARG, PPARGC1AA,MFN1, PLIN1, INSR, and IRS1was performed in pre-adipo-

cytes (5 days before differentiation) using three replicates per guide and two guides per gene (guide sequences targeting PPARG:

ATACACAGGTGCAATCAAAG and CAACTTTGGGATCAGCTCCG; PPARGC1A TATTGAACGCACCTTAAGTG and AGTCCTCACT

GGTGGACACG; MFN1: CACCAGGTCATCTCTCAAGA and TTATATGGCCAATCCCACTA; PLIN1: TCACGGCAGATACTTACC

AG and TCTGCACGGTGTATCGAGAG; INSR: TTATCGGCGATATGGTGATG and AGTGAGTATGAGGATTCGGC; IRS1 CCCAGGA

CCCGCATTCAAAG and CCGAAGCACTAGATCGCCGT) as well as five non-targeted controls (control guide sequences: ATCAG

GCCTTGTCCGTGATT, TACGTCATTAAGAGTTCAAC, GACAGTGAAATTAGCTCCCA, GATTCATACTAAACACTCTA, CCTAGTTATA

AGCTACGCC) in an 96-well arrayed format. Guide on-target efficiency was assessed using Next-generation sequencing followed by

CRISPResso analysis.68 AMSCswere stained using LipocytePainting (see above) on day 14 of differentiation. After feature extraction

and QC steps (see also LipocyteProfiling), we removed samples where guide cutting efficiency was <10% or where discrepancy be-

tween the two guides was equal or above 10%. For visualizations we used one non-targeted control that showed lowest standard

deviation of replicates and was closest to the median of all five non-targeted controls across all LipocyteProfiler features.

QUANTIFICATION AND STATISTICAL DETAILS

LipocyteProfiling
Quantitation was performed using CellProfiler 3.1.9. Prior to processing, flat field illumination correction was performed using func-

tions generated from themedian intensity across each plate. Nuclei were identified using theDAPI stain and then expanded to identify
e4 Cell Genomics 3, 100346, July 12, 2023
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wholecells using thePhalloidin/WGAandBODIPYstains.Regionsof cytoplasmwere thendeterminedby removing theNuclei from the

Cell segmentations. Speckles of BODIPY staining were enhanced to assist in detection of small and large individual Lipid objects. For

each object set measurements were collected representing size, shape, intensity, granularity, texture, colocalization and distance to

neighboring objects. After LipocyteProfiler (LP) feature extraction data was filtered by applying automated andmanual quality control

steps. First, fieldswith a total cell count less than50 cellswere removed.Second, every fieldwasassessedvisually and fields thatwere

corruptedby experimental induced technical artifactswere removed. Furthermore, blocklisted features(Way, 2020), LP-featuresmea-

surement categoryManders, RWC and Costes, that are known to be noisy and generally unreliable were removed. Additionally, LP-

features named SmallLipidObjetcs, that measure small objects stained by SYTO14 rather than lipid informative objects, were also

removed. After filtering datawere normalized per plate using a robust scaling approach85 that subtracts themedian fromeach variable

and divides it by the interquartile range. Individual wells were aggregated for downstream analysis by cell depot and day of differen-

tiation. Subsequent data analyses were performed in R3.6.1 and MATLAB using base packages unless noted.

To assess batch effects we visualized the data using a Principal component analysis and quantified it using a Kolmogorov-Smirnov

test implemented in the ‘‘BEclear’’ R package.78 Additionally we applied a k-nearest neighbor (knn) supervised machine learning

based classification algorithm implemented in the ‘‘class’’ R package49 to investigate the accuracy of predicting biological and tech-

nical variation. For this analysis the dataset, consisting of 3 different cell types (hWAT, hBAT, SGBS) distributed on the 96-well plate,

imaged at 4 days of differentiation, was split into equally balanced testing (n = 18) and training (n = 56) sets. Accuracy of this clas-

sification model was predicted based on three different categories, i.e. cell type, batch and column of the 96-well plate. (https://

github.com/ClaussnitzerLab/Lipocyte-Profiler)

Fordimensionality reduction visualizationUniformmanifoldapproximationandprojectionmaps (UMAP)werecreatedusing theUMAP

R package version 0.2.7.076 (https://github.com/ClaussnitzerLab/Lipocyte-Profiler). To visualize LipocyteProfiler features and their ef-

fect size ComplexHeatmap Bioconductor package version 2.7.777 was used (https://github.com/ClaussnitzerLab/Lipocyte-Profiler)

To identify patternsof adipocytedifferentiation underlying themorphological profilesa sampleprogressiondiscovery analysis (SPD)

was performed using the algorithm previously described in Qiu et al.38 Briefly, the two adipose depots were analyzed separately, and

features were clustered into modules based on correlation (correlation coefficient 0.6). Minimal spanning trees (MST) were con-

structed for eachmodule andMSTsof eachmodule are correlatedwith eachother.Modules that support commonMSTwere selected

and an overall MST based on features of all selected modules were reconstructed.

Variance component analysis was performed by fitting multivariable linear regression models - yi� xi + zi + . - where y denotes an

LipocyteProfiler feature of individual i and x, z, etc. independent variables that could confound identification of biological sources of

variability of the dataset. Independent variables are experimental batch, adipose depot, passaging before freezing, season and year

of AMSCs isolation, sex, age, BMI, T2D status of individual, LipocyteProfiler feature Cells_Neighbors_PercentTouching_Adjacent

corresponding to density of cell seeding and identification numbers of individuals. (https://github.com/ClaussnitzerLab/Lipocyte-

Profiler)

To test whether there is a difference of morphological profiles on the tail ends of polygenic risk scores (PRS) for T2D, HOMA-IR and

WHRadjBMI a multi-way analysis of variance (ANOVA) was performed. Individuals belonging to top 25% and bottom 25% of PRS

score distribution are categorized into a categorical variable with 2 levels, top 25%or 25%bottom, according to their PRS percentile.

Differences of morphological profiles are predicted using the categorized PRS variable adjusted for sex, age, BMI and batch. Addi-

tionally linear regression models were fitted adjusted for sex, age, BMI, batch and PC1 to predict differences of morphological and

cellular profiles based polygenic risk for metabolic traits. To overcome multiple testing burden p values were corrected using false

positive rate (FDR) described in R package ‘‘qvalue’’ (qvalue, no date). Features with FDR <5% were classified to be significantly

impacted by the PRS variable. (https://github.com/ClaussnitzerLab/Lipocyte-Profiler) To decrease complexity we first removed fea-

tures based on effect size and measurement type/class, and second removed features that correlate r > 0.85 with at least 10% of

features of remaining features (https://github.com/ClaussnitzerLab/Lipocyte-Profiler).

LipocyteProfiler feature reduction using ARACNE
Algorithm for theReconstruction of AccurateCellular Networks, ARACNE26,75,86 is a software packagedesigned to capture regulatory

networks from gene expression data. The method makes use of mutual information (MI) ranking to prioritize first order relationships

(also known as direct regulatory relations) among genes, and to generate accurate maps of the regulatory network. The use of MI for

the prioritization of biomolecular and clinical characteristics has been demonstrated previously calculated by the algorithm can be

used to prioritize interactions between other cellular andmolecular characteristics.25,27,87 In this study, we use the ARACNE algorithm

to construct agraphwhere its nodes represent the LipocyteProfiler’s features and itsweighted edges representMIbetweenprioritized

first order relations between the nodes.We then build on this network to reduce the dimensionality of the LipocyteProfiler total feature

space. Since the graph is constructed based on the calculatedMI, the number of significant interactions of a node can be used to: (1)

identify information hubs in the graph based on the number of connectivities of the nodes. After ranking the nodes based on their num-

ber of edges, a 75%upper quantile cutoffwas applied todefine the information hubs, (2) identify nodeswith lowconnectivity that share

minimal information.We calculated the average ofweights (MI) of outgoing edges fromevery node and considered this average as the

MI represented by the node. By ranking the nodes based on their calculated MI and applying a 25% lower quantile cutoff, we could

identify the non-hub nodes that share minimal information (Figures S1B and S1C). The characterization of these two types of nodes

play an important role in reducing the dimensionality of the LipocyteProfiler feature spacewhilemitigating the overall information loss.
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We classify those LipocyteProfiler features identified as information hubs or that passed the MI cutoff as ‘‘LipocyteProfiler core fea-

tures’’. We applied the two criteria on the total 3,005 LipocyteProfiler input features of visceral and subcutaneous derived AMSCs re-

sulting in two sets of adipose depot-dependent LipocyteProfiler core feature sets. As a result, 986 features were labeled as

LipocyteProfiler core features for visceral adipocytes and 1,002 for subcutaneous adipocytes. Between the two sets, there are 770

shared core features. The scripts for executing the ARACNE algorithm on the LipocyteProfiler features and the post processing steps

for identifying the LipocyteProfiler core features are available through the GitHub page (https://github.com/ClaussnitzerLab/

Lipocyte-Profiler).

Generating of average cells
For each group of interest, cells were pooled and divided into 100 clusters via K-Means clustering (scikit-learn). Individual cells were

then sampled from the cluster closest to a theoretical point representing the mean of all object measurements, as determined by a

Euclidean distance matrix.

RNA-seq
RNA-seq data were processed using FastQC88 and spliced reads were aligned to human genome assembly (hg19) using STAR73 fol-

lowed by counting gene levels using RsubreadRpackage.89 Next, raw read countswere normalized using theDESseq2Rpackage.74

For differential expression analysis on the tail ends of polygenic risk scores (PRS) for HOMA-IR a multi-way analysis of variance

(ANOVA) was performed on subset of 512 genes (GSEA hallmark gene sets for adipogenesis, fatty acid metabolism and glycolysis).

Individuals belonging to top 25% and bottom 25% of PRS score distribution are categorized into a categorical variable with 2 levels,

top 25%or 25%bottom, according to their PRSpercentile. Differences in transcriptional profiles are predicted using categorized PRS

variable adjusted for sex, age, BMI and batch. To overcomemultiple testing burden p values were corrected using false positive rate

(FDR) described in R package ‘‘qvalue’’ (qvalue). Geneswith FDR <10%were classified to be significantly impacted by PRS andwere

uploaded to Enrichr to analyze them as a gene list against the WikiPathways. (https://github.com/ClaussnitzerLab/Lipocyte-Profiler)

Gene expression and LipocyteProfiler feature network
A linear regression model was fitted of 2,760 LP-features and global transcriptome RNA-seq data adjusted for sex, age, BMI and

batch in subcutaneous AMSCs at day 14 of differentiation. Gene LP features associations were declared to be significant when pass-

ing the FDR cut-off of FDR< 0.01% (FDR<0.1%). LP features belonging to Cells category were used for further analysis. Associations

between genes and LP features were visualized using ‘‘igraph’’ R package (Csardi, Nepusz and Others, 2006 - https://igraph.org/)

(https://github.com/ClaussnitzerLab/Lipocyte-Profiler). Genes that are connected to top scoring LP features were uploaded to En-

richr to analyze them as a gene list againstWikiPathways or BioPlanet. Adipocytemarker genes,SCD,PLIN2, LIPE, INSR,GLUT4 and

TIMM22, were chosen to demonstrate morphological profiles matching their known pathways, by identifying LP features that asso-

ciate with those genes with a global significant level of FDR<5%. (https://github.com/ClaussnitzerLab/Lipocyte-Profiler)

Quality control of genotyping data
Genotyping of all samples was performed in two separate batches using the Infinium HTS assay on Global Screening Array bead-

chips. Since the two sets of samples were genotyped with different versions of the beadchips and in different batches, we Qced,

imputed, and generated the genome-wide polygenic scores separately and combined the results afterward.

A 3-step quality control protocol was applied using PLINK,69,90 and included 2 stages of SNP removal and an intermediate stage of

sample exclusion. The exclusion criteria for genetic markers consisted of: proportion of missingnessR0.05, HWE p% 1 x 10–20 for

all the cohort, and MAF <0.001. This protocol for genetic markers was performed twice, before and after sample exclusion. For the

individuals, we considered the following exclusion criteria: gender discordance, subject relatedness (pairs with PI-HATR0.125 from

which we removed the individual with the highest proportion of missingness), sample call rates R0.02 and population structure

showing more than 4 standard deviations within the distribution of the study population according to the first seven principal com-

ponents. After QC, 35 subjects remained for the analysis for which we had matched LipocyteProfiler imaging data.

Genotypes were phased with SHAPEIT2,70 and then performed genotype imputation with the Michigan Imputation server, using

Haplotype Reference Consortium (HRC)91 as reference panel. We excluded variants with an info imputation r-squared <0.5 and a

MAF <0.005.

Constructing PRSs
Genome-wide polygenic scores were computed using PRS-CS71 and using the ‘‘auto’’ parameter to specify the phi shrinkage

parameter. We computed the PRS-CS polygenic scores for the following traits: T2D,51 BMI, waist-to-hip ratio adjusted and unad-

justed by BMI, and stratified by sex and combined.54 Genome-wide PRS for HOMA-IRwere computedwith LdPred72 using summary

statistics from Dupuis et al. (Dupuis et al., 2010). Process-specific PRSs were constructed based on five clusters defined in Udler

et al.59 by selecting the SNPs that had weight larger than 0.75 for each of a given cluster.

All PRSs were tested for association with T2D and with BMI using the 30,240 MGB Biobank samples from European Ancestry

defined based on self-reported and principal components.
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