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SUMMARY
Intestinal fibrosis, often caused by inflammatory bowel disease, can lead to intestinal stenosis and obstruc-
tion, but there are no approved treatments. Drug discovery has been hindered by the lack of screenable
cellular phenotypes. To address this, we used a scalable image-based morphology assay called Cell Paint-
ing, augmentedwithmachine learning algorithms, to identify small molecules that could reverse the activated
fibrotic phenotype of intestinal myofibroblasts. We then conducted a high-throughput small molecule che-
mogenomics screen of approximately 5,000 compounds with known targets or mechanisms, which have
achieved clinical stage or approval by the FDA. By integrating morphological analyses and AI using patho-
logically relevant cells and disease-relevant stimuli, we identified several compounds and target classes
that are potentially able to treat intestinal fibrosis. This phenotypic screening platform offers significant
improvements over conventional methods for identifying a wide range of drug targets.
INTRODUCTION

Intestinal fibrosis is a pathophysiological mechanism of intestinal

tissue repair that leads to the deposition of desmoplastic con-

nective tissue after injury. This process can be triggered by

noxious agents, including infections, autoimmune reactions,

and physical, chemical, and mechanical injuries. Under normal

physiological conditions, intestinal immune components can

help to clear foreign pathogens and facilitate tissue repair

through canonical wound healing processes. However, fibro-

genesis may occur when the immune response is uncontrolled

and persistent, or when injuries repeat, resulting in chronic

damage.1,2 Intestinal fibrosis is one of themost common compli-

cations of patients who suffer from inflammatory bowel disease

(IBD), occurring in approximately 5% of ulcerative colitis (UC)

patients and more than 30% of Crohn’s disease patients. The

prevalence of IBD increased from 0.5% in 2010 to 0.75% in

2022 in Western countries and is projected to reach 1% in

2030.3,4 Fibrostenotic complications, including stricture forma-

tion and subsequent intestinal obstruction, significantly increase

morbidity and hospitalization, surgical intervention, and health

care costs.1 Despite advances in the development of therapeu-

tics for treating IBD, including small molecular weight immuno-

modulators (prednisone, 5-aminosalicylic acid, tofacitinib, and

ozanimod), DNA/RNA replication inhibitors (azathioprine, metho-

trexate, and 6-mercaptopurine), and largemolecular weight anti-
Cell Chem
inflammatory biologics (anti-TNFa, anti-integrins, and anti-IL-12/

IL-23), the high incidence of intestinal strictures and requirement

for surgical interventions remain.5 The lack of effective drug ther-

apies for fibrostenotic IBD represents an increasing and signifi-

cant unmet medical need.

At a molecular basis, intestinal fibrosis in IBD is a dynamic

and multifactorial process. It is a consequence of local chronic

inflammation and subsequent activation of fibroblasts. Mucosal

inflammation occurs when themucosal integrity is compromised

resulting in the influx of micro-organisms from the gut lumen.

Myeloid cells, such as macrophages and dendritic cells, recog-

nize these pathogen-associated molecular patterns via Toll-like

and NOD-like pattern recognition receptors and propagate the

immune signaling by recruiting other immune cells to clear the

offending pathogens by releasing cytokines and chemokines,

such as TNFa, IL-1b, IL-36, and Oncostatin-M (OSM).6 Tissue

repair and wound healing occurs in the resolution of the inflam-

mation process after initial inflammatory responses. However,

in the context of chronic inflammation, cytokines and chemo-

kines drive the differentiation and activation of fibroblasts and

their subsequent production of extracellular matrix (ECM) pro-

teins. When the balance between production and enzymatic

degradation of ECM proteins is lost, intestinal fibrosis occurs.5

TGFb is a key cytokine that is produced in response to inflamma-

tion, and is a well-known driver of fibrogenesis.5,7 Numerous

studies have been carried out to address TGFb-induced
ical Biology 30, 1–14, September 21, 2023 ª 2023 Elsevier Ltd. 1

mailto:shan.yu@takeda.com
mailto:shane.horman@takeda.com
https://doi.org/10.1016/j.chembiol.2023.06.014


ll
Resource

Please cite this article in press as: Yu et al., Integrating inflammatory biomarker analysis and artificial intelligence-enabled image-based profiling to
identify drug targets for intestinal fibrosis, Cell Chemical Biology (2023), https://doi.org/10.1016/j.chembiol.2023.06.014
fibrosis.7–10 However, due to the broad physiological functions,

TGFb inhibition induces undesirable toxicities, which override

its therapeutic benefits.11 In contrast, inflammation-associated

fibroblasts (IAFs), enriched for expression of many genes asso-

ciatedwith colitis and fibrosis, represent another paradigm in ad-

dressing IBD-related fibrosis.12,13

Due to the failure rate of translational efficacy for many clinical

candidates for IBD,14 there is an increased interest in the

exploratory phase of drug discovery, to utilize disease-relevant

phenotypic screening to provide more confidence to identify

drug targets or small molecules.15–17 However, lead molecules

derived from phenotypic screening campaigns may be difficult

to follow up due to intrinsic complexities of generating useful

structure-activity relationships, and lack of structure-based

drug design input, coupled to the difficulties in predicting and

successfully navigating mechanism-associated toxicities. Che-

mogenomic screening utilizes a library of selective small mole-

cules with annotated targets. The benefit of phenotypically

profiling compounds with known targets and mechanisms is to

assist generation of mechanistic hypotheses that can initiate

ensuing target validation studies. Although focused chemoge-

nomics libraries restrict the surveyable mechanistic space, hit

molecules identified from such screens can suggest that their

targets are amenable to functional pharmacological modulation,

thus providing evidence of the druggability of the targets.17

Due to practicality and affordability, drug discovery cam-

paigns typically employ one or a few readily interpretable bio-

markers, such as secretory or intracellular markers or gene-of-

interest-driven reporters that reflect known biology. Recently,

significant interest has arisen in the drug discovery industry to

capture high-dimensional cellular morphological changes to

stimuli and drug treatments by using an image-based profiling

with automated microscopy.18 This unbiased, inexpensive, and

scalable image-based method, most often using the Cell Paint-

ing assay, combines multiple organelle stains in a robust assay

yielding single-cell profiles composed of thousands of fea-

tures.18 Integrated into machine learning and data mining, Cell

Painting offers the potential to accelerate therapeutic discovery

by identifying drug-induced cellular phenotypes, elucidating

modes of action, and characterizing drug toxicities.18

In this study, we describe a chemogenomic library screen in

human intestinal fibroblasts using both disease-relevant bio-

markers and Cell Painting readouts to interrogate targeted small

molecules that can alleviate the fibrotic phenotype. We identified

clinically relevant hits from both assay readouts, though the

mechanisms-of-action of hits from each assay represent distinct

fibrotic biology. We identified inflammatory response regulators

with the biomarker assay, and tissue plasticity, remodeling,

fibrosis, and angiogenesis signaling modulators with the Cell

Painting assay. The hits were further confirmed and validated

in colonic fibroblasts treated with other pro-fibrotic stimuli.

With this integrated approach using both high throughput

biomarker analysis and artificial intelligence-enabled morpho-

logical profiling, we were able to discover a wide spectrum of

physiologically and clinically relevant small molecules and

targets for intestinal fibrosis. Typically, such high-dimensional

datasets require extensive data mining and analysis with trained

informatics experts to dissect the information. Here, this study

serves as a general roadmap to bench scientists without ma-
2 Cell Chemical Biology 30, 1–14, September 21, 2023
chine learning skills to identify targets and hits for other complex

and challenging phenotypes and polyetiological disease areas.

RESULTS

Development of an in vitro cellular disease model that
mimics human intestinal fibrosis pathogenic cell
population
The CCD-18co human colon fibroblast cell line was identified as

a physiologically relevant model for human intestinal fibro-

blasts.19 In order to identify culture conditions that yielded the

most clinically relevant response to disease-associated stimuli,

we performed single-cell transcriptomic analysis of CCD-18co

cells that were treated with various pro-fibrotic stimuli, including

TNFa, IL-1b, TGFb, TL1a, OSM, and IL-36, for 16 h. We com-

bined data from each treatment in an integrated UMAP (Fig-

ure 1A) and compared their single-cell RNA sequencing profiles

side-by-side (Figure 1B). We identified seven distinct clusters of

cells in total, of which several common clusters were shared

among all treatments, as well as unique clusters corresponding

to particular treatment groups (Figure 1B).

Within these clusters, we performed functional characterization

by mapping the enriched canonical pathways and upstream

regulators. Clusters 2 and 6 were predominant in TNFa and IL-1b

treatment groups (Figure 1C). Genes upregulated in these clusters

represented IL-17 signaling, wound healing, TREM1 signaling,

cytokine-mediated fibroblast crosstalk, leukocyte migration, and

tumor microenvironment pathways; as well as genes involved in

mediating inflammatory pathways associated with cancer (Fig-

ure 1D). Cluster 3 and cluster 5 were mainly found in TGFb and

OSM treatments, respectively (Figure 1C). Genes upregulated in

cluster 5 represented IL-6 signaling and acute phase response

signaling, while genes upregulated in cluster 3 represented tissue

fibrosis activities (Figure 1D). IL-36 and TL1A treatment profiles

were similar to the control, suggesting neither stimulus exerted a

significant effect on the cells (Figure 1B). Upstream regulator

detection analysis corroborated that the clusters 2 and 6 are

modulated by TNFa and IL-1b, while cluster 3 by TGFb and cluster

5 by OSM.

To identify which CCD-18co population exhibited the most dis-

ease-mimetic gene expression profile, we mapped activated

CCD-18co clusters (clusters 2, 6, 3, and 5) to cell populations

from primary human colon stromal biopsies from healthy and UC

patients12 (Figure 1E). We found that clusters 2 and 6, most prev-

alent in TNFa and IL-1b treatments, and cluster 5, unique to OSM

treatment, had signatures that closely overlapped with those of

IAFs in diseased human colon biopsies. Cluster 3, specific to

TGFb treatment, corresponded to both IAFs and myofibroblasts

in human colon biopsies. Because IAFs are the immunological

hub ofmultiple signaling pathways that play important roles during

the onset of intestinal inflammation and fibrosis,7 and IAFs are

associated with anti-TNFa drug resistance in IBD patients,12 we

sought to address this key unmet medical need for intestinal

fibrosis and perform the primary screen with TNFa as stimulus,

as it was found to induce an IAF phenotype.

To quantify the effects of TNFa signaling on morphological

fibrosis in CCD-18co cells, we knocked out the TNFRSF1A and

TNFRSF1B genes, which encode TNFR1 and TNFR2 (TNFa cell

surface receptors), respectively, individually or together using



Figure 1. Bioinformatic analysis of transcriptome profile of CCD-18co cells and comparison with human colon biopsies
(A and B) UMAP embedding of 16,750 single-cell RNA sequencing (scRNA-seq) profiles from CCD-18co fibroblast cell cultures with different stimuli, including

TNFa, IL-1b, TGFb, TL1a, OSM, and IL-36, for 16 h. Seven identified single-cell clusters are indicated by colors.

(C) Stacked bar graph showed cluster cell composition, with cluster 3 corresponding to cells activated by TGFb, cluster 5 corresponding to cells stimulated by

OSM, while clusters 2 and 6 captured cellular responses upon TNFa and IL-1b treatments. The remaining clusters were not overrepresented in any of the

conditions and were considered baseline state.

(D) Ingenuity pathway analysis (IPA) canonical pathways associated with the upregulated genes in clusters 2 and 6 (TNFa and IL-1b stimuli), cluster 5 (OSM), and

cluster 3 (TGFb). Cluster 1, not shown in Figure 1D, exhibited high expression of cell cycle phase genes. Grayscale represents p-score = � log10 (p value).

(E) Top 15markers fromCCD-18co fibroblast cell clusters 2, 3, 5, and 6were analyzed in human colon fibroblasts fromUC and healthy patients, retrieved from the

published stromal single cell atlas.12 Highly expressed genes in CCD-18co clusters 2, 5, and 6 (TNFa, OSM, and IL-1b treatments) were enriched in inflammatory

fibroblasts, and highly expressed genes in CCD-18co cluster 3 (TGFb cellular treatment) were elevated in myofibroblasts from colonic biopsies.
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Figure 2. Chemogenomic library screen workflow

(A) The screen was conducted through a process including primary screening, hit confirmation, and orthogonal validation assays. For the primary screen, colonic

fibroblasts CCD-18co cells were plated on day 1, followed by small molecule transfer on day 2, and 10 ng/mL TNFa stimulation on day 3. The supernatant

samples were collected for the CXCL10 reduction assay and cells were stained with the Cell Painting dyes for the high content imaging assay. Hits from both

assays were called and analyzed individually and collectively.

(B) CCD-18co cells that were stained with Cell Painting dyes including Hoechst 33342 (nuclei), Concanavalin A-Alexa 488 (ER), SYTO 14 (nucleic acid), WGA-

Alexa 555 (Golgi), phalloidin-Alexa 568 (cytoskeleton) and MitoTracker Deep Red (mitochondria), and imaged with Operetta CLS. The image on the far left

represents the merged image of all channels.

(legend continued on next page)
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CRISPR/Cas9geneediting (FigureS1A, related toFigures1and2),

then evaluated the response of the cells to TNFa. Upon activation

ofNF-kBbyTNFa signaling,p65,a subunit ofNF-kBalsoknownas

RELA, was observed to translocate from the cytoplasm to the nu-

cleus (FigureS1B, related toFigures1and2).However, cells trans-

fected with individual or pooled TNFRSF1A guide RNAs (gRNAs)

showed that p65 remained, at least partially, in the cytoplasm (Fig-

ure S1C, related to Figures 1 and 2), indicating reduced NF-kB

signaling. Further, CCD-18co cells transfected with individual or

pooled TNFRSF1A gRNAs showed a trend toward diminished

CXCL10 secretion compared to control cells (Figure standard

deviations (S.D.) related to Figures 1 and 2). The effect of dual

TNFRSF1A and TNFRSF1B knockout was similar to TNFRSF1A

knockout alone indicating TNFa signaling was mediated, at least

partially, through TNFR1 instead of TNFR2 in CCD-18co cells.

In high-throughput screening, it is important to use clinically

proximal readouts whenever possible to ensure the observed

phenotype is a robust surrogate for disease pathology. To that

end, we assessed protein and mRNA expression levels of a panel

of inflammation-related biomarkers in CCD-18co cells that were

treated with disease-relevant pro-fibrotic stimuli. We identified

CXCL10 as a significantly upregulated biomarker at both protein

and mRNA levels by multiple stimuli, including TNFa, IL-1b, and

IL-36 (FigureS2, related toFigure2).BecauseCXCL10contributes

to fibrosis by supporting monocyte/macrophage recruitment,

angiogenesis, fibroblast collagen synthesis, myofibroblast activa-

tionanddifferentiation, andmodulationofCXCL10and its receptor

CXCR3 has been reported to be associated with inflammatory

signaling-driven fibrogenesis,20–24 we chose it as a readout for

efficacy in theensuingscreen. Thoughwedidprofilemoreconven-

tional biomarkers of fibrosis, including ACTA2 and COL1A1,

neither was induced by pro-fibrotic stimuli at either protein or

mRNA level to yield an acceptable assay window for a high

throughput screen (Figure S3, related to Figure 2). This is likely

due to the fact that they are biomarkers of canonical TGFb

signaling instead of other pro-inflammatory stimuli (e.g., TNFa,

IL-1b, and IL-36).

In addition to CXCL10 secretion as a readout for efficacy, we

also used the Cell Painting assay to serve as a morphological

readout of cellular fibrosis. Morphologies of CCD-18co cells

treated with different pro-fibrotic stimuli were visually distinct

(Figure S4A, related to Figure 2) and this translated to cellular

features that yielded equally distinct principal component anal-

ysis (PCA) plots (Figure S4B, related to Figure 2). Interestingly,

the Cell Painting PCA plot strongly resembled the transcriptomic

PCA plot (Figure S4C, related to Figures 1 and 2), suggesting

CCD-18co cellular morphology might be tightly correlated with

gene expression and subsequent biological activities.

Automated high throughput chemogenomic library
screen to identify targeted perturbagens of intestinal
fibrosis
To comprehensively profile diverse biological and functional

space (Figure 2A), we sourced two small molecule libraries
(C) Workflow of cellular compartment segmentation of high content images using

Cytoplasmwas then identified byConcanavalin A-Alexa 488 stain. The border obje

of each channel were calculated and 860 features were extracted at the well-le

method, such as PCA.
totaling 4,871 compounds annotated with either their reported

targets and/or mechanisms of action and have been either

tested in clinical trials or approved by the FDA (Selleckchem; Fig-

ure S5A, related to Figure 2). The molecular weight and ALogP of

these compounds were within the standard range for ‘‘drug-like’’

molecules (Figure S5B, related to Figure 2).25

For the primary high throughput screening assay, 1,200

CCD-18co cells/well were plated on the first day, followed by

compounds and controls after 24 h (Figure S5C, related to Fig-

ure 2). Each compoundwas tested at 3 mM in biological triplicate.

1 ng/mL anti-TNFa antibody adalimumab was used as the

positive control, because adalimumab was able to effectively

suppress TNFa signaling in the CXCL10 assay (as well as in

the Cell Painting assay, as discussed later, Figure S.D. related

to Figures 2 and 3). Cells were then treated with 10 ng/mL

TNFa on the third day for 48 h, after which time the cell culture

supernatants were collected for CXCL10 protein quantitation

using a homogeneous time-resolved fluorescence (HTRF) assay.

For the Cell Painting assay, cells from the exact same samples

were stainedwithCell Painting dyes followed by high-content im-

age acquisition and analysis. The assay includes six fluorescent

dyes tohighlight different organelles ofCCD-18cocells, including

MitoTracker Deep Red FM for mitochondria, Concanavalin

A-Alexa 488 for endoplasmic reticulum, SYTO 14 for nucleoli

and cytoplasmic RNA, WGA-Alexa 555 and phalloidin-Alexa

568 for F-actin cytoskeleton, Golgi, and plasma membrane,

Hoechst 33342 for nucleus26 (Figure 2B). High-content images

were captured and cellular morphological features were ex-

tracted and then analyzed using a dimensionality reduction

method. Compounds that clustered around the positive controls

were categorized asCell Painting hits (Figure 2C). For dimension-

ality reduction, we used either a supervised PCA or a linear pre-

dictivemodel. For bothmethods, themediansof positive controls

and negative controls were normalized to 0 and 1, respectively.

Compounds were then binned into positive or negative bins de-

pending on the projection scores (STAR Methods, Figure 3A,

left). Compounds positive for >2 out of 3 replicates in the positive

bins and projection scores within the range of Average(pos ctrl) ±

3 x S.D. were picked as preliminary hits. Compounds exhibiting

cytotoxic profiles were then further filtered based on cell count.

In total, 160 and 152 compounds were picked as hits from

supervised PCA and linear predictive models of the Cell

Painting data, respectively (Figure 3A, right). There were 100

hits that overlapped between both models for Cell Painting anal-

ysis (Figure 3A, right), suggesting the two analytical methods

yielded mainly convergent results. In addition, we assessed

three other metrics for picking Cell Painting hits; namely using

the top 50 features, top 5 features, or top 3 features per channel

that separate positive and negative controls, though the hits and

targets that were identified were mostly similar (Figure S6,

related to Figure 4). To determine whether these cellular features

correlate with their biological functions, we projected the cellular

features of the targets that were most distinct from the negative

controls onto a two-dimensional t-SNE map (Figure 3B). This
PerkinElmer Harmony software. Nuclei were identified by Hoechst 33342 stain.

cts were excluded from analysis. Differentmorphology and intensity properties

vel. The profiling dataset was then analyzed with a dimensionality reduction
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Figure 3. Primary screen hit picking strategies for the CXCL10 reduction assay and Cell Painting assay

(A) The Cell Painting dataset was analyzed with both supervised PCA and linear predictive model methods. Projection scores of Cell Painting controls and

samples help to determine the similarities between compounds and controls. Compounds in positive bins in the range between Average(projection score) ± 3 x

S.D. were picked as hits.

(B) t-SNE plot shows the phenotypic space of top compound target categories that are farthest from the negative controls.

(C) Pos and neg ctrl data points of CXCL10 HTRF assay. X axis shows the plate barcode, y axis shows the normalized CXCL10 level. Solid yellow line shows 0%

inhibition representing themedian of the neg ctrl (vehicle), and solid red line shows 100% inhibition representing themedian of pos ctrl (1 nM adalimumab). Dotted

orange line shows 70% cutoff for hit picking.

(D) The CXCL10 HTRF assay screening funnel.

(E) Overview of small molecule hit numbers from each assay/analysis.
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map showed that some co-annotated compounds form

coherent clusters (e.g., MEK and HSP) in phenotypic space

whereas others do not (e.g., Bcl-2, FAK, CRM1, and DNA-PK).

For the CXCL10 assay, luminescence intensities of positive

and negative controls of each plate were fit on a 0 to 1 scale and

were then normalized for their percent inhibition, with the mean

of positive control being 100% and the mean of negative control

being 0% (Figure 3C). The strictly standardized mean difference
6 Cell Chemical Biology 30, 1–14, September 21, 2023
(SSMD) was used to measure the effect size and gauge the assay

quality.27 Plates with SSMD>1.28 (the SSMD quality cutoff) then

proceeded to hit selection. Compounds positive for >2 out of 3

replicates with CXCL10 inhibition >70%were identified as prelim-

inary hits, and then filtered by eliminating cytotoxic compounds

(dependent on cell count). After applying this gating strategy,

109 compounds were identified, resulting in a 2.2% hit rate for

the CXCL10 screen (Figure 3D).



A B

C

Figure 4. Hit category analysis of Cell Painting and CXCL10 reduction assays
(A) Hit number of target categories for linear predictive model and supervised PCA analysis of Cell Painting. Bar chart shows the target categories with R5

compounds in each.

(B) Hit number of target categories for CXCL10 reduction assay. Bar chart shows the target categories with R5 compounds in each.

(C) Hit number of target categories for the overlapping hits between CXCL10 reduction assay and Cell Painting assays. Table shows target categories with R3

compounds in each assay.
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Surprisingly, there were only 8 hits that overlapped between

the Cell Painting linear predictive model and the CXCL10 assay,

and only 9 hits that overlapped between the Cell Painting super-

vised PCAmodel and the CXCL10 assay. Only 5 hits overlapped

among all three methods. In the end, after removing duplicate

compounds, 275 unique hits from either Cell Painting or

CXCL10 assay were advanced for further confirmation and vali-

dation (Figure 3E).

Target discovery through the integration of cytokine
biomarker and morphological profiles
It was intriguing that the CXCL10 assay and the Cell Painting

assay identified vastly different pools of hit compounds. For hit

compounds that were unique to Cell Painting, the top targets

included VEGFR, HSP, c-Met and PDGFR, MEK, c-Kit, FLT3,

and FGFR (Figure 4A); while hits that were unique to the

CXCL10 assay included the targets mTOR, PI3K, glucocorticoid

receptor, and several components of the autophagy and micro-

tubule pathways (Figure 4B). For hits that were shared between

the two assays, the top targets included PI3K, autophagy, and

Janus kinase (JAK) (Figure 4C).

In several contexts, image-based profiles have proven to

show predictive abilities for other assays.28 We wondered

whether any particular cellular morphology features from the
Cell Painting assay could be used to predict CCD-18co cells’

response to TNFa, in terms of secreting CXCL10. We studied

the statistical dependence between CXCL10 levels and each

of the 860 individual cellular features. Overall, 752 out of 860 fea-

tures had some linear relationship with the CXCL10 level (F-test,

p < 0.01, Bonferroni-corrected with a = 0.01). In particular, we

found that a few categories of cellular features including axial

small length (the length of the cell’s shorter axis in pixel units)

and Radial Mean (the mean object radius based on the intensity

values weighted by the distance from the mass center) from the

ER, mitochondria and F-actin, Golgi and PM channels (n = 54

features) had strong relationships with CXCL10, as indicated

by higher average F statistic values (97th percentile of distribution

of F statistic, all adjusted p values = 0.0), which capture the linear

dependency between features and the CXCL10 (Figure 5A), We

further confirmed this finding by also calculating averaged

mutual information (MI), which is a nonparametric measure that

can capture any kind of statistical dependency, and demon-

strated that these feature categories have strongest relation-

ships with the CXCL10 level (98th percentile of distribution of

MI values) (Figure 5B). To focus on the subcategories and

examine which particular features had the strongest statistical

dependency with CXCL10 level, we found that several

Radial Mean features including Edge, Ridge, and Spot of the
Cell Chemical Biology 30, 1–14, September 21, 2023 7



Figure 5. Correlation analysis of morphological features with CXCL10 level

(A and B) F statistic (which shows the linear dependency) and mutual information (which shows any type of dependency, including linear dependency) between

cellular feature subcategories and the CXCL10 level. Error bars show a bootstrap-estimated 95% confidence interval.

(C) Heatmap of top highly correlated features of each subcategory with CXCL10.
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Spots, Edges and Ridges (SER) texture analysis in the F-actin,

Golgi, and plasmamembrane channel have nearly perfect statis-

tical dependency with the CXCL10 level (e.g., Radial Mean SER-

Spot has F-statistic of 1.0 and Radial Mean SER-Edge has MI of

1.0) (Figure 5C); indicating these features have strong depen-

dency with CXCL10 and can be considered as potential predic-

tors of CXCL10 level.

Target validation using pro-fibrotic stimuli-treated cell
models
To further characterize hit compounds according to their ability

to ameliorate fibrosis from pro-fibrotic stimuli other than TNFa,

we profiled the 275 unique hit compounds at three doses

(3 mM, 0.6 mM, and 0.125 mM) in assays with different stimuli

(IL-1b, IL-36, or OSM) in addition to TNFa (Figure 6A). The

CXCL10 assay was used for TNFa-, IL-1b-, and IL-36-treated

cells, while a CCL2 assay conducted 2 h post-OSM treatment

was used for OSM-treated cells, because CCL2 (Figure S.D.

related to Figure 6) but not CXCL10 (Figure S.D. related to Fig-

ure 6) is a functional biomarker for OSM stimulation. Similar to

CXCL10, CCL2 contributes to fibrosis by recruiting monocyte/

macrophage and myofibroblast activation and differentiation.23

The Cell Painting assay was only used for TNFa and IL-1b stim-

ulation, as there were no viable assay windows for cells treated

with either IL-36 or OSM (Figure S4B, related to Figure 6), leaving

four cytokine assay and two Cell Painting assay results available

for analysis.

The TNFa-stimulated reconfirmation screen of 275 unique hit

compounds yielded a 51% reconfirmation rate for reducing
8 Cell Chemical Biology 30, 1–14, September 21, 2023
CXCL10 expression/secretion and a 47% reconfirmation rate

for Cell Painting, suggesting the robustness of the primary

screening assays (confirmed and validated hit results are shown

in Table S1, and details of example hits are shown in Figure S7,

related to Figure 6). Using a combinatory approach to examine

the target categories, we pooled the four cytokine stimulation re-

sults and identified glucocorticoid receptor as the top target with

16 hits. This was followed by autophagy, inflammatory-related

mechanisms, JAK, PDGFR, and SYK (Figure 6B). The two Cell

Painting reconfirmation assays (TNFa and IL-1b) similarly

showed glucocorticoid receptor to be the top target, followed

by MEK, PDGFR, VEGFR, and inflammatory-related mecha-

nisms (Figure 6C).

When considering all six compound lists, the hits were binned

into three buckets depending on the number of assays in which

they were identified as hits. Bucket one included compounds

that were picked as hits in six out of six assays. All hits in this

bucket were glucocorticoid receptor modulators (steroids).

Bucket two included compounds that were picked as hits in

five out of six assays and similarly, all hits in bucket two were

mainly glucocorticoid receptor modulators. Bucket three

included compounds that were identified as hits in three or

four out of six assays and this bucket represented the largest

variety of biological functions with different mechanisms of

action (Figure 6D).

To understand these targets in the context of signaling path-

ways, we mined the literature and identified any associations

between targets in bucket three and intestinal fibrosis. Overall,

three main pathways were identified: ER stress response,
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Figure 6. Hit confirmation and validation assay workflow and hit categories

(A) Hit confirmation and validation experimental workflow.

(B) Top target categories across the four cytokine reduction assays. Table shows target categories with R3 compounds for each assay.

(C) Top target categories for the Cell Painting results of TNFa and IL-1b stimulation.

(D) Top target categories for all six assay results. The results were further bucketed into three categories. Bucket 1 includes compounds that showed effects in all

6 assays. Bucket 2 includes compounds that showed effects in 5 out of 6 assays. Bucket 3 includes compounds that showed effects in 3 or 4 out of 6 assays.

Table only shows target categories with R3 compounds in each.29–62
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fibrosis/angiogenesis, and inflammation (Figure 7). All three path-

ways were shown to play a role in tissue fibrosis.7,9,29–31,63–66

Interestingly, we identified and confirmed both nintedanib (tar-

gets PDGFR, VEGFR, and FGFR) and pirfenidone (targets NF-

kB), approved drugs for treating idiopathic pulmonary fibrosis

(IPF),32,66 as potent antagonists of myofibroblast activation67

(Figure 7). These data suggest that the small molecules, targets,

and signaling pathways identified through our multi-parametric

biomarker and cellular feature profiling approach were physio-

logically and clinically relevant. Further, this screening platform

was able to identify molecules from a wide spectrum of mecha-

nisms of action.

DISCUSSION

IBD-associated intestinal fibrosis represents a highly invasive

and deleterious disease that currently has no approved pharma-

cological intervention. In order to address this, we developed a

clinically relevant humanized intestinal fibrosis model composed
of TNFa-activated colon fibroblasts. In order to leverage large

collections of small molecules for therapeutic profiling efforts,

we miniaturized the human IBD fibrosis model to accommodate

a scalable phenotypic screening platform for fully automated

drug discovery. Employing transcriptomics as a surrogate

characteristic for comparing our CCD-18co in vitro model to

IBD patient biopsies, we identified several distinct transcriptional

clusters corresponding to different pro-inflammatory cytokine

stimuli. Although TGFb treatment of CCD-18co cells produced

a canonical gene expression profile that overlapped with myofi-

broblast components of patient biopsies, discovery of therapeu-

tics targeting the TGFb pathway has not yielded any clinical

treatment due to undesirable toxicities. In recent years, IAFs

have been shown to be critical to fibrogenesis associated with

chronic inflammatory diseases.12,13,22 Here, we intended to

identify potential therapeutics by targeting IAFs.

As intestinal fibrosis is a result of a complex interplay of im-

mune-mediated inflammatory processes as well as modulation

of pro-inflammatory cytokine-mediated signaling pathways,
Cell Chemical Biology 30, 1–14, September 21, 2023 9



Figure 7. Major pathways of the bucket 3 compound targets

Three major pathways, including ER stress response, fibrosis/angiogenesis pathway, and inflammatory pathway were identified by analyzing the targets of

bucket 3 compounds. Pink bubbles show the targets that were identified in the bucket 3 compounds. Gray bubbles show other intermediate targets in the

pathway. Nintedanib, a marketed drug for idiopathic pulmonary fibrosis, was identified as a hit in the screen. The screen also identified inflammatory pathway

targets through which pirfenidone, another marketed drug for idiopathic pulmonary fibrosis, exerts its effect.
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our screening platform required a sophisticated series of assay

readouts to account for these polyetiological causes. We first

chose to use CXCL10 (IP10) as the primary screen readout due

to its well-characterized association with intestinal fibrotic pa-

thology and because compared to other biomarkers, both its

mRNA and protein levels were significantly increased bymultiple

pro-fibrotic stimuli (Figure S2, related to Figure 2). However, to

fully assess changes in the fibrotic morphological phenotype,

we applied an unbiased image-based profiling technique called

Cell Painting. Although Cell Painting has not been widely adapt-

ed in the drug discovery industry as a phenotypic readout for ef-

ficacy, its scalable ease of use as well as its ability to quantitate

changes in thousands of cellular features makes it an ideal

method for studying complex biology such as intestinal fibrosis.

Cell Painting produces vast morphological information as a

collection of extracted cellular features, but by integrating artifi-

cial intelligence analytical methods, such as machine learning,

we can mine these data to reveal important biological activities

of potentially therapeutic small molecules.18 For example, we

found that the relative positions of pro-fibrotic stimuli-treated

clusters to vehicle controls in Cell Painting PCA plots were

similar to those from RNA-seq PCA plots, suggesting transcrip-

tome profiles and related biological activities strongly correlate

with cellular morphological profiles. We also examined whether

any specific cellular features were highly correlated with

CXCL10 level, because these features may potentially be used

as sentinel readouts for CXCL10 in future studies. We identified

several subcategories of features, such as Axial Small Length
10 Cell Chemical Biology 30, 1–14, September 21, 2023
and Radial Mean in ER, mitochondria and F-actin, Golgi and

plasma membrane channels that had high correlations with

CXCL10 level (Figure 5).

Surprisingly, we observed divergent hit distribution profiles

between the CXCL10 and Cell Painting assay readouts. The

reason might be attributed to the fact that only a few cellular

features from the Cell Painting assay had a strong statistical

correlation to the CXCL10 level (Figure 5). Different cellular fea-

tures were chosen that better represented the TNFa-stimulated

phenotype though they had a lower correlative relationship with

CXCL10. These features were chosen for Cell Painting hit

selection because they were more prominent in differentiating

TNFa-treated and non-treated cells. While the CXCL10 readout

identified well-characterized regulators of fibrosis such as

mTOR and glucocorticoid receptor, the targets identified

through the Cell Painting readout were mechanistically more

diverse (e.g., VEGFR, PDGFR, FGFR, c-Met, c-Kit, and MEK)

and included such cellular processes as fibrosis, tissue plasticity

and remodeling, and angiogenesis. In short, the CXCL10 assay

conferred a confidence metric to the biological relevance of

our assay platform by identifying several steroid molecules as

alleviators of the fibrotic phenotype. However, the Cell Painting

assay was able to reveal a diverse array of potential mediators

implicated in intestinal fibrosis pathology, expanding the scope

of actionable targets. Overall, this high-throughput screening

platform combining CXCL10 and Cell Painting readouts was

able to identify small molecule hits with proven clinical relevance.

For example, our screen identified and confirmed nintedanib, a
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drug for treating IPF, may be repurposed to treat intestinal

fibrosis. We also identified small molecules that modulate other

known fibrosis targets (Figure 6). This suggests the screening

platformmay be used for repurposing approved or clinical-stage

drugs or discovering novel small molecules for intestinal fibrosis.

As our collective understanding of the causes andmediators of

disease biology increase, so must our ability to interrogate those

causes to discover the next generation of small molecule thera-

peutics. A complex image-based profiling technique like Cell

Painting integrated with state-of-the-art machine learning algo-

rithms to translate thousands of cellular features into disease-

relevant targets andpathwaysmay represent agiant leap forward

in industrialized drug discovery. Although it may be unlikely that

image-based profiling will completely replace conventional

biochemical, transcriptional, or proteomic profiling methods,

when incorporated into exploratory phases of the drug discovery

pipeline, Cell Painting may accelerate the identification of novel

therapeutics and expand the targeting space of polyetiological

and poorly understood diseases like intestinal fibrosis.

Limitations of the study
In this study, we utilized CXCL10 and CCL2 as functional

readouts for CCD-18co cells due to their robust response to

pro-fibrotic stimuli, resulting in an up-regulation of mRNA and

protein expression levels (Figure S2B, related to Figure 2). The

evidence suggests that CXCL10 and CCL2 play a role in fibrosis

by supporting monocyte/macrophage inflammatory response,

angiogenesis, fibroblast collagen synthesis, myofibroblast dif-

ferentiation, and fibroblast recruitment and survival.23,24 Howev-

er, it should be noted that the role of CCL2 in fibrosis is

somewhat controversial, as there have been reports of CCL2

mediating anti-fibrotic effects in human fibroblasts indepen-

dently of CCR2.68 Because of the complexity of intestinal fibrosis

and translatability and feasibility of using other validated bio-

markers in the cellular screening system, we selected CXCL10

and CCL2 as functional readouts in our screen.

SIGNIFICANCE

Our study showed that the integration of Cell Painting

morphological profiling with biomarker analysis can be used

to identify potential targets and small molecule drugs for a

broad spectrumof polyetiological and poorly understood dis-

eases, suchas intestinal fibrosis.Here,weprovide a roadmap

forbenchscientistswithoutsophisticated informatics toolsor

machine learningskills toanalyzehighdimensionalCellPaint-

ingdatasetsand incorporate image-basedprofiling intoan in-

dustrial phenotypic high throughput screening campaign.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-ACTA2 antibody Abcam Cat#:ab7817; RRID:AB_262054

anti-COL1A1 antibody Abcam Cat#:Ab34710; RRID:AB_731684

goat anti-mouse Alexa 594 ThermoFisher Cat#:A-11032; RRID:AB_2534091

goat anti-rabbit Alexa 488 ThermoFisher Cat#:A-11008; RRID:AB_143165

Chemicals, peptides, and recombinant proteins

MitoTracker� Deep Red FM ThermoFisher Cat#:M22426

Hoechst 33342 Invitrogen Cat#:H3570

Concanavalin A-Alexa 488 Invitrogen Cat#:C11252

SYTO� 14 Invitrogen Cat#:S7576

WGA-Alexa 555 Invitrogen Cat#:W32464

phalloidin-Alexa 568 Invitrogen Cat#:A12380

Sodium bicarbonate Sigma Millipore Cat#:S6014

Recombinant human OSM Bio-techne Cat#:295-OM-050

Recombinant human TNFa Bio-techne Cat#:10291-TA

Recombinant human IL-1b Bio-techne Cat#:201-LB

Recombinant human TL1A Bio-techne Cat#:1319-TL

Recombinant human IL-36 Bio-techne Cat#:6835-IL

Recombinant human TGFb Bio-techne Cat#:240-B-002

Trypsin EDTA ThermoFisher Cat#:25200056

Fetal bovine serum Gibco Cat#:10082147

Chemogenomic screen library Selleckchem Cat#:L1100 and L3800

32% Paraformaldehyde Electron Microscopy Sciences Cat#:15714S

PBS ThermoFisher Cat#:10010023

Lentiviral particles of inducible Cas9

nuclease with hEF1a promoter

Horizon discovery Cat#:VCAS11227

blastcidin ThermoFisher Cat#:A1113903

doxycycline Sigma Millipore Cat#:D9891

Gene Knockout Kit v2 - human - TNFRSF1A Synthego https://www.synthego.com/order/crispr-

kits/gene-knockout-kit

Gene Knockout Kit v2 - human - TNFRSF1B Synthego https://www.synthego.com/order/crispr-

kits/gene-knockout-kit

Lipofectamine� RNAiMAX ThermoFisher Cat#:13778075

Opti-MEM ThermoFisher Cat#:31985062

Phusion high-fidelity buffer ThermoFisher Cat#:F-518L

RNase A ThermoFisher Cat#:EN0531

dNTPs ThermoFisher Cat#:R0181

Phusion hot start II high-fidelity DNA

polymerase

ThermoFisher Cat#:F-549S

NEBuffer 2 NEB Cat#:B7002S

T7 endonuclease I NEB Cat#:M0302S

Triton X-100 Sigma Millipore Cat#:X100

Bovine serum albumin (BSA) VWR Cat#:97061-420

Eagle’s Minimum Essential Medium ATCC Cat#:30-2003

Other

OptiPlate-384 microplates PerkinElmer Cat#:6007290

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CellCarrier-384 Ultra microplates PerkinElmer Cat#:6057302

Critical commercial assays

10X Genomics Next-GEM chip 10X Genomics Cat#:1000127

10X Genomics Next-GEM 3’ GEM kit 10X Genomics Cat#:1000121

Agilent Tapestation D1000 and

D5000 tapes

Agilent Cat#:5592 and 5584

Human CXCL10 HTRF kit Cisbio Cat#:62HCX10PEH

Human CCL2 HTRF kit Cisbio Cat#:62HCCL2PEG

Luminex xMAP kit Luminex Customized

Experimental models: Cell lines

CCD-18co ATCC Cat#:CRL-1459; RRID:CVCL_2379

Software and algorithms

Cell ranger mkfastq 10X Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/using/tutorial_fq

Seurat v3 Butler et al., 2018 https://satijalab.org/seurat/

Ingenuity Pathway Analysis (IPA) Qiagen Inc https://digitalinsights.qiagen.com/

products-overview/discovery-insights-

portfolio/analysis-and-visualization/

qiagen-ipa/

Green Button Go scheduler Biosero https://biosero.com/software/green-

button-go-scheduler/

Harmony� PhenoLOGIC� software PerkinElmer https://www.perkinelmer.com/product/

harmony-4-9-office-license-hh17000010

TIBCO� SpotFire� Signals VitroVivo TIBCO / PerkinElmer https://perkinelmerinformatics.com/

products/research/signals-vitrovivo

Matplotlib and seaborn Python libraries Hunter et al.69 Waskom et al.70 N/A

scikit-learn and pandas Python libraries Pedregosa et al.71

Mckinney et al.72
N/A

Graphpad Prism software GraphPad software Inc https://www.graphpad.com/scientific-

software/prism/

Deposited data

Single cell analysis of the colon mucosa of

UC patients and healthy individuals

Smillie et al.12 Single Cell Portal: SCP259 (https://

singlecell.broadinstitute.org/single_cell/

study/SCP259)

CCD18co colonic fibroblast cell line

scRNAseq, with treatment of pro-

inflammatory stimuli

This paper GEO accession: GSE233063 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE233063)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Shane R.

Horman (shane.horman@takeda.com).

Materials availability
All materials used in this paper are commercially available. If any additional request, please direct to the lead contact.

Data and code availability
d This paper does not report original code.

d Cell Ranger matrix loupe tar files of the single cell RNA-seq data have been deposited at GEO and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table. This paper analyzes existing, publicly available
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data. These accession numbers for the datasets are also listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

CCD-18co cell line
CCD-18co cell line (Cat #: CRL-1459) was obtained fromAmerican Type Culture Collection (ATCC). CCD-18Co is a cell line exhibiting

fibroblast morphology that was isolated from the normal colon tissue of a 2.5-month-old, Black, female.

CCD-18co cell line maintenance and stimulation
A large batch of CCD-18co cells were purchased from ATCC (Cat #: CRL-1459), and were cultured with ATCC-formulated Eagle’s

Minimum Essential Medium (Cat #: 30-2003) with 10% fetal bovine serum (FBS, Gibco, Cat#:10082147) as recommended by ATCC.

The cells earlier than passage-6 were used in experiments. For pro-fibrotic stimuli treatments, if not specified otherwise, the concen-

trations of stimuli used to treat CCD-18co cells were as follow: 10 ng/mL OSM (Bio-techne, Cat#:295-OM-050), 10 ng/mL TNFa

(Bio-techne, Cat#:10291-TA), 10 ng/mL IL-1b (Bio-techne, Cat#:201-LB), 100 ng/mL TL1A (Bio-techne, Cat#:1319-TL), 200 ng/mL

IL-36 (Bio-techne, Cat#:6835-IL) and 10 ng/mL TGFb (Bio-techne, Cat#:240-B-002).

METHOD DETAILS

Single Cell RNA-seq
CCD-18co cells were cultured as previously described, and were treated with vehicle, 10 ng/mL OSM, 10 ng/mL TNFa, 10 ng/mL

IL-1b, 100 ng/mL TL1A, 200 ng/mL IL-36 or 10 ng/mL TGFb for 16 hours. Cells were detached from plastic culture media using

Trypsin EDTA (ThermoFisher, Cat#:25200056) and manually counted. 10,000 cells of each sample were loaded in individual lanes

of a 10X Genomics Next-GEM chip (10X Genomics, cat #: 1000127). Libraries were prepared using the 10X Genomics Next-GEM

3’ GEM kit (10X Genomics, cat #: 1000121). Library quality control was performed using the Agilent Tapestation D1000 and

D5000 tapes (Agilent, part #: 5592 and 5584). Sequencing was performed externally at a vendor (Novogene Inc.) at a depth of

50,000 reads per cell. All sequencing raw files are available (GEO accession code GSE233063).

Analysis of CCD-18Co scRNA-Seq data
Cell Ranger mkfastq was used to demultiplex raw sequencing reads, and Cell Ranger count was used to align reads to Human

GRCh38 transcriptome, and generate gene-cell expression count matrices. Expression matrices were filtered to remove low quality

cells with less than 200 genes detected or more than 0.25% mitochondrial mRNAs. Cell filtering resulted on an average of �2,400

cells per condition and a total number of 16,750 cells in the integrated dataset. Seurat v3 workflow was employed to perform

normalization, detection of variable genes, dimensionality reduction, and graph-based clustering with Louvain algorithm. Upon

log-normalization and scaling of gene expression, variable geneswere identified using the vstmethod and then subjected to principal

component analysis (PCA). The number of principal components (PCs) used for nonlinear dimensional reduction analysis (UMAP)

was chosen according to the PCElbowPlot function and JackStrawPlot function. For cell clustering, FindClusters method was

parameterized with different resolutions to optimize cluster granularity. Sample integration was performed with the IntegrateData

function using anchors set by FindIntegrationAnchors. Cells with high mitochondrial RNA expression (greater than 5% of total cell

reads) were excluded from downstream analysis. FindAllMarkers function in Seurat was utilized to detect top gene markers per clus-

ter with the default Wilcoxon rank-sum test setting. The results of FindAllMarkers were subjected to functional pathway analysis. Up-

regulated gene markers per cluster with logFC>0.4 and adjusted p-value <0.05 were subjected to functional enrichment with Inge-

nuity Pathway Analysis (IPA) (Qiagen Inc.). IPA canonical pathways and upstream transcriptional regulators were predicted per

cluster and then integrated via the Comparison Analysis function. All analyzed files are available (GEO accession code GSE233063).

High throughput screening assay
The chemogenomic screen library was assembled with two screening libraries from Selleckchem (cat #: L1100 and L3800, the com-

plete list of libraries and batch specific certificates of analysis, MSDS, HNMR data and HPLC data can be found on www.

selleckchem.com). The high throughput screen was conducted with an automation platform consisting of multiple instruments as

shown below , which were operated by Green Button Go software (Biosero).
trument name Purpose Brand Count Cat #

cise PF400 Arm Robot arm Precise (ordered through Biosero) 1 INT3080006

cise rail 2M linear Axis rail for PF400 Precise (ordered through Biosero) 1 INT3080001

tomat� 10 C425 automated incubator 4�C incubator ThermoFisher 1 51031161

tomat� 10 C450 automated incubator 37�C incubator ThermoFisher 1 51031166

(Continued on next page)
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Instrument name Purpose Brand Count Cat #

Biosolutions AmbiStore� D Room temperature plate storage HighRes 1 N/A

BioShake 5000 elm shaker Plate shaker Qinstrument 3 2016-0022

Microplate centrifuge Microplate centrifuge Agilent 1 G5582AA

PlateLoc thermal microplate sealer Microplate sealer Agilent 1 G5585BA

XPeel Microplate peeler Brooks 1 XP-A

EL406 combination microplate washer

dispenser

Washer and dispenser BioTek 1 406PSUB1

Bravo liquid handler bundle Dispenser Agilent 1 G5563AA

Blue�Washer Washer and dispenser Blue Cat Bio 1 N/A

Operetta CLS high content analyis system High content imager PerkinElmer 1 N/A

EnVision� HTS plate reader Multi-mode plate reader PerkinElmer 1 2105-0010

Regrip nest Plate staging and regripping Biosero 1 INT3020012
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For the primary screen, 1,200 cells/16 mL/well of CCD-18co cells were seeded in CellCarrier-384 Ultra microplates (Perkin Elmer,

Cat #: 6057302) with an EL406 combination microplate washer dispenser (EL406, Biotek). After overnight incubation at 37�C, 37.5
nL/well (for 2 mM stock) or 7.5 nL/well (for 10 mM stock) small molecules were dispensed by ATS GEN5 (EDC Biosystems). The

wells were then backfilled with 10 mL/well cell culture medium with an EL406 (except for column 12). Column 12 was filled with

10 mL/well adalimumab (final concentration 1 nM) for positive control wells or 10 mL/well medium for negative controls. After over-

night incubation, each well was then filled with 25 mL/well recombinant human TNFa (R&D systems, cat #: 210-TA-100) diluted in

cell culture medium (final concentration 10 ng/mL) with an EL406. After 48-hour stimulation, 4 mL/well of cell culture supernatant

was taken out and dispensed into OptiPlate-384 microplates (PerkinElmer, cat #: 6007290) that was pre-filled by 12 mL/well PBS

by an EL406. CXCL10 HTRF assay antibodies were prepared according to the manufacturer’s recommendation (Cisbio, cat #:

62HCX10PEH). 4 mL of the mixture of equal part of diluted CXCL10 Eu Cryptate antibody and CXCL10 d2 antibody was added

to PBS diluted supernatant in OptiPlate-384 microplates by a Bravo liquid handler. The OptiPlate-384 microplate was then sealed

by a PlateLoc thermal microplate sealer (Agilent) and shaken at 1000 rpm for 30 seconds on a BioShake 5000 elm shaker (QInstru-

ment) followed by centrifugation at 500xg for 30 seconds on a Microplate centrifuge (Agilent). The OptiPlate-384 plate was incu-

bated at room temperature in a Biosolutions AmbiStore� D (HighRes) for 2 hours before the HTRF signal was measured on an

EnVision� HTS plate reader (PerkinElmer). For OSM-induced CCL2 assay in hit validation step, the cell supernatant was collected

after 2-hour treatment with OSM. The experimental procedure was similar to CXCL10 assay, except the signal was detected using

a CCL2 kit (Cisbio, Cat #: 62HCCL2PEG). The OSM treated cells were then returned back to the incubator, and the Cell Painting

assay was carried out after 48 hours post OSM treatment. After supernatant being transferred to the OptiPlate-384 microplates,

the cells in CellCarrier-384 Ultra microplates were treated with 25 m L of 0.71 mM MitoTracker� Deep Red FM (ThermoFisher, cat

#: M22426) that was prepared in cell culture medium from 1 mM DMSO stock (final concentration of MitoTracker� Deep Red FM

is 0.25 mM). MitoTracker� Deep Red FM was dispensed by an EL406. After incubation with MitoTracker� Deep Red FM for 30 mi-

nutes at 37�C, the cells were then fixed with 4% paraformaldehyde (made from a 32% stock, Electron Microscopy Sciences,

Cat#:15714S) for 10 minutes. Paraformaldehyde was dispensed by an EL406. The CellCarrier-384 Ultra microplates were then

washed with PBS (ThermoFisher, Cat#:10010023) twice on a Blue�Washer, and further stained with a cocktail of 15 mL/well

including 2 mg/mL Hoechst 33342 (Invitrogen, cat #: H3570), 100 mg/mL Concanavalin A-Alexa 488 (Invitrogen, cat #: C11252),

3 mM SYTO� 14 (Invitrogen, cat #: S7576), 5 mg/mL WGA-Alexa 555 (Invitrogen, cat #: W32464), 2.5 u/mL phalloidin-Alexa

568 (Invitrogen, cat #: A12380) for 30 minutes at room temperature. The dye cocktail was dispensed by a Blue�Washer. After

incubation, the plates were washed with 1X PBS three times. The cells were then imaged with an Operetta CLS High Content

Analysis System (PerkinElmer).

MitoTracker� Deep Red FM was reconstituted with DMSO and was always prepared fresh from lyophilized stock. Concanavalin

A-Alexa 488 was diluted with 0.1 M sodium bicarbonate and WGA-Alexa 555 was diluted with ddH2O, and unused stock of both

could be frozen in -20�C up to 1 month. Phalloidin-Alexa 568 was reconstituted with DMSO. Both phalloidin-Alexa 568 and

SYTO� 14 could be frozen in -20�C up to 1 year. Hoechst 33342 was stored at 4�C.

Cell Painting high content imaging, feature extraction and high dimensionality data analysis
Cells stained with Cell Painting dyes on CellCarrier-384 Ultra microplates were imaged with an Operetta CLS High

Content Analysis System. The details of the Operetta CLS channels and stains imaged in the Cell Painting assay are

shown below.
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Dye Filter (Excitation) Filter (Emission) Organelle or cellular component

Hoechst 33342 355-385 nm 430-500 nm Nucleus

Concanavalin A-Alexa 488 460-490 nm 500-550 nm Endoplasmic reticulum

SYTO� 14 490-515 nm 525-580 nm Nucleoli, cytoplasmic RNA

WGA-Alexa 555 and phalloidin-Alexa 568 530-560 nm 600-640 nm F-actin cytoskeleton, Golgi, plasma

membrane

MitoTracker� Deep Red FM 615-645 nm 685-760 nm Mitochondria
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20x water objective with non-confocal mode was used. Binning value of 2 was chosen to boost camera frame rate and dynamic

range. Themiddle 9 fields of viewwere imaged for each well. The exposure time and power were adjusted to ensure themax of signal

level under auto contrast for each channel was between the range of 8,000 – 15,000.

For Cell Painting feature extraction, Harmony� PhenoLOGIC� software was used. The basic flatfield correction and bright-

field correction were applied to the images. Hoechst 33342 channel was used to identify nuclei, followed by using concanavalin

A-Alexa 488 channel to find cytoplasm. Border objects of each image were removed to ensure the cells with complete image

were used for feature extraction. Properties of ell features were then quantified, including fluorescence intensities within

different cell regions, basic morphological features (cell area, roundness, length, width and width/length ratio), advanced

morphological features (Symmetry, Threshold compactness, Axial, Radial and profile, or STAR properties), cell texture features

(Spot, Hole, Edge, Ridge, Valley, Saddle, Bright and Dark, or SER properties).73 In total, there were 860 cellular features being

extracted.

For CXCL10 HTRF and Cell Painting assay development, CCD-18co cells were treated with a range of concentrations of adalimu-

mab biosimilar or infliximab biosimilar for 1 hour followed by treated of various concentrations of TNFa. After treatment with TNFa for

48 hours, the supernatant samples were taken for CXCL10 measurement by a HTRF kit, and the cells were stained with Cell Painting

dyes and imaged on a high content imager. The Pearson’s correlation between each cellular feature and Y=log(TNFa

concentration+1) was calculated. Multiple testing adjusted p-value was also calculated for each feature using a random permutation

method. The top features were used to fit a linear regression model, which were then used to calculate scores for the experiment run.

The Cell Painting score was then normalized to 0 and 10 ng/mL TNFa treatments in a 0-to-100 scale.

For the screening data analysis, the data including all extracted cellular features was imported to TIBCO� SpotFire� Signals

VitroVivo (PerkinElmer) for analysis. Within the software, Editable Data Grid application was used to associate cellular feature

data file with the compound transfer log file to annotate compounds. Grid Plate Editor application was used to designate the plate

layout. High Content Profiler was then used to perform advanced feature normalization, selection, classification, profiling and hits

selection. The compoundswith score in the range of Average(neg ctrl) ± 3 S.D. were selected. If they appear 2 times among the tested

triplicates, they were picked as hits.

In parallel, the Cell Painting data was analyzed with a linear predictive model. Briefly, the positive and negative controls were used

as a training set to train a predictive model. Top features were ranked using area under the ROC curve. Multiple testing adjusted

p-values were also calculated for each feature using a random permutation method. The top features that were highly predictive

and could separate positive and negative controls were used to rank compounds. The compounds with scores in the range of Aver-

age(neg ctrl) ± 1 S.D. and appeared at least 2 times were picked as hits.

Cell Painting data projection score calculation
Projection score is a mathematical formalization of a heuristic, which predict sample’s positivity depending on whether the feature

values are closer to the positive controls and the negative controls. Projection score is calculated as

PS =
q3 cosðqÞ

p
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Where p is the distance between the center of positive and negative controls, q is the distance between sample and the center of

negative controls, and q is the angel between side q and side p.

CCD-18co cell hit confirmation and validation hit picking strategy
For cytokine (CXCL10 and CCL2) assay hit picking, the assay plates first passed SSMD>1.28 QC criteria. Compounds’ cytotoxicity

effects were assessed by cell count from the imaging assay. If three or more cell count data points out of the six data points (three

doses in replicates) of a compound show < 50% cell viability compared to the negative control, this compound was then considered

toxic and filtered out. The area under the curve (AUC) of six normalized CXCL10 percent inhibition data points of each compoundwas

then calculated for each stimulus. The compounds were ranked according to the values of AUC. For Cell Painting assay hit picking,

after elimination of the cytotoxic compounds, the projection scores of Average(pos ctrl) ± 3 x S.D. were selected. If a compound had

three or more data points out of the six data points that met this criterion, it was confirmed as a hit.

Visualization of primary screen Cell Painting dataset with t-SNE
To generate t-SNE projection of Cell Painting morphological feature profiles, compounds that have target annotations were selected

and per-compound feature profiles were aggregated by calculating the mean of each feature across compound replicates. Per-

target feature profiles were then aggregated by calculating themean of each feature across all compounds annotatedwith this target.

Per-target feature profiles were then rank-ordered by decreasing Euclidean distance from the mean feature profile of negative con-

trols. Finally, the top-20 most distinct targets were selected and the targets that were associated with 3 or less compounds were

filtered out, obtaining the final set of 13 targets.

The two-dimensional t-SNE embedding was generated using the scikit-learn Python library with random initialization,71 perplexity

of 20, early exaggeration of 30, automatic learning rate and squared cosine distance as a metric. Targets that formed coherent clus-

ters were highlighted using kernel density estimation with empirically chosen thresholds. It should be noted that cluster sizes and

inter-cluster distances should be interpreted with care when using t-SNE.74 The t-SNE visualization was built using matplotlib69

and seaborn70 Python libraries.

CXCL10 and cellular feature statistical dependence analysis
To assess the correlation between CXCL10 level and cellular features extracted from Cell Painting imaging data, we first filtered out

those compounds that demonstrated cytotoxic effects. We then selected those compounds that were present in both CXCL10 and

imaging assays and aggregated per-compound imaging feature profiles by calculating the mean of each feature across compound

replicates. Then, for each cellular morphological feature, we computed two metrics of relatedness to CXCL10 level: F-test statistic

andMutual information (MI). Themethod based on the F-test statistic estimates the degree of linear dependency between the feature

and the outcome, while the mutual information method can capture any kind of statistical dependency. We plotted obtained results

either as individual data points (Figure 5B) or as a bar plot that aggregates features by their type (Figure 5A), with error bars showing a

bootstrap-estimated 95% confidence interval.

Computations of the F-test statistic andmutual information were performed using the scikit-learn71 and pandas72 Python libraries.

Visualizations were built using matplotlib69 and seaborn70 Python libraries.

CRISPR/Cas9, mismatch detection and T7E1 assays
Lentiviral particles of inducible Cas9 nuclease with hEF1a promoter (Horizon discovery, cat #: VCAS11227) were transduced

into CCD-18co cells with MOI=0.5 according to manufacturer’s instruction. The Cas9 expressing cells were selected

under 2 mg/mL blastcidin (ThermoFisher, Cat#:A1113903). The cells were added 10 ng/mL doxycycline (Sigma

Millipore, Cat#:D9891) to induce Cas9 expression. The Cas9 expression could be readily detected by Western blot after

24 hours. Gene Knockout Kit v2 – Human or individual gRNA for targeting TNFRSF1A or TNFRSF1B were ordered from

Synthego (https://www.synthego.com/order/crispr-kits/gene-knockout-kit). For gRNA transfection, 0.05 mL Lipofectamine�
RNAiMAX (ThermoFisher, cat#: 13778075) mixed with 5 mL opti-MEM was dispensed into each well of CellCarrier-384 Ultra

microplates, followed by dispensing 2 pmol gRNA diluted in 5 mL opti-MEM. The RNAiMax and gRNA were then mixed

by shaking the plate on a microplate shaker for 1 minute at 800 rpm. The plate was then centrifuged 1 minute at 500xg

and incubated at room temperature for 20 minutes. After incubation, 1,200 cells/well with 10 ng/mL doxycycline were

seeded in CellCarrier-384 Ultra microplates with RNAiMax and gRNA mixture. After 72 hours, the cells were collected for

T7E1 assay.

For mismatch detection and T7E1 assay, the cells were lysed in 20 mL of 1x Phusion high-fidelity buffer (Thermofisher, cat #:

F-518L) with 1 mg/mL proteinase K (Thermofisher, cat #: EO0492) and 0.5 mg/mL RNase A (cat #: EN0531). The plate was then incu-

bated for 15 – 30minutes at 56�C, followed by deactivation for 5 minutes at 96�C. Briefly centrifuge plate to collect liquid at bottom of

wells. A 50 mL PCR reaction with the following condition was set up: 1X Phusion High-Fidelity buffer (cat #: F-549S), 500 nM forward

primer, 500 nM reward primer, 200 mM each dNTPs (ThermoFisher, Cat#:R0181), 0.04 U/mL Phusion hot start II high-fidelity DNA po-

lymerase (cat #: F-549S), and 5 mL cell lysate. The thermal cycling condition is as shown below:
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Cycle step Temperature (�C) Time Cycle(s)

Initial denaturation 98 3 min 1

Denature 98 10 s 10

Touchdown annealing 72 – 1/cycle 15 s

Extension 72 30 s

Denature 98 10 s 25

Annealing 62 15 s

Extension 72 30 s

Final extension 72 10 min 1
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PCR samples were heated to 95�C for 10 minutes and then slowly (>15minutes) cool to room temperature. 15 mLmismatch detec-

tion assay using T7E1 was then set up. The reaction includes PCR from gDNA (300 – 500 ng/reaction), 1X NEBuffer 2 (NEB, cat #:

B7002S), and 0.33 U/mL T7 endonuclease I (NEB, Cat#: M0302S). The mixture was then incubated for 25 minutes at 37�C. The entire

reaction was then loaded on 2% agarose gel to determine gRNA cleavage.

Olink Target 96 inflammation assay
CCD-18co cells were treated with vehicle, 10 ng/mL OSM, 10 ng/mL TNFa, 10 ng/mL IL-1b, 100 ng/mL TL1A, 200 ng/mL IL-36 or

10 ng/mL TGFb for 16 or 48 hours. The cell culture supernatant samples (n=5 for each treatment) were collected and sent to Olink

for the Olink Target 96 Inflammation assay. The samples were tested in neat or in 1:10 dilution. In total, 92 immune-related secretory

biomarker protein levels were assessed. The results were presented in Normalized Protein Expression (NPX) value, which is an arbi-

trary unit on a Log2 scale. The linear portion of the NPX vs. concentration plot was used for calculation. The NPX values were further

normalized to the vehicle treated control group. The heat map shows the average of the protein concentration of n=5. In parallel, the

mRNA samples of the cells that were treated with various stimuli for 16 hours were sequenced. The matching gene expression levels

of the 92 proteins that were assessed in the Olink assay were analyzed. The FPKM levels for each treatment was normalized to the

vehicle control group. The heat map shows the average of the gene expression level of n=3.

RNA-seq
CCD-18co cells were treated with various stimuli for 16 hours in the same way as described above in Olink Target 96 Inflammation

assay section. For mRNA-seq, the raw reads were aligned to the transcriptome using STAR (version 2.6.0)/RSEM (version 1.2.25)

with default parameters, with a custom human GRCh38 transcriptome reference containing all protein coding and long noncoding

RNA genes (based on human GENCODE version 32 annotation; downloaded from http://www.gencodegenes.org). The expression

counts for each gene (i.e., transcripts per million) in all samples were normalized based on the sequencing depth. Differential expres-

sion genes (DEG) were identified using DESeq2 Bioconductor package at a minimum 2 fold change and false discovery rate <0.05

with Benjamini-Hochberg Procedure. The pathway enrichment analysis was performed using a hypergeometric test with Benjamini-

Hochberg correction in Ingenuity pathway analysis (Qiagen). False discovery rate <0.05 was used as cutoff to identify significant

signaling pathways after treatment.

Pro-fibrotic biomarker detection with Luminex�
6000 cells/100 mL/well of CCD-18co cells were seeded in 96 well plate. After overnight culture, they were treated with vehicle, 10 ng/

mLOSM, 10 ng/mL TNFa, 10 ng/mL IL-1b, 100 ng/mL TL1A, 200 ng/mL IL-36 or 10 ng/mL TGFb for 16 or 48 hours. After 16 hours, the

cell culture supernatant was harvested. After 48 hours, upon collection of cell culture supernatant, the cells were washed once with

PBS, and add 35 mL 0.1% tritonx100 (Sigma Millipore, Cat#:X100) in PBS to lyse cells. A customed kit for pro-fibrotic biomarker

detection was ordered from R&D systems. The experiment was performed according to the manufacturer’s instruction. Briefly,

the supernatant and lysate samples were diluted 1:1 with the diluent provided in the Luminex kit. 50 mL of standard or sample

was added to each well. Then 50 mL of diluted microparticle cocktail was added to each well, followed by incubation for 2 hours

at room temperature on a shaker at 800 rpm. The plate was then washed by removing the liquid for each well when the plate was

set on a magnetic plate separator to allow the magnetic beads to be sequestered, and filling with 100 mL wash buffer, and removing

the liquid again. The wash was repeated 3 times. 50 mL of diluted biotin- antibody cocktail was added to each well, followed by

covering and incubating for 1 hour at room temperature on a shaker at 800 rpm. Then the plate was washed 3 times. 50 mL of diluted

streptavidin-PE was added to each well and incubated for 30 minutes at room temperature on a shaker at 800 rpm. Then the plate

was washed 3 times. Then add 100 mL of wash buffer to each well and incubate for 2 minutes at room temperature on a shaker at

80 rpm. The fluorescence signal was read within 90 minutes using a Luminex 200 system.

Immunofluorescence detection for ACTA2 and COL1A1
1,500 cells/well CCD-18co cells were seeded in CellCarrier-384 Ultra microplates. After overnight culture, cells were treated with a

range of concentrations of stimuli, including IL-11, OSM, TNFa, IL-1b, TL1A, IL-36 and TGFb for 48 hours. Cells were then fixed with

2% paraformaldehyde for 10 minutes. After washing, the cells were permeabilized with 0.25% Triton X-100 in PBS for 10 minutes,
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following by washing with PBS for 3 times. The cells were blocked with 1% BSA in PBST (0.1% Tween 20 diluted in PBS) for

30 minutes, and then incubated with anti-ACTA2 antibody (Abcam, cat #: ab7817) and anti-COL1A1 antibody (Abcam, cat #:

ab34710). Both antibodies were used 1:1000 dilution in 1% BSA in PBST. After overnight incubation at 4�C, the cells were washed

3 times with PBS, followed by incubation with goat anti-mouse Alexa 594 (ThermoFisher, cat #: A-11032) and goat anti-rabbit Alexa

488 (ThermoFisher, cat #: A-11008) secondary antibodies for 30 minutes. The cells were then washed with PBS 3 times and stained

with Hoechst 33342, before being imaged on an Operetta CLS High Content Analysis System.

QUANTIFICATION AND STATISTICAL ANALYSIS

Strictly standardized mean difference (SSMD) was used to assess plate quality. It is estimated as

b =
XP � XNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

K

�
ðnP � 1ÞS2

P+ðnN � 1ÞS2
N

�r

Where XP and XN aremeans, S2
P and S2

N are variances, and nP and nN are sample sizes of positive and negative controls, respectively.

KznP + nN � 3:48.

For all experiments, statistical analysis was conducted using T-test or one-way ANOVA with Tukey’s post hoc test on Graphpad

Prism software with significance of * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 if not specifically mentioned. Results are presented

as means ± SD or means ± SEM, which is specified in the figure descriptions.
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