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Smart microscopes of the future
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We dream of a future where light microscopes 
have new capabilities: language-guided image 
acquisition, automatic image analysis based 
on extensive prior training from biologist 
experts, and language-guided image analysis 
for custom analyses. Most capabilities have 
reached the proof-of-principle stage, but 
implementation would be accelerated by 
efforts to gather appropriate training sets and 
make user-friendly interfaces.

When we started writing CellProfiler software for bioimage analysis 
in 2003 (A.E.C.) or began contributing to ImageJ in 2001 (K.E.), we 
never imagined a day where we would say that most microscopy-based  
phenotypes are fairly easy to robustly quantify. Yet 20 years later it is 
largely true, thanks to the veritable buffet of software tools that solve 
most problems in bioimage analysis. Even more unfathomable 20 years 
ago is today’s reality: that most of these tools are free and open source. 
The bioimaging developer community is a model for others and marked 
by collegiality and cooperation, as evidenced by the Scientific Com-
munity Image Forum (https://forum.image.sc)1, our one-stop shop 
for all image analysis questions, from beginners to experts and across 
software projects.

When ImageJ2 had its 25th anniversary in 2012 and CellProfiler3 
celebrated its tenth birthday in 2016, our teams wanted to look to the 
future. Discussions involved the community and ranged from standard 
brainstorming for the near future to whimsical dreaming further over 
the horizon. There were lots of ideas for new functionality and improv-
ing the interoperability and usability of interfaces. On the dreamier end 
of the spectrum, one participant imagined importing -omics data to 
integrate it with images at the single-cell level. A panoply of spatial tech-
niques have made this capability even more in demand today. Another 
dreamed of software where you could deposit two piles of images into 
folders (perhaps samples from healthy people and from those with a 
particular disease) and receive a report on any significant differences 
in morphology found in the two groups. This is relatively technically 
feasible today, though user-friendly tools lag behind and safeguards 
are needed to avoid finding spurious associations in the samples.

Some wished for image analysis that would work fast and seam-
lessly with image acquisition, to allow a smart microscope that could 
make decisions about what, and how, to image on the fly. Several groups 
have proposed and demonstrated the concept4–10. For both ImageJ 
and CellProfiler, much of the futuristic brainstorming focused on 
deep learning; it was already clear back then that eventually trained 
deep learning models might exist so software would ‘just know’ what 
different cellular structures look like, such that those structures are 
automatically identified in images as they are acquired, with no need 
to configure any software at all. One brainstormer, Allen Goodman, 

went even further into the future: what if you could just talk to image 
analysis software in plain language?

These experiences and concepts have shaped our vision of the 
light microscope of the future, which might have three main capa-
bilities (Fig. 1). The first is language-guided image acquisition. Once a 

 Check for updates

Hey microscope, collect some
images of my fluorescent cell line
from the top left part of the slide
using default settings

Now capturing five images, for 
the three channels I have 
detected, using wide-field mode…

Actually I’d like to use confocal

Got it… done! Each image has an
average of 46 cells; 3 are in mitosis
and 6 are apoptotic. See this
automatic report for more details.

Great, now scan the remaining 
slide and image each mitotic cell 
in a 3D stack. Stop when you 
capture 3,000 cells in mitosis and 
also capture 3,000 non-mitotic 
cells. I’m going out for co�ee.

Image acquisition in progress…
I’m avoiding the fiber artifact on 
the right side of the slide… I 
determined that 20 focal planes 
best captured the 3D events. 
3,000 cells imaged… 
Complete!

Please measure the texture of the 
green staining within the region of 
the cells marked with the red stain 
and again show me a histogram for 
mitotic cells versus non-mitotic cells.

Done! Here is the plot. I also noticed 
a correlation between cells’ DNA 
content and the texture of the green 
staining. Here is a plot of that as 
well, in case it interests you.

I’ve exported all image acquisition and
analysis settings as a script so you can
store it, share it, or adapt it in the future.

Fig. 1 | A vision for a microscope of the future. The microscope and scientist 
work together using plain language to produce desired images and report results. 
The microscope makes as many automated analyses and decisions as possible, 
though the scientist can choose to override them. The microscope also performs 
custom image analysis as directed.
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visible over the horizon, with a variety of natural language processing 
models, datasets and training approaches coming online, mixing 
generalist and specific tasks20–24. This seems especially likely after 
the debut of OpenAI’s ChatGPT, catching the public’s attention and 
imagination when it was released to great fanfare in November 2022, 
and the broader varieties of artificial intelligence models now becom-
ing available (reviewed in ref. 25). As has become obvious for language 
bots, which may compose text that is ‘truthy-sounding’ but not true, 
automated methods may fail in subtle ways that require oversight by 
experts so acquisition and analyses may proceed as intended. Still, if 
these limitations are carefully explained and, to the degree possible, 
controlled for, such systems could vastly simplify and democratize 
quantitative image analysis.

What are the challenges for getting there? The envisioned capa-
bilities have largely already been proven in principle, as described 
above, and the user interfaces could readily be built given sufficient 
funding, as could generalizable interfaces between microscopy 
acquisition and analysis; major technical obstacles are not likely. 
That leaves the major limiting factor as collecting sufficiently large 
and diverse training sets to be able to (1) crystallize cell biologists’ 
knowledge about cell structures and phenotypes into trained models 
that can be deployed and (2) interpret plain-language requests from 
scientists about image acquisition and analysis. The latter is a greater 
challenge currently; hundreds of custom image analysis pipelines 
exist in the community, but they span dozens of software languages 
and tools and formats, and there is no collection of them associated 
with a plain language explanation of their capabilities. An effort to 
gather these necessary missing pieces, representing the breadth of 
the biology community, might relieve this bottleneck. Alternatively, 
unsupervised learning models might learn from all existing public 
data without requiring supervision nor annotation by experts. Either 
way, advancements here could give biologists in the 2030s capabili-
ties we can now only dream of.
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sample is loaded, the microscope asks: “What would you like to image?”  
(in any desired language, of course). At the simplest end of the spec-
trum, one could say “Three images from the center of each well of 
this 96 well plate.” If given permission, the microscope could scan an 
appropriate portion of the sample to discern the properties of stains 
that are present, to suggest, “It appears your sample contains green flu-
orescent protein, Hoechst 33342 and MitoTracker; should I acquire all 
three channels?” At the more complex end of the spectrum, one could 
tell the microscope, “Scan this sample for cells in the anaphase stage 
of mitosis, then acquire images of them every 5 minutes for the next  
12 hours” or “Scan the sample at low magnification to find well- 
formed organoids larger than 100 micrometers in diameter, then image 
them at high magnification in 3D” and the microscope would perform 
the necessary image analysis on the fly. The microscope would interact 
with the user not just about what to image, but also how. Some decisions 
might be automatic, such as autofocusing or adjusting exposure times 
to be consistent across a set of samples. For others, the microscope may 
ask clarifying questions such as “Shall I use confocal or wide-field imag-
ing?” and explain the pros and cons of each to the scientist, if needed. 
In the end, of course, the microscope would record the protocol used, 
so it could be published, shared and reused.

Second, a microscope of the future could automatically analyze 
images, without being given explicit instructions. In fact, based on 
extensive training, its ability to detect and identify cell structures 
and phenotypes might surpass that of a typical cell biologist, whose 
expertise may be limited to a few cell structures and who has not 
observed cells under millions of different treatment conditions. For 
example, once images begin to be acquired, the system might report 
to the scientist automatically, for each image, the number of cells 
and the proportion of cells with particular phenotypes, including 
cell cycle distributions based on nuclear DNA content. It could also 
avoid regions of the sample that are of poor technical quality. How 
would this work? Already, deep learning models can automatically 
identify common cellular structures in images, such as nuclei or cell 
borders, as well as particular phenotypes, such as mitosis, apoptosis, 
metastasis and various differentiation states. However, until recently, 
such models must have already been trained on images from a par-
ticular protocol and laboratory. The idea that generalizable models —  
ones that work across experiments and sample types without any 
user training or parameter tuning — might be effective in biology was 
demonstrated in the 2018 Data Science Bowl11, which aimed to create 
deep learning models to identify nuclei across a variety of samples, 
stains, microscopes and laboratories, all with zero user input needed. 
Models trained on that dataset and more, with ever-improving training 
schemes and networks, have yielded trained models such as Stardist12 
that ‘know’ what nuclei look like and in fact have already expanded to 
ones such as such as Cellpose13 and Mesmer14 that can identify cell bor-
ders with relative ease. In the future this capability could be expanded 
to other cell structures and common phenotypes. GPUs, thanks to 
the gaming boom in the 2000s, provide the necessary computing 
power to train these models, and many user-friendly open-source 
software tools now have deep learning segmentation capability, 
including CellProfiler, ilastik15, ImJoy16, DeepImageJ17, CSBDeep18 and  
ZeroCostDL4Mic19.

Third, language-guided image analysis would allow customized 
analyses, on top of whatever automatic information has been extracted 
as described above. This would allow queries like, “Are the GFP-positive 
cells nearer to the vasculature than expected by chance?” or “Show me 
a histogram of the number of red speckles per cell.” This now seems just 
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