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Abstract
Various strategies for label-scarce object detection
have been explored by the computer vision re-
search community. These strategies mainly rely
on assumptions that are specific to natural images
and not directly applicable to the biological and
biomedical vision domains. For example, most
semi-supervised learning strategies rely on a small
set of labeled data as a confident source of ground
truth. In many biological vision applications, how-
ever, the ground truth is unknown, but side infor-
mation might be available in the form of uncertain
estimations or indirect evidence. In this work, we
frame a crucial problem in spatial transcriptomics
- decoding barcodes from In-Situ-Sequencing (ISS)
images - as a semi-supervised object detection
(SSOD) problem. Our proposed framework in-
corporates additional available sources of informa-
tion into a semi-supervised learning framework in
the form of privileged information. The privi-
leged information is incorporated into the teacher’s
pseudo-labeling in a teacher-student self-training
iteration. Although the available privileged infor-
mation could be data domain specific, we have in-
troduced a general strategy of pseudo-labeling en-
hanced by privileged information (PLePI) and ex-
emplified the concept using ISS images, as well
on the COCO benchmark using extra evidence pro-
vided by CLIP.

1 Introduction
In many real world applications, the type of available infor-
mation for data samples is not direct and the existing indi-
rect evidence cannot be exploited using methods developed
for datasets with direct ground truth. Creative exploitation
of this side information into a learning framework might sig-
nificantly advance real world applications, especially in life
sciences. These applications often have unique properties that
require unique strategies. Nevertheless, these domain specific
strategies could provide potential generic insights applicable
to other fields. This work is motivated by a problem called
barcode calling, in which we attempt to decode information
from In Situ Sequencing (ISS) microscopy images.

In situ sequencing methods are rising in popularity across
genomics due to their application in spatial transcriptomics
and optical pooled profiling screens. Their ability to pre-
serve the spatial information of biological measurements
while genotyping single cells at scale without the need to
physically harvest and dissociate cells, adds rich informa-
tion to profiles of biological samples [Ståhl et al., 2016;
Vickovic et al., 2019; Asp et al., 2019]. The field is explod-
ing with new and improved genomic perturbation and spatial
barcoding technologies. These technologies create a series
of images to be analyzed computationally for recovery of the
experiment’s encoded barcodes. Each barcode is a sequence
of base letters that are encoded in a sequence of images (each
letter is an object in each image). Each barcode is associated
with a cell in the experiment.

Numerous attempts have been made to maximize the ac-
curate recovery of barcodes over the past few years (see Sec-
tion 2.1). Due to the simple structure of information encoded
in these images and the lack of existent ground truth , tradi-
tionally barcode calling pipelines are formed by a series of
expert-supervised multi-step image processing steps. How-
ever, they not only need expert optimization of parameters,
but also are far from achieving maximal accurate detection
of barcodes. Improvements would be extremely valuable,
considering the cost and effort involved in performing ex-
tra experiments to compensate for missed signal and there-
fore statistical power of the downstream analysis. Recently,
new methods [Chen et al., 2021; Andersson et al., 2021;
Gataric et al., 2021] have attempted to model the physical
process and find the optimum fit to an expected set of bar-
code solutions which is called an experiment’s codebook. A
codebook tells us the set of possible barcodes existing (at
unknown locations) in a set of images. It thus provides an
indirect evidence for the decoding solutions, which may be
treated as side-information. It is highly labor-intensive to
generate even a small amount of direct ground truth for this
problem, because it would effectively require generating dis-
tinct datasets for each barcode, which is impractical except
at a very small scale. Also, human observers cannot perform
the task accurately on challenging instances, in light of the
noise sources. The absence of such ground truth also limits
strategies for evaluating performance and prevents consistent
and fair comparison of new methodologies by well-defined
metrics on benchmark datasets.
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In this work, we introduce a novel approach for framing
the barcode calling problem, which also contributes to the
deep semi-supervised learning and object detection literature.
The proposed framework takes advantage of special domain
specific characteristics of this problem and dataset to form a
novel learning strategy. We propose forming noisy labels by
computationally cheap operations and then exploiting extra
evidence available on data into the pseudo-labeling process in
a semi-supervised object detection (SSOD) framework. This
evidence, which could be in various forms and not limited to
the examples we demonstrate here, are then used to adjust the
initial decision boundary formed by noisy labels, during the
self-training iterations. We name the overall strategy of incor-
porating privileged information in the pseudo-labeling pro-
cess, Pseudo-Labeling Enhanced by Privileged Information,
and the algorithm specifically developed for barcode calling
(that relies on the application of this strategy into a SSOD
framework) is called PLePI-ISS.

We can summarize our contributions as:

• We propose PLePI as a novel strategy for incorporat-
ing complementary extra available information (termed
‘privileged information’) for a problem into the pseudo-
labeling process. This strategy is shown to not only sal-
vage a model suffering from noise overfitting but also
enhance the regular pseudo-labeling process in a semi-
supervised learning framework.

• We frame the crucial problem of barcode calling in the
spatial transcriptomics field as a semi-supervised object
detection problem with noisy labels and available privi-
leged information. We also provide a public benchmark-
ing resource which can be used for evaluation of the
novel methodologies addressing this problem. The in-
troduced framework, PLePI-ISS, which is the first end-
to-end nonlinear framework to address the barcode call-
ing problem, is evaluated in an out-of-sample fashion
for the first time using the provided benchmark (whereas
previous learning-based methods have only been evalu-
ated within sample).

2 Related Works
2.1 In Situ Transcriptomics Decoding Algorithms
Decoding barcodes from In-Situ Sequencing images or bar-
code calling is defined as reading sequences of cDNA copies
of mRNA fragments in an image-based experiment. These
fragments are spots scattered at various image locations.
Each barcode is a length Nr sequence of four A, T, C, G nu-
cleotides, or ‘base letters’, where Nr is typically 9-16. A
reference library of barcodes or codebook (which is a subset
of all possible combinations of length Nr sequences of base
letters) is designed and known before each experiment begins.

Each letter in the sequence is captured by one round or ‘cy-
cle’ of fluorescence microscopy images. Barcodes are formed
by reading letters at a fixed location (or ‘spot’), in a series of
images taken at consecutive sequencing cycles. The color
of each letter (or ‘spot’) corresponds to the specific intensity
distribution of that spot across four base letter color channels.
An example of a cycle image is shown in Supplementary Fig-

ure 11, in which the top row shows a zoomed single spot to be
decoded to one of the base letters, based on its intensity in the
four color channels corresponding to A, T, G, or C. Despite
the structural simplicity of these ISS images, many practi-
cal complications exist, such as background from the cellular
matrix, variable focus quality in thicker sample mounts, im-
balances of brightness across color channels, bleed-through
of signal from one color channel to another or from one cycle
of imaging to another.

Barcode calling algorithms are typically a multi-step
expert-supervised process. Images are first corrected for gen-
eral uneven microscopy patterns (due to uneven illumination
or detection) and then aligned across channels and across
rounds or cycles of imaging. The crucial step then is to re-
cover the signal from noisy measurements. Signal here refers
to the location of spots and their label. Previous literature
has used various techniques to overcome this challenge by
modeling and correcting the different sources of noise [An-
dersson et al., 2021; Gataric et al., 2021; Chen et al., 2021;
Senel et al., 2022]. Various bottom-up or top-down pro-
cessing approaches have been proposed and implemented as
pipelines in the open-source Starfish [Axelrod et al., 2021]
Python library. Bottom-up or spot-based approaches first de-
termine the existence of a spot and then estimate the barcode
in the spot across all rounds of imaging [Shah et al., 2016;
Wang et al., 2018; Gyllborg et al., 2020]. On the other hand,
top-down or pixel-based approaches look for the existence of
a barcode in the experiment’s codebook to determine the sig-
nal versus noise [Andersson et al., 2021; Chen et al., 2021;
Lee et al., 2014; Moffitt et al., 2018]. Among recent pixel-
based decoding approaches, BarDensr models the generative
physical process linearly, considering various factors includ-
ing the probe response function, phasing effect, cross-talk,
background noise, and the codebook of barcodes. It estimates
model parameters from data and solves a sparse non-negative
regression problem by constrained optimization [Chen et al.,
2021]. ISTDECO suggests optimization of a single model
for simultaneous barcode localization and decoding for fur-
ther denoising and barcode calling improvement [Andersson
et al., 2021]. A more recent spot-based model called PoST-
code [Gataric et al., 2021] suggests probabilistic modeling of
data by a matrix-variate Gaussian Mixture Model and esti-
mates posterior probabilities of barcodes given the codebook
and image measurements at spot locations. Without suitable
ground truth, the field has not been able to compare methods
against a unified benchmark.

2.2 Object Detection With Limited Annotations
Deep learning-based object detection in the presence of
ground truth annotations has shown outstanding success.
However, the labor-intensive and costly nature of collecting
annotations in object detection, has motivated the recent at-
tempts to study various learning strategies with limited super-
vision. Weakly supervised object detection (WSOD) studies
the strategies to use image-level categorical annotations with-
out location information to detect objects [Tang et al., 2018;

1 The source code and supplementary materials for this paper can
be found at http://broad.io/PLePIISS
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Figure 1: Schematic representation of PLePI in a teacher-student learning loop. The teacher generates pseudo-labels for Confident samples
by confidence thresholding, and for Mediocre samples by fusion of it’s own soft predictions and the evidence provided by the privileged
information (EPI ).

Dong et al., 2021; Lin et al., 2020; Shen et al., 2020].
Semi-supervised object detection (SSOD) leverages a small
set of fully annotated images together with a large set of
unannotated images for detecting objects in the unannotated
data. SSOD attempts have mainly followed variations of the
well-established strategies in semi-supervised image classi-
fication such as pseudo-labeling and consistency regulariza-
tion [Jeong et al., 2019; Jeong et al., 2021; Sohn et al., 2020;
Kuo et al., 2020]. However, due to the difficult nature of
object detection relative to the image classification prob-
lem, the literature on SSOD is limited, and it lags behind
semi-supervised object classification. Various other strate-
gies have been also explored for label-scarce object detection;
sparsely annotated object detection deals with partial annota-
tions in each image [Wang et al., 2021a; Niitani et al., 2019;
Zhang et al., 2020], single instance object detection takes an-
notations of a single instance per category [Li et al., 2022b],
point-supervised object detection replaces box-supervision
with single quasi-center point supervision for saving anno-
tation costs [Chen et al., 2022]. These variations all aim to
achieve a performance close to fully supervised object detec-
tion by using minimal/sparse levels of supervision. Our pro-
posed strategy could benefit any categories of the work men-
tioned that involve pseudo-labeling where we have access to
a source of privileged information.

3 PLePI
Here, we describe our proposed domain-free strategy for
enhancing pseudo-labeling by a source of privileged infor-
mation. Following the related works [Zhou et al., 2021;
Xu et al., 2021; Li et al., 2022a; Zhou et al., 2022], we
build on a teacher-student scheme, where both teacher and
student share identical architecture, and the teacher’s weights
are updated iteratively by exponential moving average (EMA)
of the student’s weights. The teacher model makes deci-
sions based on weakly augmented unlabeled data and gener-
ates labels for strongly augmented data inputted into the stu-
dent model. This process, which is called input consistency
regularization, ensures gradual improvement of the student
and therefore the teacher in a dual iterative learning scheme.
Without loss of generality, we describe the enhanced pseudo-

labeling algorithm for a single learning task and loss function.
Assuming sets of labeled (Dl) and unlabeled (Du) sam-

ples, the teacher model is first trained by the set of labeled
data. The student model is trained by using both labeled
and unlabeled sets to minimize a linear combination of, re-
spectively, a supervised and an unsupervised loss; ℓs + λuℓu,
where λu defines the contribution of unlabeled samples to
the student’s overall loss function. In each training itera-
tion, the teacher model generates a set of class conditional
probabilities PT for each sample in a mini-batch of sam-
ples. In a typical pseudo-labeling by confidence threshold-
ing approach, we pseudo-label samples where their likeli-
hood of belonging to any class k is higher than τc. These
pseudo-labels are then fed to the unsupervised loss to update
the student model using a cross-entropy or focal loss which
minimizes the distance between the student’s soft predictions
and the teacher’s generated pseudo-labels. We call the sam-
ples selected for pseudo-labeling, the set of confident samples
OC = {o|max

k∈K
PT (yo = k) > τc}, where K refers to the full

set of class labels. Here we define an additional mediocre
set of samples with lower levels of confidence (τm ≤ τc),
OM = {o|τm ≥ max

k∈K
PT (yo = k) ≥ τc}. When privileged

information is available, the teacher fuses its own soft predic-
tions (PT ) into each mediocre sample om with the evidence
the privileged information provides (EPI ) on the label of that
sample. We model the probability of a sample label using
both types of evidence as:

P(y|ET , EPI) ∝ P(y|ET )P(y|EPI) (1)

The choice of τm, τc, and their relative distance may vary
depending on the specific problem and context. We assume
privileged information could provide evidence or could be
converted to the form of probabilities for a group of objects
co-occurring in a mini-batch of samples. Hence, for a set of
O = {oj}j of objects in a mini-batch B, privileged informa-
tion could provide {PPI(OS)|OS ⊂ O}, where OS could be
any possible subset of objects in B.

Then, we fuse the evidence provided by the current
teacher’s model (ET ) and privileged information (EPI ), to
form decisions for each object in the mediocre set, as also
shown in the schematic overview of the strategy in Figure 1.
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Thus, for every sample in the mediocre set, om ∈ OM , we
estimate its label k∗ as:

k∗ = argmax
k∈K

P(yom = k|ET , EPI)

= argmax
k∈K

PT (yom = k)P(yom = k|EPI).

= argmax
k∈K

PT (yom = k)PPI(om ∪ OC |yom = k). (2)

As mentioned, K refers to the full set of class labels, how-
ever, we recommend limiting K to a set of top n candidate la-
bels for each om according to PT to avoid unnecessary com-
putational overload. The algorithm in compact form is pre-
sented in Supplementary B1.

4 PLePI-ISS
4.1 ISS Data-Structure
The images captured in each sample well of an experiment
consist of Nf field of views, {If}

Nf

f=1, where each If is a
sequence of images captured at Nr rounds or cycles of the
experiment; If = {If,r}Nr

r=1. Therefore, for each site of the
experiment, there exist Nf × Nr number of I ∈ RW×H×C

images of height H , width W with C color channels. A bar-
code is formed by a sequence of Nr objects at a specific fixed
location across If images.

We frame the barcode calling problem as an object detec-
tion problem on single-cycle images in the presence of noisy
labels and privileged information.

4.2 Domain Specific Properties
Here we describe data properties that make our SSOD prob-
lem distinct and therefore provide the rationale for our design
choices, which may not align with conventional SSOD tech-
niques utilized for natural images.

Unique Structure
Our data has an unusual structure which is different from nat-
ural images that are the target of most SSOD designs. Com-
pared to natural images, the objects’ structure is much sim-
pler which creates limitations on choices of augmentation
and therefore regularization capacity which is required in a
self-training learning strategy. Objects are very small spots in
various forms densely scattered throughout each input image
(Supplementary Figure 11). The label of each spot is shape
independent and manifested by the arrangement of intensity
distribution across color channels. Slight perturbations in
these arrangements could create noise in predictions. On the
other hand, this simple structure might allow extracting noisy
labels by cheap and efficient image processing techniques.
The size of objects (4-10 pixels in each dimension) allows
using point-level annotation which is cheaper to extract com-
pared to box-level annotation. Another unique property is the
consistent location of objects across various cycles of the ex-
periment (i.e. all objects corresponding to each barcode have
similar location labels), which allows model regularization
for the object detection task in lieu of intensity-based data
augmentations.

Self-training and Noisy Labels
The basic idea behind self-training is that a model can
improve itself by learning from its own confident predic-
tions [McLachlan, 1975; Scudder, 1965]. The confident pre-
dictions are then added as labeled samples to the next training
iteration. The initial model that is called a “pseudo-labeler”
is typically trained using a source of confident labels. If a
pseudo-labeler is fitted to noisy labels, the model would over-
fit to those labels and can’t rely on its own confident predic-
tions to improve its learned decision boundary [Arazo et al.,
2020]. Strategies for alleviating noisy pseudo-labeling due to
the confirmation bias in a poorly calibrated model are very
limited [Arazo et al., 2020; Li et al., 2020; Rizve et al., 2021]
and domain-specific. The fusion of privileged information to
the model’s decision could be a remedy to this problem in
our application. By PLePI, a model learned from noisy labels
corrects its formed decision boundary by adjusting pseudo-
labels in a mini-batch of data using a source of privileged
information. We emphasize that, although the proposed strat-
egy can improve the quality of the pseudo-labels generated in
any self-training loop, it is particularly beneficial to a model
suffering from noise overfitting which otherwise fails to ben-
efit from unlabeled data through self-training iterations.

Codebook
As described in earlier sections, the experiment-specific
codebook gives prior information on the expected set of so-
lutions for the barcode calling problem. However, it doesn’t
provide any direct information on the label of each spot to be
labeled by an object detector.

4.3 Privileged Information in ISS Barcode Calling
According to {PPI(OS)|OS ⊂ O}, evidence provided by
privileged information is increased when we have more sam-
ple subsets that can provide information about each other in
the form of a group (within a mini-batch of samples). There-
fore, to maximize the amount of information the teacher has
access to in each training iteration, we form a mini-batch by
grouping images that can provide the maximum information
about each other. In ISS domain application, this translates to
tiles of images across various cycles of a single field of view.

Shared evidence on object locations across images. As
mentioned earlier, the location of objects across images of
various cycles in an experiment remains constant. Slight vari-
ations in object locations in these images are due to imaging
noise and misalignments across cycles.

We can exploit this data property as an evidence on the
location of a group of spots, which states that the probability
for a group of spots at a fixed (x, y) location in various cycle’s
images is one if and only if the objects in the group have either
all foreground or all background labels.

Codebook as an external source of evidence. Labels for
each foreground object at a specific location across all cycles
form a barcode sequence which should exist in the reference
barcode library of barcodes (the experiment’s codebook) in
a noiseless scenario. However, due to experimental imaging
noise, the formed barcode may not match any of the barcodes
in the codebook, but it could still be assumed to remain in
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the neighborhood of its ground truth barcode in a Hamming
space where all possible barcodes reside. Therefore, for an
ordered set of object labels across cycles that form a barcode
B, this evidence states P(B) = 1 only if B ∈ codebook and
otherwise P(B) = 0.

4.4 PLePI-ISS: Application Into a Two-Stage
SSOD

In the previous section, we proposed arranging images in each
mini-batch so that object detection solutions across images
become dependent and form a source of privileged informa-
tion. We described our problem’s domain-specific properties
for the localization and classification tasks which are used as
the sources of privileged information.

Given Nf ×Nr unlabeled images defined in 4.1 across all
the fields of view and cycles in a well of an ISS experiment,
noisy estimates for location and categories of objects are ex-
tracted for a subset of images by: 1. simple automated thresh-
olding/argmax based approaches (cheap but low quality) and
2. a multi-step expert-supervised image processing pipeline
(still noisy but higher quality). We later evaluate the effect of
annotation noise level on our proposed model’s performance.

We apply our learning strategy into a teacher-student
based SSOD, build on the two-stage anchor-based Faster R-
CNN [Ren et al., 2015] object detector. Two-stage object
detectors have specifically shown promising results in semi-
supervised object detection [Zhou et al., 2021; Wang et al.,
2021b]. A teacher model is then initialized using noisy labels.
The teacher attempts to correct the “overfitting to noisy labels
effect” by updating its decisions according to the privileged
information.

The multi-task loss function for the Faster R-CNN [Ren et
al., 2015] two-stage object detector is a linear combination of
object localization and classification losses. In the first stage,
the region proposal network (RPN), is trained for binary clas-
sification of foreground versus background and bounding box
regression of a set of predefined anchors. A region of interest
(ROI) detection network is simultaneously trained for object
classification and bounding box regression of a selected set
of ROIs. In each training iteration, the RPN generates a set of
objectness scores and bounding box deltas for each proposal
anchor in the image. The objectness scores are used to assign
an anchor to foreground versus background class and bound-
ing box deltas are to estimate the adjustment needed to the
anchor bounding box for each detected object.

Following the shared evidence on object locations across
images (as described in 4.3), feature maps for extracting ob-
jectness score across different cycles of imaging in each tile
of a single field of view that are arranged in a mini-batch,
If = {If,r}Nr

r=1, can be considered as noisy perturbations
of the true unknown feature map of locations. We minimize
the inconsistency across these perturbed images, by enforcing
all the objectness predicted labels (foreground versus back-
ground) for each anchor to be identical. The pseudo-labeling
of each box on the feature map is done by the consensus-
predicted labels across different perturbations. A confidence
threshold for pseudo-labeling of RPN boxes to the foreground
class is fixed and applied to consensus (median) objectness
scores. Then, the median of estimated bounding box deltas

for detected-as-foreground objects are calculated and consid-
ered as ground truth annotations for minimization of their cor-
responding cross-entropy and L1 loss functions of the RPN
loss, LRPN (Supplementary figure 3 (c)1).

Next, selected ROIs detected as foreground objects go to
the second stage or the ROI detection network. We ap-
ply random rotations to the ROI feature maps in the stu-
dent network. Each foreground anchor across all cycles’ im-
ages forms a set of Nr objects, B, with the probability of
a sequence formed by their independent object labels being
Nr∏
i=1

max
k∈{A,T,C,G}

PT (yoi = k). Next, the set of Nr objects in each

barcode is divided into two sets of confident and mediocre
objects. Confident objects whose maximum class conditional
probability is more than τc are pseudo-labeled and form the
confident set of pseudo-labels ŶOC

.
Incorporation of the codebook as an external source of evi-

dence (described in 4.3) into equation 2 will result in pseudo-
labeling of mediocre objects so that the final barcode formed
by the group is the most probable barcode that also exists
in the codebook. The cross entropy between the teacher’s
estimated and updated pseudo-labels {ŶOC

, ŶOM
} and the

student’s soft predictions PS is then minimized by LROI to
update the ROI detection network (Supplementary figure 3
(d)1).

4.5 Barcode Calling Benchmarking
In-Situ-Sequencing Benchmark Resource
We created a benchmark resource for barcode calling by
conducting an experiment testing a library of barcoded ge-
netic reagents, which includes a plate of in-situ sequencing
(ISS) images along with the corresponding next-generation
sequencing (NGS) data as indirect ground truth. Note that,
unlike the indirect evidence provided by the codebook, NGS
data is not typically available in an ISS experiment. Here,
it was specifically collected for this resource and for bench-
marking purposes. The library contains 186 barcodes of nine
letters represented in nine cycles of an imaging sequence. The
resource (described in detail at Supplementary A1) contains
two six-well plates, each well containing about 100 images
(called sites or fields of view). Each well contains about
500000 single cells and 20 million four-channel spots in ISS
images of nine cycles. Not all cells have spots, and most cells
have more than one spot. The results of per-spot barcode as-
signments based on the proposed and baseline methods are
then converted to per-cell barcode assignments as described
in the next section. The abundance of cell-level barcode
assignments should approximate NGS-based barcode abun-
dances. We use the latter, as the main reference to assess the
quality of the former extracted by various decoding strategies.

Cell Calling as a Proxy for Barcode Calling Evaluation
Cell calling is defined as assigning a barcode to each cell,
indicating the perturbation that the cell has received. There
are usually multiple individual barcode spots detected in each
cell. They ought to report identical sequences within a given
cell (except when the experiment is configured otherwise),
but that is not always the case due to confounding noise.
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Our experiments are configured to typically have a single per-
turbation per cell and therefore any inconsistency in the de-
tected barcodes is likely due to a computational decoding er-
ror. For each cell, we need to make a decision on the cell’s
perturbation (cell calling) based on the barcode calling evi-
dence at hand. To map all methods’ barcode calling results
to cell-level barcode assignments, we use cell-segmentation
image outputs from a classical image processing pipeline us-
ing CellProfiler, which uses cytoskeleton-stained cell images
to identify cell borders. Next, we combine those segmenta-
tion masks with the barcodes’ detection confidence (which
most methods produce), by simply assigning the highest-
confidence barcode sequence to each cell with Some propor-
tion of cells assigned to no barcode.

5 Experiments
In the following, we evaluate PLePI in the context of state-
of-the-art SSOD using the MS-COCO benchmark, with
CLIP [Radford et al., 2021] as a hypothetical source of priv-
ileged information. Then using the introduced benchmarking
resource in 4.5, we perform ablation experiments to evaluate
the role of the main components in our proposed framework
(PLePI-ISS) in cell calling performance. Finally, we com-
pare recent top-performing related works on a subset of our
benchmark resource.

5.1 PLePI: MS-COCO Benchmark for SSOD
Here we demonstrate PLePI on a popular SSOD benchmark
as a proof of concept for incorporating independent evidence
into the teacher’s pseudo-labeling process. The privileged in-
formation here is provided by Contrastive Language-Image
Pre-training (CLIP) [Radford et al., 2021] model. Details on
extracting evidence using CLIP for mediocre samples and its
fusion to the model’s soft decisions are given in Supplemen-
tary C1. We follow standard evaluation protocols for SSOD,
using COCO in the most label-scarce setting. In this setting,
1% of the labeled set are sampled and the remaining images
are considered as unlabeled samples, which is then repeated
in 5 different folds of data. We incorporated our privileged
information-based enhancement of the pseudo-labeling pro-
cess into PseCo [Li et al., 2022a] which shows superior re-
sults among other methods in this minimal ratio of labeled to
unlabeled samples scenario. Table 1 shows that results im-
prove by enhancing PseCo with PLePI to make the best use
of mediocre samples according to the teacher’s soft decisions
(section 3).

5.2 PLePI-ISS: Ablation Studies for Cell Calling
Evaluation

As we are presenting the first application of SSOD to the bar-
code calling problem, many variations of the model’s many
components might be evaluated. Here we focus on the most
important questions related to the contribution of this work:
in the context of SSOD, is the proposed framework able to:
1) take advantage of unlabeled data and improve the initial
decision boundary formed by noisy estimates? 2) take ad-
vantage of privileged information to enhance the ISS SSOD
pseudo-labeling strategy?

Method 1% labeled data

STAC [Sohn et al., 2020] 13.97 ± 0.35
Humble Teacher [Tang et al., 2021] 16.96 ± 0.35
Instant-Teaching [Zhou et al., 2021] 18.05 ± 0.15
Soft Teacher [Xu et al., 2021] 20.46 ± 0.39
Dense Teacher [Zhou et al., 2022] 22.38 ± 0.31
PseCo [Li et al., 2022a] 22.43 ± 0.36

PseCo + PLePI 27.70 ± 0.08

Table 1: COCO mean average precision comparison of various state-
of-the-art methods for SSOD; numbers shown as (Mean ± Standard
Deviation) of the values resulted by each of 5 folds of data.

Learning/Evaluation Protocol
We follow burn-in strategy [Liu et al., 2021; Zhou et al.,
2022] to initialize both the teacher and student models us-
ing labeled data. In our data, each mini-batch contains 9 im-
age tiles of size 256×256, each containing up to 150 spots.
We evaluate the ablation experiments by randomly selecting
three sets of images as labeled set, unlabeled set and test set.
Labeled set consists of images in a single site of the first ex-
perimental plate, containing 4356 images of size 256×256.
Test set consists of images in a single site of the second ex-
perimental plate. Unlabeled set consists of two sites of the
test set plate. We evaluate the performance of applying the
trained model on the test set images when using labeled data
and labeled plus unlabeled data.

Using barcode calling evaluation metrics (Section 4.5,
Supplementary A.31), we report the rate of cell recovery and
the goodness of the fit (as R2 scores) between the image-
based barcode abundance estimates and the NGS-based abun-
dance values (Table 2). The table’s first row is a baseline: di-
rect application of the initialized teacher using labeled data to
the test set, without taking advantage of unlabeled data.

Level of privileged information. As emphasized in the pa-
per, our model relies on the privileged information to avoid
noise overfitting and improve its initial decision boundary.
We described two types of evidence in 4.3, on the location
and label of objects in a mini-batch of samples. We found
that the application of first evidence is required to prevent
failure of the pseudo-labeling process. The second row of the
table corresponds to the learning strategy using the evidence
for object locations only, and the third row corresponds to the
proposed framework when utilizing all the evidence at hand.

LQ HQ

NGS match cell recovery NGS match cell recovery
strategy (R2) (rate) (R2) (rate)

- 0.65 0.54 0.74 0.62
PLePI-ISS 0.81 0.63 0.86 0.66
PLePI-ISS 0.85 0.66 0.88 0.71

Table 2: Ablation analysis of PLePI on ISS images for the barcode
calling problem. Cell calling performance metrics are reported for
the held out test set.
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NGS match cell recovery PPV FDRtrick FDRother inference time
Method (R2) (rate) (cell / spot) (cell / spot) (cell / spot) (minutes)

ISTDECO [Andersson et al., 2021] 0.54 0.45 0.994 / 0.992 0.006 / 0.0077 0 / 0 75
PoSTcode [Gataric et al., 2021] 0.78 0.71 0.92 / 0.93 0 / 0.0001 0.0799 / 0.0695 85
Starfish [Axelrod et al., 2021] 0.85 0.72 0.912 / 0.872 0 / 0 0.0883 / 0.1278 22
BarDensr [Chen et al., 2021] 0.9 0.71 0.997 / 0.99 0.003 / 0.0103 0 / 0 11

PLePI-ISS 0.88 0.72 0.918 / 0.908 0 / 0 0.0819 / 0.0918 5

Table 3: Evaluation of the proposed model against SOTA baselines for data from one randomly selected site of the benchmark dataset.

Level of annotation noise. As described previously, noisy
annotations can be created by noisy estimations. These could
come from the simple and efficient thresholding and argmax
approach (termed ‘low quality’, LQ here) or a more costly
expert-supervised parameter-tuned pipeline (‘high quality’,
HQ). Note that both levels are considered noisy, but the goal
is to evaluate the effect of using unlabeled samples and privi-
leged information under these two annotation noise levels.

Barcode Calling Results. Values reported in Table 2 re-
veal that incorporating unlabeled samples together with any
level of privileged information improves the baseline decision
boundary formed by noisy labels. This benefit could be more
influential under higher levels of label noise.

5.3 Comparison to Baseline SOTA ISS Decoders

Baseline Methods

Recent top-performing methods for decoding ISS images, as
described in Section 2.1, find the best fit of the codebook to
their real ISS data directly to estimate their proposed model’s
parameters. Although this strategy may cause over-detection
of codebook barcodes, the lack of ground truth prevents val-
idation of the detections in a more proper train-test evalua-
tion scheme. The validation of their methodology usually
relies on simplified simulated data with ground truth. Bar-
Densr [Chen et al., 2021], reported its performance for bar-
code detection in simulated data using Receiver Operating
Characteristic curve (ROC curve). ISTDECO [Andersson et
al., 2021] suggests addition of extra ‘non-targeted’ barcodes
to the codebook to allow calculating a false discovery rate
(FDR), defined as the ratio of non-targeted barcode detection
rate to the non-target percentage of the barcodes in the code-
book. Again, no unified evaluation framework exists, which
hinders a fair comparison of various methodologies.

Here, we chose four baseline methods to apply to our
benchmarking ISS data. We began with the typical standard
pipeline for spot-based decoding of ISS images in Starfish
package [Axelrod et al., 2021; Ke et al., 2013]. As well, we
test BarDensr [Chen et al., 2021] and ISTDECO [Andersson
et al., 2021] which were developed in parallel based on mod-
eling the physical process and non-negative matrix regres-
sion methods, and the most recent work PoSTcode [Gataric
et al., 2021], which is based on probabilistic modeling of the
data. The input to all the baseline methods is raw illumina-
tion corrected and aligned images by our in-house pipeline as
described in Supplementary A1.

Evaluation Protocol
As described in 5.2, we suggest train-test schemes for evalua-
tions to minimize the chances of false discoveries. However,
not all baseline methods were developed to be performed in
such a setting, so we chose one randomly selected site of the
experiment as the ‘inference’ site for all methods. Using the
available implementations for these baseline methods, we ap-
plied each method on the inference site and extracted spot-
level barcode assignments. Cell-level barcode assignments
were then derived by confidence measures reported for each
spot-level barcode assignment as described in 4.5. We note
that all methods provided a barcode assignment confidence
score by their defined metric except for BarDensr, for which
we took the majority voting approach for spot-level to cell-
level barcode assignments. As we aim to achieve the highest
possible number of cells with a correct barcode assignment,
the main evaluation metrics are the rate of cell recovery and
the matches between the abundance of cell assignments and
the NGS barcode abundance, which are reported in the first
two columns of Table 3.

Our original codebook consists of 184 barcodes (referred
as targeted barcodes) and we included 9 additional non-
existent false barcodes (referred to as trick barcodes) to the
codebook for false discovery analysis. Trick barcodes are
selected to have a large Hamming distance from each other
and also with the targeted barcodes. Barcodes detected by
each decoding method can fall into three categories: targeted,
trick and not-targeted-nor-trick. Targeted barcode assign-
ment rates are reported as Positive Predictive Value (PPV)
at each cell and spot level. Incorrect barcode assignment
rates for two categories of trick and not-targeted-nor-trick
calls are reported as False Discovery Rates (FDR) and are
denoted as FDRtrick and FDRother respectively (all met-
rics reported in the Table 3 are described in details in Sup-
plementary A.31). We can see that both BarDensr and IST-
DECO, which force all pixels to a barcode in the codebook,
have higher FDRtrick rates. The standard ISS pipeline in
Starfish has the highest overall false discovery rate, which is
expected as it is the only method in the table that doesn’t take
advantage of the codebook in its barcode estimation process.

Although variable, we have not reported the hands-on time
needed to tune parameters for each method due to the sub-
jectivity of this task. We do report inference time for the ap-
plication of each method on the test set - although our model
has the minimum inference time, unlike others it requires a
training phase.

According to the numbers reported in the table, none of the
methods are outperforming the rest on every single perfor-
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mance metric. However, our proposed method overall shows
a high NGS match, while ‘salvaging’ many cells, with a low
barcode detection FDR rate, while performing in a more reli-
able train-test scheme.

6 Discussion
Alleviating the need for exhaustive human-provided labels,
which may be tedious, subjective, or error-prone, is the
main motivation behind semi, self, and unsupervised learning
methods. These problems are explored extensively with well-
defined objectives and benchmarks in the context of many
common computer vision, language, and speech processing
problems. However, these advancements are not always di-
rectly applicable to data from other fields of applied sciences
including biology. These data can have their own unique
properties, structure, and sources of noise. Furthermore, the
ground truth is rarely direct, such as in the form of annota-
tions from experts; instead, typically only indirect evidence
in the form of domain or problem specific complementary
information is available. These differences mandate a new
set of assumptions and formulations. We have formulated the
barcode calling problem as an object detection problem in the
presence of scarce noisy labels, given a source of contextual
privileged information, where a low false discovery rate is
crucial. Motivated by this problem, we have proposed a gen-
eral strategy for the enhancement of pseudo-labeling scheme
by a source of privileged information, which is not domain
specific and can advance the general field of SSOD.
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