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SUMMARY
Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases.
However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human
plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains
elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies
(FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified
a subset of lipotoxicmonounsaturated fatty acids associated with decreasedmembrane fluidity. Furthermore,
we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 dia-
betes (T2D).We found that c-MAF-inducingprotein (CMIP) protects cells fromFFAexposure bymodulatingAkt
signaling. In sum, FALCONempowers the study of fundamental FFAbiology and offers an integrative approach
to identify much needed targets for diverse diseases associated with disordered FFA metabolism.
INTRODUCTION

Cellular models of fatty acid overload have been used to define

‘‘lipotoxicity’’ as the harmful effects of prolonged and increased

exposure to specific lipids,1,2 but the link between cellular expo-

sure to diverse fatty acid species and toxicity phenotypes re-

mains poorly understood. Not all fatty acids produce the same
Cell Metabolism 35, 887–905
This is an open access article under the CC BY-N
cellular effects, and distinctions are often made based on their

saturation level. Saturated fatty acids (SFAs) contain no double

bonds in their carbon chains. In contrast, monounsaturated fatty

acids (MUFAs) contain one double bond and polyunsaturated

fatty acids (PUFAs) contain more than one double bond. At the

cellular level, studies to date have primarily relied on the effects

of a single SFA, palmitic acid (PA),3,4 to explore the role of free
, May 2, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 887
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. FALCON, a multiplexed platform for the systematic interrogation of structurally diverse FFAs, defines 5 FFA clusters

(A) Analysis workflow for FALCON.

(B) Schematic of triacylglyceride (TAG) synthesis from FFAs. Shown here are the monoacylglycerol (top) and the glycerol-3-phosphate pathway (bottom). For

simplicity, the acylation of dihydroxyacetone phosphate is not shown.

(legend continued on next page)
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fatty acids (FFAs) in lipotoxicity. However, large-scale epidemio-

logical studies, including the Framingham Heart Study, have

shown an association between the abundance of triacylglyceride

(TAG) species composed of a wide spectrum of structurally

diverse FFAs and the severity of metabolic diseases,5 hinting

at the importance of largely unexplored and clinically relevant

FFA biology. Considering that (1) TAGs are hydrolyzed by lipases

into FFAs (and glycerol) before uptake into peripheral cells6 and

(2) there is a strong association between TAG composition and

obesity-associated diseases such as type 2 diabetes (T2D),5,7

there is an urgent need to interrogate the biological effects of

FFAs across their structural spectrum.

Here, we reveal fatty acid library for comprehensive ontologies

(FALCON), a cell-based platform for the unbiased, multimodal

investigation of structurally diverse FFAs found in human

plasma8–10 by integrating transcriptomics, cell morphological

features, lipidomics, FFA structural characterization, and func-

tional profiling. Out of 61 FFAs, FALCON identified 20 FFAs

that were toxic to b cells, grouped into a cluster marked by a

distinct transcriptomic signature. These lipotoxic FFAs could

not be classified based on degree of saturation alone. More

than half (12/20) were MUFAs whose toxicity is not fully under-

stood on a mechanistic level. Exposure to these MUFAs was

associated with a distinct lipidomic profile and decreased mem-

brane fluidity. Aiming to understand the combined effects of

environmental exposure and genetic risk for T2D, we prioritized

25 genes that emerged from the overlap between genes differen-

tially regulated after exposure to lipotoxic FFAs and genes nomi-

nated in a large-scale T2D GWAS. We thus identified CMIP, a

gene with no prior mechanistic links to metabolic disease, and

showed that it protects mouse and human pancreatic b cells

from excess fatty acid exposure. In sum, FALCON empowered

a comprehensive, multiplexed query of FFA biology and revealed

c-MAF-inducing protein (CMIP) as a previously unrecognized

suppressor of lipotoxicity.

RESULTS

A systematic approach to study FFA biology
While liver, adipose, andmuscle cells play a central role in insulin

resistance,11 T2D GWAS to date have highlighted genes critical

to b cell function.12–15 In vitro, b cells are strongly affected by lipid

overload; excess chronic fatty acid exposure disrupts their

metabolic homeostasis and insulin secretion capacity, pushing

them toward ER stress and cell death.16,17 We developed

FALCON with MIN6 cells, a widely used mouse insulinoma

pancreatic b cell line that displays robust glucose-sensing and

insulin secretion and shares well-conservedmolecular programs

with human b cells.18,19

FALCON (1) curates a comprehensive set of FFAs (Table S1)

beyond those traditionally used in targeted experiments (mostly

PA and oleic acid [OA]), (2) engineers an approach that solves the

difficulty of working with compounds of varying levels of hydro-
(C) Qualitative correlation of structural features (number of C atoms, number of do

features of endogenous TAGs (y axis) measured by lipidomics. Distinct TAG pro

(D) Five FFA clusters (c1–c5) were identified after hierarchical clustering of trans

(E) Cell Painting analysis of immunofluorescence images from cells exposed to

transcriptomically assigned to c2 and separately the FFAs assigned to c5.
phobicity, and (3) assesses the biological effects of these FFAs in

an unbiased fashion. Most of the analyzed FFAs were readily

detectable in both human and mouse blood (Table S1).

We generated several datasets to deeply phenotype the ef-

fects of treating cells with each of the 61 FFAs including mea-

sures of cell viability/function, lipidomics, transcriptomics, and

cell morphology (Figure 1A, tier 1). We analyzed and integrated

these diverse datasets using (1) gene set enrichment analysis

(GSEA20) to identify alterations in cellular pathway activity, (2)

molecular operating environment (MOE) software21 to correlate

FFA chemical structures with biological features, and (3) multi-

marker analysis of genomic annotation (MAGMA22) ranking to

incorporate genetic predisposition to human metabolic disease

(Figure 1A, tier 2). Importantly, we validated our results from

MIN6 cells in two human b cell systems: iPSC-derived pancre-

atic b cells and acutely isolated human pancreatic islets from do-

nors. Collectively, this multimodal approach allowed us to (1)

group FFAs in an unbiased manner (i.e., remaining agnostic to

structural features) solely based on similarity of biological read-

outs, (2) identify previously unrecognized lipotoxic FFAs, and

(3) define toxicity phenotypes representative of these lipo-

toxic FFAs.

The crucial gating step in establishing FALCON was the ability

to reproducibly and reliably deliver solvent-free bovine serum al-

bumin (BSA)-bound FFAs to cells in multiwell plates at scale, us-

ing concentrations of magnitude similar to human blood.8,9,23–28

To achieve this goal, we generated solvent-free crystals of BSA-

bound FFAs (Figures S1A and S1B). The crystals were dissolved

in culture medium, which was then applied to cells (Figure S1A).

To assess the effects of FFA treatment on cellular lipid compo-

sition, we performed mass spectrometry-based lipidomics of

cells exposed to each of the 61 FFAs (Figure S1C). TAGs, which

are synthesized from FFAs available within a cell29 (Figure 1B),

constituted the majority of detected lipid species. FFAs were

likely incorporated into cellular TAGs, as evidenced by the corre-

lation between FFA and TAG structural features, such as chain

length and number of double bonds (Figures 1C and S1D).

Identification of non-canonical FFA clusters
To comprehensively define FFA-induced cell states without

prior assumptions about biological effects or FFA structural

features, we generated transcriptomic profiles of MIN6 cells

in response to each of 61 FFAs in the library (Figure S1E). We

detected induction of carnitine palmitoyltransferase 1 expres-

sion (CPT1A), the rate-limiting enzyme of FFA b-oxidation,30

across the entire library, demonstrating successful FFA delivery

and intracellular metabolism (Figure S1F). Hierarchical clus-

tering of FFA-induced transcriptomes revealed 5 distinct ‘‘clus-

ters’’ (c1–c5) (Figures 1D, S2A, and S2B). At the extremes, FFAs

segregated by saturation and chain length: SFAs were major

constituents of cluster 1 (c1) and also well represented in clus-

ter 2 (c2; 8/20 c2 FFAs were SFAs), whereas cluster 5 (c5) was

exclusively composed of PUFAs. In line with the traditional
uble bonds) of externally applied FFAs from the library (x axis) versus structural

files were detected in cells treated with SFAs, MUFAs, or PUFAs.

criptomic profiles derived from exposure to each of 61 FFAs (STAR Methods).

each of 61 FFAs (STAR Methods) independently clustered together the FFAs

Cell Metabolism 35, 887–905, May 2, 2023 889
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Figure 2. Transcriptomic analysis identifies key biological responses to FFAs, and functional assays validate novel FFA clustering

(A) Hierarchical clustering of a gene set enrichment matrix (based on normalized enrichment scores of gene sets, NES) revealed gene set modules of interest.

Representative leading edge genes from each module are listed on the right.

(B and C) Scatterplots of two independent replicates of cell viability (B) and ER Ca2+ level measurements (C) (n = 5–7 replicates/FFA/screen). Closed dots

represent FFAs that showed significant difference (p < 0.05, Bonferroni) from controls in both replicates; open dots represent non-significant FFAs in at least one

replicate. Colors indicate corresponding FFA cluster membership (Figure 1D).

(legend continued on next page)
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paradigm,3 PA (lipotoxic FFA) and OA (lipotoxicity-protective

FFA) clustered separately, in c2 and c3, respectively. MUFAs

were distributed across four clusters c1 to c4 (Figure 1D), indi-

cating that the transcriptomic signatures classified some

MUFAs as functionally similar to SFAs, and not to other

MUFAs. Of note, traditional criteria (SFA, MUFA, and PUFA)3

do not adequately capture the observed transcriptomically

defined heterogeneity (Figure S2C).

To probe cellular responses to FFA exposure using an inde-

pendent method, we profiled the entire FFA library using Cell

Painting, a high-content image analysis method that simulta-

neously measures several hundred cellular imaging features31

(Figure S2D). This morphologic analysis independently clustered

together the SFAs and MUFAs transcriptomically assigned to c2

and separated them from the PUFAs in c5 (Figure 1E). Thus, the

algorithms analyzing the cell imaging data were in agreement

with the FFA clustering derived from transcriptomics with regard

to the two most prominent clusters: c2 and c5 (Figures 1D

and 1E).
Cellular transcriptomes define key biological responses
to FFAs
To understand the basis behind the FFA clusters identified by

FALCON, we applied GSEA20 to each of the 61 FFA-induced

transcriptomes using multiple gene set collections (MSigDB32).

We were able to categorize gene sets across the 5 clusters

into modules of gene expression (Figure 2A; STAR Methods).

This analysis ensured that our gene set annotation was compre-

hensive and not reliant on any single database of curated

gene lists.

Consistent with exposure of cells to FFAs, a key module

shared among all clusters represented pathways regulating

FFA transport and metabolism including upregulation of core

genes that encode the mitochondrial carnitine shuttle.33,34 A

second module, whose induction (positive normalized enrich-

ment score [NES]) was detected specifically in c1 and c2, con-

sisted of ER stress and unfolded protein response (UPR) genes35

(Figure 2A). A third gene module comprised stress response

pathways, NF-kB signaling, and inflammation (Figure 2A) consis-

tent with lipotoxicity.36–38 Genes in the third module were specif-

ically upregulated in the c2 FFA cluster. Module four comprised

pathways related to cholesterol metabolism,39–41 and module

five consisted of programs related to proteasome activity and re-

sponses to reactive oxygen species (ROS) (Figure 2A). A sixth

gene module was associated with MAPK signaling, a crucial

regulator of cell proliferation, apoptosis, and insulin secretion

in b cells.42 TheMAPK signalingmodule was specifically upregu-

lated in the c2 cluster (Figure 2A). In sum, FALCON defined the

biological processes that served as the basis for the separation

of diverse FFAs into five previously unrecognized clusters. More

specifically, the second, third, and sixth modules pointed to the

c2 cluster as a putative mediator of cell stress and lipotoxicity.
(D) Summary of functional assays. Top bar represents FFA clusters derived from t

Painting (cellular morphology) analysis (STAR Methods). Bar in grayscale indicate

heatmaps displaying log2 fold changes of ER Ca2+ levels and cell viability, respec

system [SMILES]). The box highlights the 20 FFAs in cluster 2 (c2) identified as the

further downstream studies.
We next explored whether cellular responses to c2 FFAs were

conserved and shared between mouse MIN6 cells and human b

cells in vitro, as well as mouse b cells in vivo. We found a distinct

overlap of genes upregulated by c2 FFAs in MIN6 cells with (1)

genes upregulated in the transcriptome of pancreatic b cells iso-

lated frommice fed a high-fat diet43 and (2) genes upregulated in

human islets exposed to PA28 (Figures S2E and S2F; STAR

Methods).

Functional validation of FFA clustering
To functionally validate the transcriptome-derived clusters, we

first measured cell viability in MIN6 cells exposed to each of

the 61 FFAs (Figure 2B). The c2 FFAs induced the most consis-

tent and significant reduction in cell numbers among all clusters.

Based on the observation that FFA-induced ER stress is associ-

ated with decreased ER Ca2+ levels and apoptosis,44–46 we

measured ER Ca2+ after exposure to each of the 61 FFAs (Fig-

ure S3A; STAR Methods). We detected decreased ER Ca2+

levels in cells treated with c2 FFAs and, to a smaller extent, c1

FFAs, thus functionally validating the ER stress signature derived

from transcriptomics (Figure 2C). In contrast, we detected a

consistent increase in ER Ca2+ levels for cells exposed to c5

FFAs, while c3 and c4 FFAs did not alter ER Ca2+ levels (Fig-

ure 2C). The specific subset of 12 MUFAs in the c2 cluster

caused ER Ca2+ deficits and cell death in contrast to c3 and

c4 MUFAs (Figure 2D).

FALCON is applicable at scale to different cell types
Exposure to excess circulating FFAs has been implicated in dis-

eases affecting many cells and organs in addition to pancreatic b

cells, including the kidney47,48 and the brain.49–51 To assess the

general versatility of FALCON, we tested two additional disease-

relevant cell types: human kidney tubular epithelial cells, associ-

ated with kidney disease,47,48 and human iPSC-derived micro-

glia, associated with neurodegenerative disease.49,52 In both

cell types, c2 cluster FFAs were the most toxic, consistent with

the results in b cells (Figures 3A–3E). Key differences included

c3 and c4 FFAs universally increasing human kidney epithelial

cell number (Figures 3A and 3D). In microglia, c5 PUFAs were

more toxic than in b cells and kidney epithelial cells, on par

with c2 FFAs (Figure 3A). Our data suggest that these critical

neuro-immune cells may be particularly susceptible to PUFA-

mediated injury (Figure 3A), an intriguing findingwith implications

for neurodegenerative diseases.53 In sum, these studies demon-

strated the utility of FALCON formultiple cell types of interest and

its potential to yield fundamental insights into FFA biology.

Cell biological hallmarks of lipotoxicity characterize the
newly defined c2 FFA cluster
To better understand the mechanisms underlying c2 FFA-

induced toxicity universally observed in b cells, kidney epithelial

cells, andmicroglia, we focused on erucic acid (EA), a 22-carbon
ranscriptomic analysis. Second color bar represents clusters derived from Cell

s classical grouping of FFAs based on saturation level. The next two bars are

tively. x axis labels show FFA structure (in simplified molecular input line entry

lipotoxicity cluster. Highlighted FFAswere chosen as cluster representatives for
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Figure 3. FALCON is applicable at scale to different cell types

(A) Heatmap showing comparison of viability changes across 3 different cell types: MIN6 pancreatic b cells, human iPSC-derived microglia, and human kidney

tubular epithelial cells. c2 FFAs are toxic for all three cell types studied.

(legend continued on next page)
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c2 MUFA. Although there is evidence that long-chain MUFAs

such as EA are toxic,54 the mechanisms behind this toxicity

are only beginning to be explored,26 and in vivo studies provide

disparate pictures.9,55 In our studies, despite its classification as

an MUFA with a similar length to various c5 PUFAs, EA distinctly

clustered with lipotoxic c2 FFAs. To more deeply characterize

EA, we examined it in comparison with (1) PA, a saturated c2

FFA; (2) OA and petroselinic acid (PSA), two MUFAs in the

non-toxic c3 cluster; and (3) arachidonic acid (AA) and

gamma-linoleic acid (GLA), two long-chain FFAs in the c5

PUFA cluster. Given the high disease burden from T2D and the

availability of well-characterized cellular assays (as described,

for example, in Figures 1 and 2), we focused our analysis on b

cells. Out of the six FFAs studied, only EA and PA consistently

induced cell death (Figure 4A).

Examining the dose-dependent toxicity of EA, an FFA whose

abundance in human plasma may be 10–200 times lower than

PA (one of the most well-studied and abundant FFAs),8–10 we

found that as low as�75–100-mMEA, a concentration previously

measured in human plasma,9,10 induced high levels of cell death

(Figure 4B). These dose-response experiments confirmed that

the biological effects we measured were physiologically relevant

for PA and toxic MUFAs such as EA.

Sustained activation of the UPR has been linked to the toxicity

induced by prolonged exposure to SFAs.We assessed ER stress

upon exposure to FFAs by probing the cell-death-inducing

PERK/ATF4/CHOP arm of the UPR.56,57 Only treatment with

EA or PA increased ATF4 and CHOP protein abundance, point-

ing to lipotoxicity-induced activation of the UPR (Figure 4C). In

line with previous work demonstrating that depletion of ER cal-

cium is associated with lipotoxicity-induced ER stress,44,56 we

observed significant reduction in ER Ca2+ levels only in cells

treated with PA or EA (Figure 4D).

Lipotoxic inflammation and recruitment of immune cells into

pancreatic islets plays a central role in b cell dysfunction and

death in the context of T2D.58 Based on the transcriptomic anal-

ysis (Figure 2A) and previous work with PA,37 we focused on

inflammatory signaling through NF-kB measured by nuclear

translocation of RELA (p65), a major component of NF-kB-medi-

ated transcription.59 Robust RELA nuclear translocation was

noted after treatment with EA (Figures 4E and S3B) and PA (Fig-

ure 4E). In line with the transcriptomic analysis (Figure 2A), PSA

and OA triggered only modest RELA translocation (Figure 4E)

without affecting cell viability (Figure 4A).

Next, we measured glucose-stimulated insulin secretion

(GSIS), a function specific to b cells. Exposure to EA caused sig-

nificant GSIS impairment (Figure 4F) similar to PA (Figure 4F).60

In contrast, OA, PSA, AA, and GLA had no effect on GSIS (Fig-

ure 4F). Since impaired GSIS has been linked to disrupted auto-

phagy,61 and lipotoxicity increases autophagosome number,24

we quantified LC3B-positive autophagosomes in cells exposed

to FFAs. Similar to PA, EA increased autophagosome numbers,

whereas OA, PSA, AA, and GLA had no effect (Figures 4G and
(B) Representative images from all 3 cell types highlighting the toxicity of c2 FFAs

microglia (green, GFP), and in kidney tubular epithelial cells (red, propidium iodid

(C–E) Bar plots indicate change in cell viability relative to BSA induced by OA, PA

500 mM for 15 h (epithelial cells) (D), or 250 mM for 24 h (microglia) (E). PA and EA co

ANOVA followed by Dunnett’s test (*p < 0.05, ****p < 0.0001). Data are mean ± S
4H). In sum, despite structural similarities with other MUFAs or

very-long-chain FFAs, EA functionally behaved like the lipotoxic

saturated FFAs (as summarized in Figure 2D). Overall, these re-

sults reinforced the FFA clustering derived from systematic ana-

lyses and assigned lipotoxic effects to EA and,more broadly, to a

previously unrecognized subset of 12 c2 MUFAs (Figure 2D).

c2 MUFAs are toxic to human cells
We took two additional approaches to assess the effects of toxic

MUFAs such as EA in human pancreatic b cells. First, we gener-

ated human iPSC-derived b cells62,63 and treated them with

either EA (putative toxic MUFA) or OA (putative benign MUFA).

Exposure to EA-induced cell death in a dose- and time-depen-

dent manner, whereas OA had no effect on cell viability

(Figures 4I and 4J). In a complementary approach, we studied

human pancreatic islets acutely isolated from cadaveric donors.

We treated these islets withMUFAs representing all threeMUFA-

containing clusters, c2, c3, and c4 (Figures 4K and 4L). Similar to

MIN6 cells and iPSC-derived human b cells, c2 MUFAs (7 FFAs

including EA) were toxic to human islet b cells in a dose-depen-

dent manner, whereas c3 (OA and petroselenic acid) and c4

MUFAs (10(Z)-nonadecenoic acid) had no effect on cell viability

(Figures 4K and 4L). We concluded that the c2 MUFAs can

induce significant injury, making them highly relevant to human

b cell biology.

Structural characterization of c2 MUFAs
We next asked whether molecular or chemical features could

predict and explain this newly defined FFA grouping beyond

double bond number alone. A random forest classifier trained

on a matrix of 2D FFA structural features (STAR Methods) suc-

cessfully predicted assignment to transcriptome-based prede-

fined clusters c1, c2, and c5 with high sensitivity and specificity

(Figures S3C; STAR Methods). This classifier showed that while

the number of double bonds was an important distinguishing

feature (Figures 5A, b_double), the longest chain of single bonds

(b_max1len) and bond rotation (b_rotR) were highly predictive for

c2 cluster assignment even among the MUFAs (c1–c4; Fig-

ure 5A). The longest chain of single bonds also reliably captured

the single PUFA (13(Z), 16(Z), 19(Z)-docosatrienoic acid) that

was transcriptomically assigned to c2 and predicted its separa-

tion from the rest of the PUFAs in the c5 cluster (Figure 5A).

EA induces a lipidome distinct from PA that is
associated with changes in membrane fluidity
Exposure to PA leads to an increase in the abundance of satu-

rated acyl chains of more complex lipid species.4 This in turn is

linked to the activation of the UPR, which can sense changes

in lipid composition or lipid bilayer stress.64–68 Since c2

MUFAs caused significant cellular injury, similar to PA, we hy-

pothesized that exposure to c2 MUFAs with long single-bond

chains (such as EA) may induce specific changes to the cellular

lipidome that could explain their lipotoxic effect. We performed a
including erucic acid (EA). EA induces cell death in b cells (green, Hoescht), in

e). Scale bars, 100 mm.

, or EA in each cell type after exposure to FFAs at 500 mM for 72 h (MIN6) (C),

nsistently induce cell death across all three cell types as assessed by one-way

D.
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Figure 4. Cell biological hallmarks of lipotoxicity characterize the c2 FFA cluster

(A) Cell viability after treatment with representative FFAs for 48 h. Percentage of apoptotic cells (positive y axis) and reduction in cell viability (negative y axis) are

presented. Data are mean ± SD. Student’s t test (two-sided), ****p < 0.0001, corrected for multiple testing (Bonferroni), n = 5 wells.

(legend continued on next page)
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lipidomics analysis and found that exposure of cells to EA led to

the accumulation of longer, unsaturated acyl chains in multiple

lipid classes (DAGs, PCs, and PEs), and especially in TAGs

(Figures 5B and S3D). This profile was consistent with the inte-

gration of the very-long-chain unsaturated EA intomore complex

lipids and represented a lipidome distinct from that induced by

PA (Figure 5B; Table S2).

To probe the functional consequences of incorporation of

long-chain FFAs into the lipidome, we measured membrane

fluidity using a Laurdan dye that fluoresces at different wave-

lengths in accordance with lipid order/disorder, following a pro-

tocol previously used to demonstrate maladaptive PA-induced

membrane rigidity.69,70 Notably, EA had a unique biphasic effect

on membrane fluidity. At the lowest concentrations, EA was

similar to OA with a trend toward increasing membrane fluidity

(Figure 5C). At higher concentrations, similar to those measured

in plasma from patients on FFA-rich diet9,10 (and at which we

found that EA is toxic; Figure 4B), membrane fluidity was

decreased (Figure 5C). Exposure to PA led to linear regions of

increased rigidity reminiscent of the ER71,72 (Figure S3E), while

EA induced distinct spherical regions of increased rigidity remi-

niscent of lipid droplet morphology (Figure S3E). These observa-

tions are consistent with robust EA incorporation into TAGs

(Figure 5B). In sum, we found that exposure to EA generated a

distinct cellular lipidome characterized by species with long un-

saturated acyl chains that induced toxicity by decreasing cellular

membrane fluidity.

Identification of genes at the intersection of FFA
exposure and genetic risk for metabolic disease
Complex diseases arise from the interaction of genetic risk and

environmental exposures.73 GWAS have greatly contributed to

our understanding of the genomic architecture of complex dis-

eases,74 including T2D.12,75,76 While several T2D genomic

studies have shown a strong association with loci linked to b

cell function,13,77–79 it remains challenging to annotate variants
(B) Dose-response curve of viable cell numbers after 65 h of EA or OA treatment

not toxic.

(C) Western blots show ATF4 and CHOP induction by PA and EA (lipotoxic c2 FF

control.

(D) Quantification of peak amplitude as readout for ER Ca2+ levels, relative to nega

****p < 0.0001, corrected for multiple testing (Benjamini-Hochberg, entire FFA lib

(E) Quantification of RELA translocation as percentage of total number of cells

****p < 0.0001, corrected for multiple testing (Bonferroni).

(F) Glucose-stimulated insulin secretion (GSIS) after FFA exposure (FFA = 500 mM

(G) Autophagosome formation was assessed by imaging LC3B puncta normalized

ANOVA followed by Dunnett’s test.

For (A) and (D)–(G), bar color represents cluster identity (green, c3; red, c2; blue,

(H) Representative images of LC3B immunofluorescence (gray) in MIN6 cells treat

were detected by Hoechst (blue). c2 FFAs induce autophagosomes. Scale bars,

(I) Number of iPSC-derived b cells after exposure to EA or OA for 24, 48, or 72

dependent manner. All EA conditions are significant per two-way ANOVA (p < 0.0

time point/FFA.

(J) Representative images of iPSC-derived b cells after treatment with BSA, EA,

marked by C-peptide staining (orange). Scale bars, 100 mm.

(K) Quantification of C-peptide positive cells human b cells dissociated from cada

FFAs at 3 different concentrations (t = 5 days, n = 6 wells). c2 cluster MUFAs decr

Multiple t test with Bonferroni correction (gold, p < 0.05; blue, p < 0.01; green, p

(L) Representative images of human islets after treatment with BSA, EA, or OA. Nu

(orange). Scale bars, 100 mm.
and prioritize genes for mechanistic functional follow-up studies

(https://www.icda.bio/).

In our experiments, b cell exposure to 20 c2 FFAs significantly

up- or downregulated specific genes (Figures 2A and S2A). We

hypothesized that a subset of these genes could also be impli-

cated in genetic risk for T2D. We therefore sought to prioritize

disease-relevant genes by investigating the overlap between

an annotated large-scale T2D GWAS dataset80 and genes high-

lighted by our transcriptomic analysis (Figures 2A and S2A).

We ranked putative T2D genes using MAGMA software (STAR

Methods)22 and used the gene set analysis (GSA) function22 to

test whether the b cell c2 FFA transcriptomic signature was en-

riched in the MAGMA-ranked T2D genes. Overlapping the two

datasets revealed that the top 5% of significantly differentially

expressed lipotoxicity genes were enriched among the T2D

GWAS ranked genes (FDR < 0.001; Figure 6A). This enrichment

was specific to T2D as opposed to GWAS datasets for autoim-

mune type 1 diabetes81 or schizophrenia, an unrelated neurode-

velopmental disorder82 (Figure 6A). T2D GWAS genes were

specifically enriched in the c2 cluster signature but not in that

of the other four clusters (Figure 6B). Plotting the genes that

drove this enrichment according to their MAGMA rank on the x

axis (Table S3) and their lipotoxicity rank on the y axis (based

on differential expression p value; Figure 6C; Table S4), we iden-

tified 25 genes at the intersection of lipotoxicity and T2D

(Figures 6C and 6D).

Our sensitivity for gene detection was greatly enhanced by the

integrated transcriptome derived from all 20 c2 FFAs used to

construct the lipotoxicity signature. Accordingly, the transcrip-

tomic signature generated by PA treatment alone predicted

only 6 of the 25 T2D-lipotoxicity genes, thus missing 19 impor-

tant gene candidates including GLP1R, SLC30A8, ADCY5, and

CMIP (Figure 6E). Our analysis indicates that these genes which

are of high interest for T2D, may also be relevant in the context of

lipotoxicity. Of the T2D-lipotoxicity genes revealed by our anal-

ysis, we focused our next set of experiments on CMIP because
compared with BSA. EA is toxic in a concentration-dependent manner; OA is

As). CPT1A induction is a control for intracellular FFA delivery. BSA, negative

tive control (BSA). Data are mean ± SD. Student’s t test (two-sided), *p < 0.05,

rary).

(t = 18 h, n = 5 replicates). Data are mean ± SD. Student’s t test (two-sided),

, t = 24 h, n = 6 wells) was measured by ELISA.

to the number of total cells (t = 48 h, n = 4wells). Data aremean ± SD. One-way

c5; Figure 1D).

ed with FFAs, BSA as negative control, or autophagy-modulating drugs. Nuclei

25 mm.

h at 250, 500, or 750 mM. Only EA decreased cell count in a dose- and time-

001); all OA conditions are not significant. Data are mean ± SD, n = 4–6 wells/

or OA for 48 h at 500 mM. Nuclei are marked by Hoechst and b cell identity is

veric primary islets normalized to the BSA control after exposure to each of 10

eased human b cell viability in a dose-dependent manner. Data are mean ± SD.

< 0.001; red, p < 0.0001).

clei are marked by Hoechst, and b cell identity is marked by C-peptide staining
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Figure 5. Long single-bond chain in MUFA (EA) induces a distinct lipidomic profile that is associated with increased membrane rigidity

(A) Selected features from the decision tree analysis based on meta-features of highest importance (mean decrease accuracy; STAR Methods). The longest

single-bond chain is the meta-feature that predicts the inclusion of 13(Z), 16(Z), 19(Z)-docosatrienoic acid as the only PUFA in the c2 cluster and distinguishes

between toxic EA and non-toxic OA.

(B) Accumulation of longer unsaturated acyl chains found by lipidomic analysis of MIN6 cells treated for 24 h with 500 mM EA (left). A network analysis of the

biochemical relationship (lines) between significantly enriched lipid species in the EA-induced lipidome highlighted the accumulation of EA (22:1)-containing

triglyceride (TG) species (right).

(C) Membrane rigidity as measured by the GP index of Laurdan dye in INS1E b cells after 12 h treatment with 3–6 different concentrations of BSA, PA, EA, or OA.

PA increases membrane rigidity proportionally to its concentration; EA decreases membrane rigidity at low concentration similar to OA; but at higher, toxic levels

EA increases membrane rigidity similar to PA. Data are mean ± SEM; n = 6 wells.
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(1) it had not been previously implicated in b cell biology (despite

its possible association with the islet MAF transcription factor

family83) and (2) it had no known role in lipotoxicity, thus offering

opportunities for new biological insights.

CMIP suppresses lipotoxicity in b cells
CMIP has been implicated in kidney disease84,85 and cancer,86

but it has not been studied in b cells. Of interest, CMIP-associ-

ated risk loci are linked to alterations in body mass index87 and

dyslipidemia.88 In immune cells, CMIP interacts with RELA and

reduces NF-kB activation.89 A genome-wide interaction analysis

with the insulin secretion locusMTNR1B identified an interaction

with aCMIP intronic SNP affecting T2D risk.90 To study CMIP in b

cells, we generated MIN6 Cmip knockout cell lines and isolated

one Cmip knockout (CMIP KO) clone with a complete deletion of

the major CMIP isoform (Figure S4A). At baseline, this CMIP KO

line and the non-targeting guide WT control (1) displayed similar

morphology (Figure S4B), (2) expressed key b cell markers

(qPCR; Figure S4C), (3) responded to high glucose by a 2-fold in-
896 Cell Metabolism 35, 887–905, May 2, 2023
crease in GSIS (Figure S4D), and (4) showed similar doubling

rates in culture (Figure 7A). Thus, at baseline CMIP is not required

for b cell survival or insulin secretion. In contrast, Cmip deletion

significantly increased sensitivity to lipotoxic stress and cell

death (Figures 7B and 7C). Specifically, Cmip deletion exacer-

bated the lipotoxic effects of PA and EA and converted the typi-

cally non-toxic c3 MUFAs OA and PSA into toxic FFAs (Fig-

ure 7B). Functionally, Cmip deletion increased NF-kB signaling

(Figures 7D and S4F).89 Exposure to PA or EA, but not PSA or

OA, increased RELA nuclear translocation in CMIP KO cells

more than 4-fold compared with WT controls (Figure S4F).

Thus, Cmip deletion increased inflammatory signaling in b cells

in response to lipotoxic FFAs. Cmip deletion also worsened the

EA- or PA-induced reduction in insulin secretion (Figure 7E).

Restoring CMIP abundance in CMIP KO cells (as quantified in

Figure S4G) led to a partial rescue from EA-induced cell death

(Figure 7F) and a faster decline in EA-induced inflammatory

NF-kB signaling (Figure S4I; no effect on NF-kB signaling in the

absence of EA; Figure S4H). Similarly, GSIS was improved
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upon restoring CMIP expression, especially in EA-treated cells

(Figure 7G). Taken together, these data revealed that CMIP,

initially found among thousands of loci in a T2D GWAS, could

now be prioritized as a putative suppressor of lipotoxic injury in

b cells.

To gain insights into CMIP’s function in b cells, we analyzed

CMIP gene expression from human islets,91 which correlated

with several pathways including PI3K-Akt signaling, insulin

secretion, FFA metabolism, and AMPK signaling (Figures S4J

and S4K). Intriguingly, consistent with prior work in peripheral

blood mononuclear cells,92 we found that the regulatory subunit

of PI3K (p85ɑ) co-immunoprecipitated with CMIP in b cells (Fig-

ure 7H), suggesting that this interaction may connect CMIP to

metabolic signaling pathways (Figures S4J and S4K).

To experimentally probe these pathways, we assessed the ac-

tivity of three criticalmetabolic sensors in b cells: AMPKɑ, Akt, and
FOXO1. AMPKɑ and FOXO1 signaling were unchanged after

CMIP deletion (Figure S4L). In contrast, Cmip deletion resulted

in increased phosphorylated Akt (pAkt) protein abundance (with

no effect on total Akt; Figure 7I). Interestingly, pAkt in WT cells

exposed to EA was at the same level as pAkt in CMIP KO cells

at baseline (Figure 7I). When exposed to EA, CMIP KO cells could

not increase pAkt further (Figure 7I). Since modulation of Akt

signaling in response to metabolic stress is thought to promote

b cell survival93,94 and PI3K activity increases the presence of

phosphoinositide signaling molecules (PIP2 and PIP3) in the

plasma membrane to recruit Akt for activation and downstream

signaling,95 the simplest explanation for our data is that CMIP

modulates Akt activity through its interaction with PI3K. Upon

Cmip deletion, cells lose the ability to dynamically regulate Akt,

making them more vulnerable to FFA-induced cell death

compared with WT b cells (Figure 7B).

As a final test, and to probe for the human relevance of CMIP,

we generated human iPSC-derived b cells in which CMIP was

deleted. In these human cells, CMIP deletion reduced cell

viability after treatment with either EA or OA (Figures 7J and 7K).

DISCUSSION

Lipids, including FFAs, are ubiquitous in living organisms and

essential for life, yet significant knowledge gaps remain in our un-

derstanding of FFA biology. In this study, we pioneered

FALCON, a multimodal, systematic approach to functionally

characterize structurally diverse FFAs. Our approach was
Figure 6. Integration of lipotoxicity transcriptomic signature with T2D
mental risk for disease

(A) Gene set analysis (GSA) results based on the c2 lipotoxicity signature. T2D G

GWAS dataset served as negative controls. Lipotoxicity gene sets are defined as

ranked by p value and log2 fold change (LFC). GSA showed significant enrichme

(B) Enrichment analysis for all FFA clusters (top 5% gene set) revealed that the c

(C) Scatterplot of genes based on T2DMAGMA rank (x axis) and lipotoxicity rank (y

boundary defines top 600MAGMA-ranked T2D genes. As demonstrated in the sch

genetic risk, genes located in the bottom (yellow) quadrants are associated wit

quadrant are associated with both genetic and environmental risk. Genes of intere

(D) Expression pattern for the top 25 overlapping T2D-lipotoxicity genes across

induce significant differential expression of corresponding gene (p < 0.05, Benja

changes (log2 fold change).

(E) Venn diagram comparing the results of the analysis using the PA-induced signa

lipotoxic FFAs. 19/25 genes, including GLP1R and CMIP, would have been miss
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comprehensive both in input (number of FFAs tested) and output

(multimodal readouts). The added dimensionality—a direct

consequence of studying the effects of 61 diverse FFAs—pro-

vided the necessary power to uncover biological features across

the entire spectrum of FFAs tested. Our studies led to several

important conclusions.

First, 20 structurally diverse FFAs defined the toxic (c2) cluster,

a group of FFAs united solely by the fact that theymediated similar

functional outcomes. The identification of MUFAs in the c2 cluster

(12/20 FFAs) suggests a shift in how we interpret the toxicity of

FFAs because we show that saturation alone is not sufficient to

predict the lipotoxic potential of a given FFA. MUFAs like OA

have been proposed to have harmless or even beneficial effects.3

However, our experiments, including studies in human islets, kid-

ney epithelial cells, andmicroglia showed that OA is not represen-

tative of the entire MUFA class and highlighted several MUFAs,

such as EA, that were highly toxic. Our classifier (Figure S3C) sug-

gests that double-bond-containing MUFAs with a long stretch of

carbons linked by single bonds are functionally similar to SFAs,

at least in terms of cellular toxicity. In contrast to the well-known

accumulation of saturated acyl chains after PA treatment,4 the

EA lipidome was characterized by an accumulation of long-chain

unsaturated acyl chains. The membrane fluidity studies revealed

that at low concentrations, EA behaves like non-toxic MUFAs

(e.g., OA), but at higher concentrations, EA becomes harmful

because the incorporation of its longunsaturated chains into com-

plex lipid species changes the properties of lipid membranes in a

manner similar to SFAs (e.g., PA). The resulting increase in mem-

brane rigidity likely contributes to lipid bilayer stress culminating in

activation of cell death pathways.66 Future workmay test whether

increased membrane rigidity at high concentrations of EA is

directly related to the predicted impact of incorporating its long

chain of single bonds (Figure S3C) into membrane lipids.

Second, the comprehensive interrogation of many FFAs with

FALCON allowed us to gain new biological insights. Due to the

large number of FFAs studied simultaneously (e.g., 20 c2 toxic

FFAs), we gained power well beyond that achievable by interro-

gating the effects of a single FFA alone (such as PA; Figure 6E).

Accordingly, we identified a set of 25 genes that are transcrip-

tionally responsive to lipotoxic stress and are also associated

with variants that confer genetic risk for T2D. Our analysis iden-

tified a link between lipotoxicity and several T2D genes such as

GLP1R, a well-known obesity96 and T2D drug target,97 and

SLC30A8, a gene in which coding variants have been shown to
GWAS dataset identifies CMIP as mediator of genetic and environ-

WAS genes were ranked based on MAGMA score. A T1D and a schizophrenia

top DE genes (1%, 5%, and 10%) in transcriptomic profiles from the c2 cluster

nt (FDR < 0.05) for the top 5% (boxed) and 10% lipotoxicity gene sets.

2 cluster gene set is uniquely enriched in the T2D GWAS dataset.

axis). Horizontal boundary defines top 5% lipotoxicity signature genes, vertical

ematic (top), genes located in the left (blue) quadrants are associated with T2D

h lipotoxicity environmental risk, and genes located in the bottom left (green)

st (red) drove the enrichment of the lipotoxicity signature in the GWAS dataset.

all FFA clusters. Size of dots represents the percentage of FFAs/cluster that

mini-Hochberg); colors represent strength and directionality of transcriptional

ture alone compared with using the c2 lipotoxicity signature derived from all 20

ed if the analysis was limited to the PA-induced signature alone.
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modify risk for T2D.77,78,98 Importantly, we identified CMIP as a

previously unrecognized suppressor of lipotoxicity, and we

confirmed that these findings are relevant to humans using

iPSC-derived b cells. Future studies will focus on the precisemo-

lecular mechanism by which CMIP senses FFAs and modulates

Akt and related pathways. This proof-of-concept study illus-

trates FALCON’s ability to prioritize genes of high mechanistic

value that may have otherwise gone unnoticed based on geno-

mics data alone and offers a method for prioritizing targets that

reflect the combined effects of environmental exposure and ge-

netic risk for disease.

Third, FALCON can serve as a valuable tool for exploring

fundamental lipid biology in different cell types and tissues. Lip-

otoxicity and alterations in lipid metabolism have been impli-

cated in numerous disorders including kidney disease,99,100

neuropathy,101 cancer,27,102,103 liver disease,104 and Alzheimer’s

disease.105–110 However, many of the fundamental mechanisms

involving lipotoxic FFAs in these diseases have yet to be fully

elucidated.111 For example, metabolic alterations in cancer cells

that increase fatty acid synthesis and uptake have long been

correlated with cancer progression.102,112 In other tissues,

such as the heart, studies exploring the mechanisms underlying

lipotoxic cardiomyopathy have explicitly called for investigations

into the contributions of individual fatty acids to disease patho-

genesis.113 FALCON provides the fatty acid level resolution

necessary to begin to tackle these complex questions across

many cell types and diseases of interest.

Finally, an important translational implication of our study is the

notion that the precise FFA profiles in human blood or tissue may

carry valuable information about personalized disease risk and

progression. The application of FALCON to the interpretation of

patient-derived FFA profiles in the future may facilitate the imple-

mentation of personalized medicine in metabolic disease.

Limitations of study
Since some FFAs in our platform are protective while others are

harmful, the study of FFA combinations may be of interest. We
Figure 7. Cmip deletion sensitizes b cells to FFA-mediated injury and

(A) Cmip deletion does not affect cell proliferation. Two-sided t test, n = 19 pass

(B) After exposure to lipotoxic PA or EA, cell death is increased in CMIP KO compa

Cell death wasmeasured as percentage of viable cells compared with the non-tre

21 wells). Data are mean ± SD. Two-way ANOVA with multiple comparisons (�Sı́d

(C) Representative images of the cell death assay showing increased susceptibilit

(caspase 3/7, green), and dead cells (propidium iodide, red). Scale bars, 100 mm

(D) Percentage of cells with RELA nuclear translocation after exposure to EA or BS

with multiple comparisons (�Sı́dák correction, ****p < 0.0001).

(E) Normalized insulin secretion at baseline after 24 h treatment with FFA (500 mM

FFAs. Data are mean ± SD. Two-way ANOVA with multiple comparisons (Holm-S

(F) Reintroduction of CMIP in CMIP KO cells (CMIP rescue) attenuates the toxic ef

wells). Data are mean ± SD. Two-way ANOVA with multiple comparisons (Tukey

(G) CMIP rescue partially restores insulin secretion in cells exposed to c2 FFAs. N

24 h treatment with FFA (500 mM). Data are mean ± SD. Two-way ANOVA with �S

(H) PI3K p85ɑ immunoprecipitates with CMIP in b cells. Western blot displaying

antibody (right) stained for CMIP (top) or PI3K (bottom) (n = 3 blots).

(I) Phosphorylated Akt (pAkt) abundance is increased in CMIP KO cells compared

cells indicating that CMIP deletion maximizes pAkt levels at baseline. Western blo

control; n = 3 blots).

(J) In human iPSC-derived b cells, CMIP KO promotes cell death, in agreement wit

treatment with BSA, EA, or OA at 500 mM for 24 h (n = 24 wells). (****p < 0.0001,

(K) Representative images of cell death assay in human iPSC-derived b cells as
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note that the large number of potential FFA combinations

(>1,800) currently limits the feasibility of such a systematic study,

but future work may prioritize some FFA combinations for follow-

up work.

While the work described here was largely focused on c2

FFAs, we uncovered many additional biological processes that

merit further study, for example, the putative role of ferroptosis

induced by c5 PUFAs in microglia. By making all of our datasets

publicly available, we hope that many colleagues in the scientific

community will be empowered to explore them further.

Finally, although we validated our work with CMIP in human

pancreatic b cells, further experiments will determine the human

relevance of CMIP. The importance of the other T2D-lipotoxicity

genes in the pathogenesis of metabolic disease will be explored

in future studies.
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lin and the Berlin Institute of Health at Charité (BIH). J.C.F. and J.C.R. were
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J.C., Gassaway, B.M., Miller, B.C., Juneja, V.R., Nguyen, T.H., Joshi,

S., et al. (2020). Obesity shapes metabolism in the tumor microenviron-

ment to suppress anti-tumor immunity. Cell 183, 1848–1866.e26.

104. Liangpunsakul, S., and Chalasani, N. (2019). Lipidmediators of liver injury

in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver

Physiol. 316, G75–G81.

105. de la Monte, S.M., and Tong, M. (2014). Brain metabolic dysfunction at

the core of Alzheimer’s disease. Biochem. Pharmacol. 88, 548–559.

106. Cutuli, D., Landolfo, E., Nobili, A., De Bartolo, P., Sacchetti, S., Chirico,

D., Marini, F., Pieroni, L., Ronci, M., D’Amelio, M., et al. (2020).

Behavioral, neuromorphological, and neurobiochemical effects induced

by omega-3 fatty acids following basal forebrain cholinergic depletion

in aged mice. Alzheimers Res. Ther. 12, 150. https://doi.org/10.1186/

s13195-020-00705-3.

107. Desale, S.E., and Chinnathambi, S. (2020). Role of dietary fatty acids in

microglial polarization in Alzheimer’s disease. J. Neuroinflammation 17,

93. https://doi.org/10.1186/s12974-020-01742-3.

108. Chausse, B., Kakimoto, P.A., Caldeira-da-Silva, C.C., Chaves-Filho,

A.B., Yoshinaga, M.Y., da Silva, R.P., Miyamoto, S., and Kowaltowski,

A.J. (2019). Distinct metabolic patterns during microglial remodeling by

oleate and palmitate. Biosci. Rep. 39, BSR20190072. https://doi.org/

10.1042/BSR20190072.

109. Madore, C., Leyrolle, Q., Morel, L., Rossitto, M., Greenhalgh, A.D.,

Delpech, J.C., Martinat, M., Bosch-Bouju, C., Bourel, J., Rani, B., et al.

(2020). Essential omega-3 fatty acids tune microglial phagocytosis of

synaptic elements in the mouse developing brain. Nat. Commun. 11,

6133. https://doi.org/10.1038/s41467-020-19861-z.

110. Snowden, S.G., Ebshiana, A.A., Hye, A., An, Y., Pletnikova, O., O’Brien,

R., Troncoso, J., Legido-Quigley, C., and Thambisetty, M. (2017).

Association between fatty acid metabolism in the brain and Alzheimer

disease neuropathology and cognitive performance: a nontargeted me-

tabolomic study. PLoS Med. 14, e1002266.

111. Yoon, H., Shaw, J.L., Haigis, M.C., and Greka, A. (2021). Lipid meta-

bolism in sickness and in health: emerging regulators of lipotoxicity.

Mol. Cell 81, 3708–3730.

112. German, N.J., Yoon, H., Yusuf, R.Z., Murphy, J.P., Finley, L.W.S.,

Laurent, G., Haas, W., Satterstrom, F.K., Guarnerio, J., Zaganjor, E.,

et al. (2016). PHD3 loss in cancer enables metabolic reliance on fatty

acid oxidation via deactivation of ACC2. Mol. Cell 63, 1006–1020.

113. Nakamura, M., Liu, T., Husain, S., Zhai, P., Warren, J.S., Hsu, C.P.,

Matsuda, T., Phiel, C.J., Cox, J.E., Tian, B., et al. (2019). Glycogen syn-

thase kinase-3a promotes fatty acid uptake and lipotoxic cardiomyopa-

thy. Cell Metab. 29, 1119–1134.e12.

http://refhub.elsevier.com/S1550-4131(23)00123-7/sref82
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref82
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref82
https://doi.org/10.1677/jme.0.0320009
https://doi.org/10.1677/jme.0.0320009
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref84
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref84
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref84
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref84
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref85
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref85
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref85
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref85
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref86
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref86
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref86
https://doi.org/10.3390/ijms19041011
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref88
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref88
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref88
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref88
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref89
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref89
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref89
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref89
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref90
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref90
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref90
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref90
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref90
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref91
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref91
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref91
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref91
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref92
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref92
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref92
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref92
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref92
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref92
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref93
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref93
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref93
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref93
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref94
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref94
https://doi.org/10.3389/fphar.2021.648636
https://doi.org/10.3389/fphar.2021.648636
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref96
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref96
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref96
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref96
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref97
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref97
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref97
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref97
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref97
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref98
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref98
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref98
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref99
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref99
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref99
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref99
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref99
https://doi.org/10.1172/JCI141380
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref101
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref101
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref101
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref101
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref101
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref102
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref102
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref103
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref103
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref103
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref103
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref104
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref104
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref104
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref105
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref105
https://doi.org/10.1186/s13195-020-00705-3
https://doi.org/10.1186/s13195-020-00705-3
https://doi.org/10.1186/s12974-020-01742-3
https://doi.org/10.1042/BSR20190072
https://doi.org/10.1042/BSR20190072
https://doi.org/10.1038/s41467-020-19861-z
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref110
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref110
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref110
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref110
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref110
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref111
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref111
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref111
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref112
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref112
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref112
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref112
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref113
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref113
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref113
http://refhub.elsevier.com/S1550-4131(23)00123-7/sref113


ll
OPEN ACCESSResource
114. Dvela-Levitt, M., Kost-Alimova, M., Emani, M., Kohnert, E., Thompson,

R., Sidhom, E.H., Rivadeneira, A., Sahakian, N., Roignot, J.,

Papagregoriou, G., et al. (2019). Small molecule targets TMED9 and pro-

motes lysosomal degradation to reverse proteinopathy. Cell 178, 521–

535.e23.

115. Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.A., Logan, D.J., Madden,

K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., and Carpenter, A.E. (2011).

Improved structure, function and compatibility for CellProfiler: modular

high-throughput image analysis software. Bioinformatics 27, 1179–

1180. https://doi.org/10.1093/bioinformatics/btr095.

116. Dao, D., Fraser, A.N., Hung, J., Ljosa, V., Singh, S., and Carpenter, A.E.

(2016). CellProfiler Analyst: interactive data exploration, analysis and

classification of large biological image sets. Bioinformatics 32, 3210–

3212. https://doi.org/10.1093/bioinformatics/btw390.
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Antibodies

Mouse monoclonal anti-CPT1A Abcam Cat#ab128568

Rabbit monoclonal anti-ATF4 Cell Signaling Technology Cat#11815

Mouse monoclonal anti-CHOP Cell Signaling Technology Cat#2895

Rabbit polyclonal anti-CMIP Novus Bio NBP2-58180

Rabbit polyclonal anti-Akt Cell Signaling Technology Cat#9272

Rabbit monoclonal anti-pAkt Cell Signaling Technology Cat#4060

Rabbit polyclonal anti-AMPKa Cell Signaling Technology Cat#2532

Rabbit monoclonal anti-pAMPKa Cell Signaling Technology Cat#2535

Rabbit monoclonal anti-FOXO1 Cell Signaling Technology Cat#2880

Rabbit polyclonal anti-pFOXO1 Cell Signaling Technology Cat#9464

Rabbit monoclonal anti-GAPDH-HRP Cell Signaling Technology Cat#3683

Goat anti-rabbit IgG-HRP Cell Signaling Technology Cat#7074

Horse anti-mouse IgG-HRP Cell Signaling Technology Cat#7076

Rabbit polyclonal anti-CMIP Proteintech 12851-1-AP

Rabbit IgG control Thermo Fisher 10500C

Rabbit polyclonal anti-PI3K p85a Cell Signaling Technology Cat#4292

Rabbit monoclonal anti-NF-kB p65/RELA Cell Signaling Technology Cat#8242

Alexa Fluor 568 goat anti-rabbit IgG Thermo Fisher Scientific Cat#A11036

Rabbit monoclonal anti-Lc3b Cell Signaling Technology Cat#3868

Alexa Fluor 568 donkey anti-rabbit IgG Thermo Fisher Scientific Cat#A10042

Rat monoclonal anti-c-peptide Developmental Studies Hybridoma

Bank at the University of Iowa

GN-ID4

Alexa Fluor 568 goat anti-rat IgG Life technologies A11077

Bacterial and virus strains

Cmip-specific sgRNA expressing E. coli Millipore Sigma Clone MM5000005403

Non-targeting control sgRNA expressing E. coli Millipore Sigma CRISPR20-1EA

Custom lentivirus with mouse Cmip ORF

(NM_001163262.1) under CMV promoter,

neomycin resistance

VectorBuilder VB210401-1180uxy

Custom lentivirus with AA 2-83 of E. coli

beta-galactosidase under CMV promoter,

neomycin resistance

VectorBuilder VB900122-0486zjw

Biological samples

Cadaveric human islets Integrated Islet Distribution Program N/A

Chemicals, peptides, and recombinant proteins

Laurdan (6-dodecanoyl-2-

dimethylaminoaphthalene) dye

Thermo Fisher D250

Fluo4 Life Technologies Cat#F14202

Thapsigargin Millipore Sigma T9033; CAS 67526-95-8

Hoechst Thermo Fisher Scientific Cat#H3570

Rapamycin Sigma-Aldrich R8781

Bafilomycin A1 Sigma-Aldrich SML1661

Alexa 647-conjugated phalloidin Thermo Fisher Scientific Cat#A22287

Pierce Protein A/G Magnetic Beads Thermo Fisher 88802
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Propidium iodide Thermo Fisher Scientific Cat#P3566

Caspase 3/7 Thermo Fisher Scientific Cat#C10423

Polybrene Sigma TR-1003-G

FuGENE Promega E2311

Essential 8 medium Thermo Fisher Scientific A1517001

Matrigel Corning 07181

Accutase Stem Cell Technologies Cat#07920

Y27632 ROCK inhibitor Selleckchem S1049; CAS 129830-38-2

IMDM Thermo Fisher Scientific 12440053

ITS-X Thermo Fisher Scientific 51500056

L-ascorbic acid 2-Phosphate Sigma A8960; CAS 1713265-25-8

Monothioglycerol Sigma M6145; CAS 96-27-5

Poly(vinyl) alcohol (PVA) Sigma 341584; CAS 9002-89-5

Chemically-defined lipid concentrate Thermo Fisher Scientific 11905031

Non-essential amino acids Thermo Fisher Scientific 11140050

FGF2 Thermo Fisher Scientific 100-18B-1MG

BMP4 Thermo Fisher Scientific 120-05-50UG

Activin-A Thermo Fisher Scientific 120-14E-100UG

LiCL Sigma 310468; CAS 7447-41-8

VEGF PeproTech 100-20

TPO PeproTech 300-18

SCF Thermo Fisher Scientific 300-07-50UG

IL6 PeproTech 200-06

IL3 PeproTech 200-03

ITS-G Thermo Fisher Scientific 41400045

B-27 Thermo Fisher Scientific 17504044

N2 Thermo Fisher Scientific 17502001

M-CSF PeproTech 300-25

IL-34 PeproTech 200-34

TGFB-1 PeproTech 100-21

CD200 VWR 75790-456

CX3CL1 PeproTech 300-31

TCL buffer Qiagen Cat#1031576

Revitacell Thermo Fisher Scientific A2644501

CHIR99021 Stem Cell Technologies 72052

KGF Lifeline Cell Technology LS-1059

LDN193189 Stem Cell Technologies 72147

SANT1 Stem Cell Technologies 100-0538

TPPB Tocris 5343; 497259-23-1

RA Sigma Aldrich R2625; CAS 302-79-4

Alk5i II Sigma Aldrich 616452; CAS 446859-33-2

T3 Lifeline Cell Technology LS-1044

Betacellulin Peprotech 100-50

Latrunculin A Thermo Fisher Scientific L12370

Enzo SCREEN-WELL Fatty Acid library Nuchek Prep Cat#BML-2803-0100

Fatty acid free bovine serum albumin (BSA) Sigma Cat#A8806

RenaLife Renal Basal medium

with RenaLife LifeFactors

Lifeline Cell Technology LL-0025

HBSS with calcium Thermo Fisher Scientific Cat#14025076
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Critical commercial assays

Mouse insulin ELISA Thermo Fisher EMINS

Agencourt RNA cleanup XP Beckman Coulter Cat#A63987

AMPure XP Agencourt Beckman Coulter Cat#100609

Qubit dsDNA High Sensitivity Life Technologies Cat#102689

Nextera XT DNA Library Preparation Kit Illumina Cat#FC-131-1096

Nextera XT Index Kit Illumina Cat#FC-131-1001

Bioanalyzer High Sensitivity DNA Kit Agilent Cat#5067-4627

NextSeq 75 cycle v2 kit Illumina Cat#TG-160-2002

Deposited data

Bulk RNAseq data This paper GEO: GSE226911

Experimental models: Cell lines

iPSC-microglia line NIGMS Human Genetic

Cell Repository at the

Coriell Institute for

Medical Research

AICS-0036-006

MIN6 Addex Bio Cat#C0018008; RRID: CVCL_0431

INS-1E University of Geneva, Switzerland RRID: CVCL_0351

Immortalized human kidney epithelial cells Dvela-Levitt et al.114 WFUHS IRB00014033

iPSC-beta cell line Gibco Cat#A18945

Oligonucleotides

CMIP-specific sgRNA; ACGTCTTC

AATGGCGCTGTAGG

This paper N/A

Non-targeting sgRNA; GTATTACT

GATATTGGTGGG

This paper N/A

3’RT; AGCAGTGGTATCAACGCA

GAGTAC(T30)VN

Integrated DNA Technologies N/A

Template switching; AAGCAG

TGGTATCAACGCAGAGTA

CrGrG+G

Qiagen N/A

ISPCR; AAGCAGTGGTATCAA

CGCAGAGT

Integrated DNA Technologies N/A

Software and algorithms

MAGMA (v 1.07) de Leeuw et al.22 https://ctg.cncr.nl/software/magma

Molecular Operating Environment (MOE) Chemical Computing Group N/A

CellProfiler 2.2.0 Kamentsky et al.115 https://cellprofiler.org/

CellProfiler Analyst Bray et al.31; Dao et al.116 https://cellprofileranalyst.org/

Cytominer Bray et al.31 https://github.com/cytomining/cytominer

LipidSearch version 5.0 SP Thermo Fisher Scientific https://www.thermofisher.com/us/en/

home/industrial/mass-spectrometry/

liquid-chromatography-mass-spectrometry-

lc-ms/lc-ms-software/multi-omics-data-

analysis/lipid-search-software.html

TraceFinder 3.3 Thermo Fisher Scientific OPTON-31006

Progenesis QI Nonlinear Dynamics https://www.nonlinear.com/progenesis/qi/

Lipid Network Explorer Köhler et al.117 https://exbio.wzw.tum.de/linex/

Spliced Transcript Alignment to

a Reference (STAR)

Dobin et al.118 http://code.google.com/p/rna-star/

RNA-SeQC DeLuca et al.119 https://software.broadinstitute.org/

cancer/cga/rna-seqc

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gene Set Enrichment Analysis (GSEA);

Molecular Signatures Database (MSigDB)

Subramanian et al.20; Liberzon et al.120 https://www.gsea-msigdb.org/gsea/msigdb/

MATLAB 2020a MathWorks https://www.mathworks.com/

products/matlab.html

Cytoscape N/A https://cytoscape.org/

R; packages: lipidR, DESeq2, surrogate variable

analysis (SVA), RRHO2, WGCNA, randomforest

Mohamed et al.121; Love et al.122;

Leek et al.123; Langfelder et al.124;

Cahill et al.125; Breiman126

https://www.r-project.org/

Python; packages: HTSeq Anders et al.127 https://www.python.org/

Other

Opera Phenix High Content Screening System Perkin Elmer Cat#HH14000000

384-well Cell Carrier Ultra plate Perkin Elmer Cat#6057300

96-well Cell Carrier Ultra plate Perkin Elmer Cat#6055308
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anna

Greka (agreka@bwh.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and code availability
Bulk RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession numbers are

listed in the key resources table. Original western blot images are available from the lead contact upon request.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
MIN6 cells were purchased (Addex Bio, #C0018008, SV40 T-antigen induced cell immortalization of C57BL/6 IT6 transgenic mus

musculus insulinoma, sex unspecified) and cultured as described previously.128 In short, cells were maintained in DMEM with 4.5

g/L glucose, supplemented with 10% FBS (fetal bovine serum, Life Technologies, #26140079), 100 U/ml penicillin and 100 mg/ml

streptomycin (#15140 Invitrogen) and 55 mM beta-mercaptoethanol (Sigma, #M6250). MIN6 cells were cultured at 37�C with 5%

CO2 and used for experiments up to passage 30.

Immortalized human kidney epithelial cells used in this study were generated with informed consent under WFUHS

IRB00014033.114 Cells extracted from the kidney of a healthy female human donor were immortalized using lentivirus carrying human

Telomerase Reverse Transcriptase (hTERT). They were maintained at 37�C with 5% CO2 in RenaLife Renal Basal Medium supple-

mented with RenaLife LifeFactors (Lifeline Cell Technology), with the exclusion of gentamicin and amphotericin B.

INS-1E cells (University of Geneva, Rattus norvegicus NEDH, male) were grown at 37�C with 5% CO2 in RPMI 1640 media, sup-

plemented with 10% FBS, 1% penicillin and streptomycin, 1% sodium pyruvate, and 50 mM b-mercaptoethanol (all from Life Tech-

nologies). Cells were maintained in flasks pre-coated with supernatant from rat 804G cell line (804G matrix) as previously

described.129

Cell lines were routinely checked and were negative for mycoplasma.

iPSC-derived cells
The iPSC-derived beta cells were differentiated as described previously62,63 from an episomal reprogrammed iPSC line (Gibco,

#A18945). The factors added each day of differentiation can be found in Table S7. After the conclusion of the 28 day differentiation

process, these cells were maintained in enriched serum-free media (ESFM) with media changes every other day. On day 30, the cul-

tures were dissociated with TrypLE incubation for a maximum of 5 min, followed by neutralization with ESFM, TrypLE removal

through centrifugation at 200xg for 3 min, filtration through a 40 mm filter to remove large clumps, and seeding onto HTB-9 ECM

coated 96-well plates (Perkin Elmer, CellCarrier Ultra, #6055308) at 10,000/well.
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AICS-0036-006 from the NIGMSHuman Genetic Cell Repository at the Coriell Institute for Medical Research was used to generate

themicroglia in this study. iPSCswere cultured in Essential 8 (E8) (Thermo Fisher Scientific) media onMatrigel (Corning) coated 6-well

plates. Media was changed daily until confluence. iMGLs were differentiated as previously described.130,131 When confluent, iPSCs

were dissociated using Accutase (Stem Cell technologies), centrifuged for 5 mins at 300xg and counted using trypan blue (Thermo

Fisher Scientific). 200,000 cells/well were resuspended in E8 containing 10 mM Y27632 ROCK inhibitor (Selleckchem) in low adher-

ence 6-well plates (Corning). For the first 10 days, cells were cultured in HPC medium [50% IMDM (Thermo Fisher Scientific), 50%

F12 (Thermo Fisher Scientific), ITS-X 2% v/v (Thermo Fisher Scientific), L-ascorbic acid 2-Phosphate (64 ug/ml, Sigma), monothio-

glycerol (400mM, Sigma), Poly(vinyl) alcohol (PVA) (10mg/ml, Sigma), Glutamax (1X, Thermo Fisher Scientific), chemically-defined

lipid concentrate (1X, Thermo Fisher Scientific) and non-essential amino acids (Thermo Fisher Scientific)]. At day 0, embryoid bodies

(EB) were gently collected, centrifuged at 100xg and resuspended in HPC medium supplemented with 1 mM ROCK inhibitor, FGF2

(50 ng/ml, Thermo Fisher Scientific), BMP4 (50ng/ml, Thermo Fisher Scientific), Activin-A (12.5ng/ml, Thermo Fisher Scientific) and

LiCL (2 mM, Sigma), then incubated in a hypoxic incubator (5% O2, 5% CO2, 37�C). On day 2, cells were gently collected and the

media changed to HPC medium supplemented with FGF2 (50ng/ml, Thermo Fisher Scientific) and VEGF (50 ng/ml, PeproTech) and

returned to the hypoxic incubator. On day 4, cells were collected and media changed to HPC medium supplemented with FGF2

(50ng/ml, Thermo Fisher Scientific), VEGF (50 ng/ml, PeproTech), TPO (50 ng/ml, PeproTech), SCF (10ng/ml, Thermo Fisher Scien-

tific), IL6 (50ng/ml, PeproTech) and IL3 (10ng/ml, PeproTech) and incubated in a normoxic incubator (20%O2, 5%CO2, 37C). At day

6 and 8, 1ml of day 4mediawas added in eachwell. On day 10, cells were collected, counted using trypan blue and frozen in Cryostor

(Sigma Aldrich) in aliquots of 300,000-500,000 cells.

For iMGL differentiation, cells were thawed, washed 1x with PBS and plated at 200,000 cells per well in 6-well plates coated with

matrigel in iMGLmedia [DMEM/F12 (Thermo Fisher Scientific), ITS-G (2% v/v, Thermo Fisher Scientific), B27 (2% v/v, Thermo Fisher

Scientific), N2 (0.5% v/v, Thermo Fisher Scientific), monothioglycerol (200mM, Sigma), Glutamax (1X, Thermo Fisher Scientific), non-

essential amino acids (1X, Thermo Fisher Scientific)] supplemented with M-CSF (25 ng/ml, PeproTech ), IL-34 (10 ng/ml, PeproTech)

and TGFB-1 (50ng/ml, PeproTech). Cells were fed every 2 days and replated at day 22. On day 30, cells were collected and replated in

iMGL media supplemented with M-CSF (25 ng/ml, PeproTech), IL-34 (10 ng/ml, PeproTech), TGFB-1 (50ng/ml, PeproTech), CD200

(100ng/ml, VWR) and CX3CL1 (100ng/ml, PeproTech).

Primary cells
Primary human islets from three independent non-diabetic cadaveric donors were received from the Integrated Islet Distribution Pro-

gram. These islets were from 2 females and one male with ages ranging from 31-54 years, BMI 24.5-27.4, greater than 90% purity,

and greater than 95% viability. Intact islets were dissociated using accutase followed by trituration and stained using Trypan Blue to

confirm viability. They were seeded at 15,000/well into 384-well Cell Carrier Ultra microplates (Perkin Elmer, CellCarrier Ultra,

#6057300) coated with HTB-9-derived ECM and maintained with CMRL 1066 medium (CellGro, 15-110-CV) supplemented with

10% FBS, 13 L-glutamine, and 13 penicillin/streptomycin.

METHOD DETAILS

FFA Preparation
Enzo SCREEN-WELL Fatty Acid library (#BML-2803-0100) containing FFAs dissolved in DMSO ([FFA]stock = 10 mM) was stored in

glass vials at -20�C in the compound management facility of the Broad Institute. Template plates for High Throughput Screens

were stored up to 4weeks at 4�C. To prepare compound plates, small volumes of DMSOdissolved FFAs were transferred intomicro-

plates containing fatty acid free BSA (Sigma #A8806) solutions in ddH2O in a molecular ratio of 1:6.67 (BSA:FFA, [FFA]final = 500 mM)

with an automated simultaneous pipettor (Analytik Jena CyBioWell Vario). Plates were incubated overnight for 24 h at 37 �C to ensure

complete binding of FFAs to BSA. Next, DMSO and ddH2O were completely removed with the GeneVac HT-12 evaporator for 12 h

with full vacuum at 37 �C and continuous centrifugation at 400g. Plates with dry FFA bound BSA crystals in the wells were resus-

pended in MIN6 culture medium at room temperature for 4-8 h on an orbital plate shaker. After resuspension, compound plates

were spun down at 5000g for 10 min and manually transferred to 384 MultiScreenHTS HV Filter Plates (0.45 mm, Millipore,

#MZHVN0W10) and spun down again for 1 min at 500g into an empty compound plate. Resulting filtered compound plates were

transferred into assay plates of the same format as the CyBio Well Vario simultaneous pipettor. Representative FFAs were ordered

from Nu-Chek Prep, manually dissolved in DMSO ([FFA]stock = 10 mM) and prepared in glass vials according to the same protocol.

Differential Scanning Calorimetry
All differential scanning calorimetry (DSC) measurements were performed with a MicroCal VP-Capillary DSC Automated system

(Malvern Panalytical). Selected FFAs were bound to BSA inmicroplates according to the protocol described above and resuspended

in PBS to a final concentration of [BSA]final = 50 mM. Sample measurements included one measurement of PBS vs. PBS to record a

baseline reference curve at the scan rate of 200 �C/h. The samples were heated from Tstart = 10 �C up to Tend = 90 �C at the same scan

rate. The melting temperature Tm was determined from the resulting single-peak melting curve using FFA-free BSA as a control.
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Lipid Profiling
40,000 MIN6 cells/well were seeded in 96 well plates 24 h prior to treatment in three replicates. FFA library compound plates were

transferred into assay plateswhichwere then incubated for 24 h. The lipid fraction of cells was isolatedwith isopropanol after washing

the plates 3 times with ice cold PBS. After the addition of isopropanol, plates were incubated for 1 h at 4 �C. IPA extracts were then

manually transferred to autosampler vials (Waters), capped, and stored at -80 �C until analysis. Lipid profiling was done as previously

described.132 Briefly, non-targeted liquid chromatography mass spectrometry (LC-MS) data were acquired using a system

composed of a Nexera X2 U-HPLC system (Shimadzu Scientific Instruments; Marlborough, MA) coupled to a Q Exactive Focus Orbi-

trap mass spectrometer (Thermo Fisher Scientific; Waltham, MA). Cell extracts (2 mL) were injected directly onto a 100 x 2.1 mm,

1.7 mm ACQUITY BEH C8 column (Waters; Milford, MA). The column was then eluted isocratically with 80% mobile phase A (95/

5/0.1; vol/vol/vol 10mM ammonium acetate/methanol/formic acid) for 1 min followed by a linear gradient to 80% mobile-phase B

(99.9/0.1; vol/vol methanol/formic acid) over 2 min, a linear gradient to 100% mobile phase B over 7 min, then 3 min at 100% mo-

bile-phase B. Mass spectrometry analyses were carried out using ESI in the positive ion mode using full scan analysis over 220–

1100 m/z. Raw data were processed and visually inspected using TraceFinder 3.3 software (Thermo Fisher Scientific; Waltham,

MA) and Progenesis QI (Nonlinear Dynamics; Newcastle upon Tyne, UK). The identity of individual metabolites and lipid families

was confirmed by matching their retention time to that of authentic reference standards.

For the comparison between the PA and EA-induced lipidomes, MIN6 were seeded at 800,000 per well in a 6-well plate and grown

for 3 days (n=4). After the cells were treated with the respective FFAs at 500 mM for 24h, cells were washed 3x with 1ml of room tem-

perature PBS. Cells were scraped in 500ul room temperature PBS, pelleted at 13,000xg, and flash frozen in liquid nitrogen for storage

after the supernatant was removed. Cell pellets were lysed in double distilled water following three cycles of freeze-thawing in a water

bath sonicator. Subsequently, lipids were extracted according to Folch’s Method. The organic phase of each sample, normalized by

tissue weight, were then separated using ultra high performance liquid chromatography coupled to tandem mass spectrometry

(UHPLC-MSMS).133 UHPLC analysis was performed employing a C30 reverse-phase column (Thermo Acclaim C30, 2.1 x

250 mm, 3 mM, operated at 55� C; Thermo Fisher Scientific) connected to a Dionex UltiMate 3000 UHPLC system and a

Q-Exactive Orbitrap high resolution mass spectrometer (Thermo Fisher Scientific) equipped with a heated electrospray ionization

(HESI-II) probe. Extracted lipid samples were dissolved in 2:1 methanol:chloroform (v/v) and 5 ml of each sample was analyzed sepa-

rately using positive and negative ionization modes, respectively. Mobile phase A consisted of 60:40 water/acetonitrile (v/v), 10 mM

ammonium formate and 0.1% formic acid, and mobile phase B consisted of 90:10 isopropanol/acetonitrile (v/v), 10 mM ammonium

formate and 0.1% formic acid. Lipids were separated over a 90 min gradient; during 0–7 minutes, elution starts with 40% B and in-

creases to 55%; from 7 to 8 min, increases to 65% B; from 8 to 12 min, elution is maintained with 65% B; from 12 to 30 min, increase

to 70%B; from 30 to 31min, increase to 88%B; from 31 to 51min, increase to 95%B; from 51 to 53min, increase to 100%B; during

53 to 73 min, 100% B is maintained; from 73 to 73.1 min, solvent B was decreased to 40% and then maintained for another 16.9 min

for column re-equilibration. The flow-rate for chromatographic separation was set to 0.2 mL/min. The column oven temperature was

set at 55� C, and the temperature of the autosampler traywas set to 4� C. The spray voltagewas set to 4.2 kV, and the heated capillary

and the HESI were held at 320� C and 300� C, respectively. The S-lens RF level was set to 50, and the sheath and auxiliary gas were

set to 35 and 3 units, respectively. These conditions were held constant for both positive and negative ionization mode acquisitions.

External mass calibration was performed using the standard calibration mixture every 7 days. MS spectra of lipids were acquired in

full-scan/data-dependent MS2 mode. For the full-scan acquisition, the resolution was set to 70,000, the AGC target was 1e6, the

maximum injection time was 50 msec, and the scan range was m/z = 133.4–2000. For data-dependent MS2, the top 10 precursor

selection in each full scanwere isolated with a 1.0 Dawindow, fragmentation using stepped normalized collision energy of 15, 25, and

35 units, and analyzed at a resolution of 17,500 with an AGC target of 2e5 and a maximum injection time of 100 msec. The underfill

ratio was set to 0. The selection of the top 10 precursors was subject to isotopic exclusion with a dynamic exclusion window of 5.0

sec. All data were analyzed using the LipidSearch version 5.0 SP (Thermo Fisher Scientific) and all identified species (grade A, B) were

reported.

RNASeq
40,000 MIN6 cells/well were seeded in 96-well plates 24 h prior to treatment in three replicates. FFA library compound plates were

transferred into assay plates which were then incubated for 24 h (n=6). RNA was extracted from cells using TCL buffer (#1031576,

Qiagen) with 1% beta-mercaptoethanol followed by an RNA clean-up with Agencourt RNA cleanup XP (#A63987, Beckman Coulter).

Bulk RNA (1 ml) was added to a 3 step cDNA synthesis reaction with 3’RT (5’- AGCAGTGGTATCAACGCAGAGTAC(T30)VN-3’, IDT),

template switching (5’-AAGCAGTGGTATCAACGCAGAGTACrGrG+G-3’, Qiagen), and ISPCR (5’-AAGCAGTGGTATCAACGCA-

GAGT-3’, IDT) oligos from the SMART-seq2 protocol.134 cDNA was purified using AMPure XP Agencourt (#100609, Beckman

Coulter) and quantified using Qubit dsDNA High Sensitivity (#102689, Life Technologies). Samples were diluted to 0.2 ng/ul in TE

and tagmented (Nextera XT DNA Library Preparation Kit (#FC-131-1096, Illumina). Indexing was performed using the Nextera XT In-

dex Kit (#FC-131-1001, Illumina). Final libraries were QCed using the Qubit dsDNA High Sensitivity kit and Bioanalyzer High Sensi-

tivity DNA Kit (#5067-4627, Agilent). Libraries were sequenced at a concentration of 1.8 pM on a NextSeq with a 75 cycle v2 kit

(#TG-160-2002, Illumina) with a read structure of Read 1 37bp, Read 2 37bp, Index 1 8bp, and Index 2 8bp. Each sample had approx-

imately 4 million reads.
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Cell Painting
MIN6 cells were seeded at a density of 15,000 per well in a 384-well plate (Perkin Elmer, CellCarrier Ultra, #6057300). After 24 h re-

covery, cells were treated with the FFA library and incubated for 24 h. Cell staining and fixation was performed according to previous

protocols.31 Images were acquired with the Opera Phenix High Content Screening System (#HH14000000, Perkin Elmer) with a 63X/

1.15NA water immersion lens. Image quality control was carried out using CellProfiler 2.2.0115 and CellProfiler Analyst116 according

to a prior machine-learning based protocol.135 Image illumination correction and analysis were performed in CellProfiler (pipelines

available upon request). After analysis, the data were compiled and normalized in Cytominer (code available at https://github.

com/cytomining/cytominer) as described previously.31 Briefly, single cell level features were aggregated per well by computing av-

erages. The mean values and dispersion of the 2202 features measured in all samples were normalized to negative controls (BSA).

Features with near-zero variance were removed, and a non-redundant feature set was created by inspecting pairwise correlations.

The remaining 1222 features comprise the morphological profile of a given well.

CMIP KO Clone Selection
Lentivirus containing a plasmid programmed to express either Cmip-specific sgRNA (ACGTCTTCAATGGCGCTGTAGG, Millipore

Sigma, Sanger Clone MM5000005403) or non-targeting control sgRNA (Millipore Sigma, CRISPR20-1EA) was obtained through

transfecting HEK293T cells with these plasmids in combination with a second generation CMV lentiviral packaging system and

FuGENE transfection agent (E2311, Promega).

MIN6 cells stably expressing Cas9 were infected with this lentivirus at half volume with 8 mg/ml polybrene (TR-1003-G, Sigma)

overnight. The media was changed 12 h later, and 48 h after the first media change, 1 mg/ml of puromycin was added to the media.

After one week of puromycin selection, the cultures were dispersed into single cells, seeded into 96-well plates for expansion, and

sequenced forCmipmutations. OneWT clone and one possessing a truncation within the first 15%of the longest CMIP isoformwere

used for the experiments described.

To derive CMIP KO cells from the human iPSC-beta cell line, we delivered Cas9-RNP complexes with eitherCMIP-specific sgRNA

or non-targeting sgRNA (same as Min6 above) to the parental iPSC cells using a Lonza nucleofector kit. Upon confirmation of suc-

cessful transfection and generation of a stable knockout line, single clones were isolated and sequenced to ultimately identify the

clone used in the studies described.

CMIP Overexpression for Rescue Studies
To re-express CMIP back into the MIN6 CMIP KO line, we obtained lentivirus from VectorBuilder containing a mouse Cmip ORF

(NM_001163262.1) with a modified PAM site under a CMV promoter and accompanied by a neomycin resistance gene. We used

the same vector with amino acids 2-83 of E. coli beta-galactosidase as a substitute for the Cmip ORF for our control line. 600,000

cells were seeded into each well of a 6-well plate and one week later were infected with up to 100ul virus per well (and 8 ug/ml poly-

brene (TR-1003-G, Sigma)) overnight. The media was changed 12 h later, and 48 h after the first media change, 800 mg/ml of G418

was added to the media. After selection for one week, the cells were used for the experiments described.

Cell Viability
For the high throughput cell viability assay, cells were seeded in 384-well plates (Perkin Elmer, CellCarrier Ultra, #6057300) and

treated for 24, 48 and 72 h with the FFA library (n=7 / FFA). Just before readout, cell nuclei were stained with Hoechst (Thermo Fisher

Scientific) for 1 h at 37�C and imaged with the Opera Phenix High Content Screening System (#HH14000000, Perkin Elmer). Number

of counted nuclei was determined with the image analysis software Harmony (PerkinElmer) and used as a proxy for cell viability. For

validation experiments, cells were treated for 48 h with representative FFAs in CellCarrier-384 Ultra Microplates. Caspase 3/7

(Thermo Fisher Scientific, #C10423) activation and propidium iodide (Thermo Fisher Scientific, #P3566) staining were used to calcu-

late the fraction of apoptotic cells and dead cells, respectively. Single cells were identified and counted after staining their nuclei with

Hoechst. Fluorescence intensities were measured and the threshold for caspase 3/7 and propidium iodide positive staining was

determinedmanually. Cell viability was calculated as the fraction of cells that were neither caspase 3/7 nor propidium iodide positive.

For the EA dose-response curve, MIN6 cells were grown as described and then treated for 65 hours with BSA, EA or OA. The con-

centrations were (in mM): 0.7, 2.1, 6.2, 18.5, 55.6, 166.7, 500, 1000 and were prepared by serial dilution from a stock concentration.

Cell viability was assessed as described.

iPSC-derived microglia

On day 30 of the differentiation, iMGLs were plated in 96-well plates (Perkin Elmer, CellCarrier) at a density of 20,000 cells per well.

One day before treatment, FFA and BSA were reconstituted in iMGLmedia and gently rocked overnight at room temperature. At day

40, iMGL were treated with a final concentration 250 mM of each FFA or BSA for 24 h followed by live imaging. Cells were imaged

using the Opera Phenix confocal system using a 20X objective, temperature was maintained at 37 �C and CO2 at 5% during the im-

aging period. One plane was taken per picture and 20 images were taken per well. Harmony software was used for analysis, flatfield

correction (BasicMethod) and cell identification using EGFP signal (common Threshold 0.02; area >50 mm2). Total number of cells per

well was used for quantification with an n=4 for all conditions.

Kidney tubular epithelial cells

Prior to treatment, BSA-bound FFAs were reconstituted and incubated overnight in RenaLife media at room temperature. Cells were

seeded in CellCarrier-384 UltraMicroplates andmaintained at 37�Cwith 5%CO2. Cells were treatedwith 500 mMFFA or BSA for 15 h
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followed by live imaging using the Opera Phenix High Content Screening System. Number of cells and number of dead cells was

determined on Harmony image analysis software using digital phase contrast and propidium iodide staining (Thermo Fisher Scien-

tific, #P3566), respectively. Viability was assessed by calculating the number of propidium iodide-negative cells per total number of

cells per well (n=4).

Western Blot
MIN6 cells were lysed (#9803, Cell Signaling Technology) in the presence of protease inhibitors (#05892791001, Roche) and phos-

phatase inhibitors (#04906837001, Roche). Protein concentrations were quantified with the Pierce BCA Protein Assay Kit (#23225,

Thermo Fisher Scientific). NuPAGE LDS sample buffer (#NP0008, Thermo Fisher Scientific) was added to normalized protein lysates

together with NuPAGE reducing agent (#NP0004, Thermo Fisher Scientific). Lysates were heated to 95 �C for 5 min prior to SDS-

PAGE gel electrophoresis (NuPAGE MES SDS running buffer, Thermo Fisher Scientific, #NP0002). Proteins were transferred to a

nitrocellulose membrane (#1704158, BioRad) with the Trans-Blot Turbo TM Blotting System (#1704155, BioRad) according to the

manufacturer’s protocol. Membranes were blocked in 5% Nonfat Dry Milk (#9999S, Cell Signaling Technology) in PBS with 0.1%

Tween 20 (PBS-T). AKT and pAKT blots were blocked instead in 5% Bovine Serum Albumin (#1900-0016, LGC Clinical Diagnostics)

in PBS-T. Primary antibodies were incubated at 4 �C overnight, secondary antibodies were incubated at room temperature for 1 h.

Super Signal West Femto (#34094, Thermo Fisher Scientific) or SuperSignal West Pico (#34087, Thermo Fisher Scientific) were used

to visualize immunoreactive bands imaged by G:BOX Chemi XT4 (BOX-CHEMI-XT4, Syngene). Primary antibodies used in this study

were CPT1A: (#ab128568, Abcam), ATF4: (#11815, Cell Signaling Technology), CHOP: (#2895, Cell Signaling Technology), CMIP:

(NBP2-58180, Novus Bio), AKT: (#9272, Cell Signaling Technology), pAKT: (#4060, Cell Signaling Technology), AMPKɑ: (#2532,
Cell Signaling Technology), pAMPKɑ: (#2535, Cell Signaling Technology), FOXO1: (#2880, Cell Signaling Technology), pFOXO1:

(#9464, Cell Signaling Technology), GAPDH-HRP: (#3683, Cell Signaling Technology). Secondary antibodies used were: anti-rabbit

IgG-HRP (#7074, Cell Signaling Technology), anti-mouse IgG-HRP (#7076, Cell Signaling Technology).

Coimmunoprecipitation (co-IP)
Two 10cmdishes ofMin6 cells were lysedwith 1ml of co-IP lysis buffer (100mMNaCl, 5mMEDTA, 50mMTris-HCl pH 7.5, 1%NP-40,

protease inhibitor tablet, phosphatase inhibitor tablet) after being washed once with ice cold PBS. The lysate was rotated at 4�C for

30m, spun at 13,000xg for 20m at 4�C, and the supernatant was collected. 1mg of protein was combined with 10ug of either CMIP

antibody (12851-1-AP, Proteintech) or rabbit IgG control antibody (10500C, Thermo Fisher) and rotated overnight at 4�C. The
following day, Pierce Protein A/G Magnetic Beads (88802, Thermo Fisher) were warmed to room temperature, washed twice with

1ml TBS-T (150mM NaCl, 50mM Tris-HCl pH 7.5, 0.05% Tween-20) on a magnet, and resuspended in the original volume of co-

IP lysis buffer. 25ul of beads were added to each lysate tube and the solution was rotated at 4�C for 1h. The beads were then washed

3x with 1ml TBS-T, once with 1ml distilled water, and eluted with 30ul of 2X NuPAGE LDS Sample Buffer and 1X NuPAGE Sample

Reducing Agent (DTT). The beads were incubated at room temperature for 10m with occasional flicking of the tube, and then the

supernatant was extracted on the magnet. The supernatant was incubated at 95�C for 10m and then the samples were run on a

gel as detailed in the Western Blot section above. The primary antibodies used for staining were CMIP: (12851-1-AP, Proteintech)

and PI3K p85ɑ: (#4292, Cell Signaling Technology).

Immunofluorescence (IF) staining
MIN6 NFkB Immunofluorescence

MIN6 cells grown on 384-well CellCarrier Ultra microplates (#6057308, PerkinElmer) were fixed for 10 min in PBS containing 4%PFA

(Electron Microscopy Sciences), permeabilized for 15 min in 0.5% Triton X-100 (Sigma-Aldrich), blocked for 1 h in blocking reagent

(100 mM Tris HCL pH 8; 150 mM NaCL; 5 g/L Blocking Reagent (#11096176001, Roche)) and treated for 1.5 h with primary antibody

diluted in blocking reagent (NF-kB p65/RELA, Rabbit monoclonal antibody, 1:200, #8242, Cell Signaling Technology). Cells were

washed three times in PBS and incubated for 0.5 h with fluorescent-labeled secondary antibody in blocking solution (1:500, Alexa

Fluor 568 Goat anti-Rabbit IgG, (#A11036, Thermo Fisher Scientific)). Cytoplasmic actin filaments were stained with Phalloidin con-

jugated with Alexa 647 (1:40, #A22287, Thermo Fisher Scientific) and nuclei were counterstained with Hoechst (1:2000, #H3570,

Thermo Fisher Scientific). Cells were washed three times in PBS and imaged using the Opera Phenix High Content Screening System

(#HH14000000, Perkin Elmer). A minimum of nine fields were acquired per well using 20x water immersion objectives in confocal

mode. Image analysis was performed using the Harmony software (PerkinElmer). Cell nuclei were first identified using Hoechst stain-

ing and a nuclear region was defined for each cell. Phalloidin staining was then used to detect and define the cytoplasmic region of

the cell. RELA fluorescent intensity was measured separately in the nuclear and cytoplasmic regions and a threshold for a nuclear

translocation was defined using negative (BSA) and positive (TNF) controls. For each well, the fraction of cells identified for RELA

nuclear translocation was calculated.

MIN6 LC3B Immunofluorescence

MIN6 cells grown on 384-well CellCarrier Ultra microplates (#6057308, PerkinElmer) were treated for 48 h with 500 mMFFAs or 25 nM

of rapamycin (Sigma-Aldrich, R8781) or bafilomycin A1 (Sigma-Aldrich SML1661). Cells were fixed for 20 min in ice-cold methanol

(Sigma-Aldrich, 154903), washed twice with PBS, permeabilized for 15 min in 0.5% Triton X-100 (Sigma-Aldrich, 10789704001),

washed twice with PBS, blocked for 1 h in 5%BSA in PBS (LGCClinical Diagnostics, 1900-0016) and incubated for 1.5 h with primary

antibody diluted in blocking reagent (Lc3b (D11) XP Rabbit mAb, 1:500, #3868, Cell Signaling Technology). Cells were washed four
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times in PBS and incubated for 45 min with fluorescent-labeled secondary antibody in blocking solution (1:500, Alexa Fluor 568

Donkey anti-Rabbit IgG, (#A10042, Thermo Fisher Scientific)). Nuclei were counterstained with Hoechst (1:2000, #H3570, Thermo

Fisher Scientific). Cells were washed four times in PBS and imaged using the Opera Phenix High Content Screening System

(#HH14000000, Perkin Elmer). A minimum of nine fields were acquired per well using 63x water immersion objectives in confocal

mode. Image analysis was performed using the Harmony software (PerkinElmer). Cell nuclei were first identified using Hoechst stain-

ing and a nuclear region was defined for each cell. LC3B puncta were then detected based on intensity and size with rapamycin and

bafilomycin treatments serving as controls.

Primary Human Islet Immunofluorescence

Primary human islets were treated two days after dissociation and plating with FFAs at 250 mM, 500 mM, and 1mM. After treatment for

5 days, the islets were fixed for 20 min in 3% PFA followed by permeabilization for 20 min with 0.2% TritonX-100. Blocking with 2%

BSA in PBS (SeraCare, AP-45100-80) was conducted for 1 h at room temperature, followed by primary incubation with c-peptide

antibody (Developmental Studies Hybridoma Bank at the University of Iowa, GN-ID4) at 1:100 overnight at 4 �C. The plate was

washed 3x with PBS followed by secondary incubation with 568 goat anti-rat (Life technologies, A11077) at 1:1000 and Hoechst

(1:2000, #H3570, Thermo Fisher Scientific) for 1 h at room temperature. The plate was then washed 5x with PBS and imaged on

the Opera Phenix High Content Screening System (#HH14000000, Perkin Elmer). A minimum of nine fields were acquired per well

using a 20x water immersion objective in confocal mode. Image analysis was performed using the Harmony software

(PerkinElmer). Beta cells were identified and counted by c-peptide positive staining. All three donors displayed similar trends in

c2 toxicity; the data presented in Figure 5C are representative of all donors.

iPSC-Derived Beta Cell Immunofluorescence

IPSC-derived beta cells after 28 days of differentiation as per the protocol listed above were dissociated and seeded at 10,000/well

into 96-well Cell Carrier Ultra microplates (Perkin Elmer, CellCarrier Ultra, #6055308) coated with HTB-9-derived ECM. These cells

were treated three days later with FFAs at 250 mM, 500 mM, and 750 mM for 24, 48, and 72 h followed by fixation with 4% PFA for

30min at room temperature. The plates werewashed twicewith PBS, permeabilized for 15min with 0.5%Triton-X 100, washed twice

again with PBS, and blocked with 5% BSA in PBS for 1 h at room temperature. This was followed by primary incubation with c-pep-

tide antibody (Developmental Studies Hybridoma Bank at the University of Iowa, GN-ID4) at 1:100 overnight at 4 �C. The plate was

washed 3x with PBS followed by secondary incubation with 568 goat anti-rat (Life technologies, A11077) at 1:1000 and Hoechst

(1:2000, #H3570, Thermo Fisher Scientific) for 1 h at room temperature. The plate was then washed thrice with PBS and imaged

on the Opera Phenix High Content Screening System (#HH14000000, Perkin Elmer). A minimum of nine fields were acquired per

well using a 20x water immersion objective in confocal mode. Image analysis was performed using the Harmony software

(PerkinElmer) and the cells were counted.

ER Calcium Levels
MIN6 cells were plated in 384-well plates (Aurora, Black 384 SQWell 188 micron Film, #1022-10110) and treated with the FFA library

for 24 h prior to readout (n=5 / FFA). Cells were carefully washed three times with HBSS (with calcium, Thermo Fisher Scientific,

#14025076) using an automated simultaneous pipettor (analytikjena CyBio Well vario) and incubated with the fluorescent calcium

indicator Fluo4 (2 mM, Life Technologies, #F14202) in DMEM without supplementation for 1 h at room temperature. Then, cells

were washed again in HBSS (with calcium) and incubated for another 30min at room temperature in DMEMwithout supplementation.

Just before the readout, cells were washed in calcium free assay buffer solution (140 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM

MgCl2, 10 mM EGTA, 10 mM Glucose) and left with 25 ml assay volume per well. Assay plates were immediately transferred to

the FLIPR Tetra High-Throughput Cellular Screening System. The plate was recorded with a frequency of 1Hz for 10 min. Baseline

was recorded for 30 s before the automated liquid transfer system of the FLIPR added the SERCA inhibitor Thapsigargin (final con-

centration 10 mM) in calcium free assay buffer. The resulting passive efflux of calcium from the ER induced a transient cytosolic fluo-

rescence signal and the peak amplitudes were used to indirectly quantify ER calcium levels (see Figure S3A). The resulting trajec-

tories were corrected for a pipetting artifact and baseline normalized. Log2 Fold changes were calculated according to plate

location specific negative (BSA) controls. We allowed for the exclusion of one outlier / FFA / plate (n=5) based on a 3-sigma cutoff.

P-values were calculated with Student’s t-test (two-sided) and corrected for multiple testing (Benjamini & Hochberg).

Glucose Stimulated Insulin Secretion (GSIS)
To measure GSIS, cells were plated in 96-well plates (Perkin Elmer, CellCarrier Ultra, #6055308) and treated with the FFA library for

24 h prior to readout (n=6 / FFA). First, cells were pre-incubated in Krebs Ringer Buffer (KRB) with 2.8 mM glucose for 1 h and then

stimulated with fresh KRB containing 16.7 mM glucose for another hour. The supernatant was then transferred to a mouse insulin

ELISA (Thermo Fisher, EMINS) at a dilution of 1:150. The cells were imaged on the Opera Phenix High Content Screening System,

(#HH14000000, Perkin Elmer) and subsequently counted via Hoechst nuclear staining using Harmony software (PerkinElmer). A min-

imum of four fields were acquired per well using a 10x air objective in a confocal mode. The insulin concentrations measured via

ELISA were normalized to the number of cells in each respective well.

Membrane Fluidity Assay
This assay has been well established and optimized in INS-1E cells, a rat beta cell line. INS-1E cells were seeded at 20,000 cells per

well in a CellCarrier Ultra 96-well plate (Perkin Elmer). Cells were incubated for 24 h, washed once with PBS, treated with BSA-bound
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fatty acids in a serum-free media and further incubated for 18 h at 37�C. Cells were washed twice with PBS and stained with Laurdan

dye (6-dodecanoyl-2-dimethylaminoaphthalene) (Thermofisher) at 10 mM for 45 min. Cells were washed twice with PBS and images

were acquired using an Opera Phenix High-Content Screening system (Perkin Elmer). Temperature (37�C) and carbon dioxide (5%)

were controlled during live-cell imaging. Cells were excited with a 405 nm laser and the emission recorded between 435 and 480 nm

(ordered phase) and between 500 and 550 nm (disordered phase). Images were analyzed using Harmony High-Content Imaging and

Analysis Software (Perkin Elmer) and data represented as general polarization (GP) index as calculated by GP = (intensityorder - in-

tensitydisorder)/(intensityorder + intensitydisorder).
136,137

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated all computational and statistical analysis in this study has been performed in Python and R. Statistical details

for each experiment can be found in the figure legends.

Lipidomics
Ablocked experimental designwith one replicate of each FFA in the library, together withmultiple BSA controls per 96-well plate, was

chosen (n=3). Raw lipidomic profiles received from the Metabolomics Platform at the Broad Institute were filtered for samples with

strongly deviating sample medians (manual cutoff, 7 out of 280 or 3% of the samples were discarded). Lipid metabolites with more

than 30% of missing data points were removed, otherwise missing values were substituted with 50% of the minimum value of the

respective metabolite’s intensity. To account for variations in total amount of captured metabolites, samples were scaled towards

the global sample median. Only annotated lipid metabolites were used for further differential abundance analysis. We sought to un-

derstand the relationship between structural features of externally added FFAs and changes in the triglyceride fraction of the cells

(Figure 1C). For each externally added FFA, triglyceride intensity deviations from the BSA control were summed based on the struc-

tural feature of interest (number of C-atoms, number of double bonds). Then, triglyceride profiles of externally added FFAs were sum-

marized based on the structural feature of interest of the FFAs (number of C-atoms, number of double bonds) and normalized to the

number of FFAs making up each group. For assessment of the global lipidome in response to erucic and palmitic acid, lipid metab-

olites were filtered as described and subsequently imported into lipidR.121 Differential analysis of lipid abundance was calculated

using the empirical Bayes procedure. Fold change in lipid abundance (EA vs. PA) was then normalized based on noted structural

features (number of C-atoms, number of double bonds) and visualized in R. Network analysis of the biochemical relationship between

differentially abundant lipid species was performed using the Lipid Network Explorer with default settings.117

RNASeq pipeline
A blocked experimental design with one replicate of each FFA in the library together with multiple BSA controls per 96-well plate was

chosen (n=6). Raw data from NextSeq runs were de-multiplexed and converted to sample specific fastq files. Alignment was per-

formed with STAR,118 reads were counted with HTSeq127 and QC metrics were generated with RNA-SeQC.119 The resulting count

matrix was filtered by column for samples with more than 103 detected genes (counts > 0) and by row for coding genes (as defined by

theMGI database) with a row sum across all samples > 500 counts (with a total number of 500 samples). The resulting normalized and

filtered count matrix was then variance stabilized using the vst method from the DESeq2 R package.122 Surrogate variable analysis

(SVA, R package)123 was performed on the vst count matrix to account for linear batch effects. In addition, we performed differential

expression analysis with DESeq2 for each sample, including derived surrogate variables to the linear model. To cluster the samples,

we chose the top 500 most common significant differentially expressed genes (padj < 0.05) across the entire dataset. Samples were

either transformed to z-scores or replicates were collapsed by calculating their signal to noise ratio (with respect to the BSA control)

before performing hierarchical clustering based on Euclidean distance andWard’s linkage method. Clusters were extracted with the

Dynamic Tree Cut function.124 After assigning each FFA to a cluster, we performed differential expression analysis based on cluster

labels and BSA controls (based on the vst count matrix) and calculated adjusted p-values for each gene (Mann–Whitney U,

Bonferroni).

Gene Set Enrichment Analysis
For gene set enrichment analysis (GSEA), gene lists for each FFA transcriptome were ranked by log2 fold changes as compared to

BSA control to weigh genes according to their differential expression vs control. MsigDB H: HALLMARK gene sets, C2: KEGG and

REACTOME gene sets and C5: GO BP gene sets were tested for enrichment.20,120 250 Genesets with the most common, significant

differential enrichment across the whole FFA library were selected and transformed into a normalized enrichment score (NES) matrix.

Hierarchical clustering of those genesets resulted in the genemodules presented in Figure 2A. Pearson correlation analysis of human

islet gene expression91 was performed using MATLAB 2020a (MathWorks), as previously described.138 Genes significantly corre-

lated withCMIP (FDR < 0.01,Benjamini-Hochberg) were subjected to KEGG pathway analysis using Metascape and visualized using

Cytoscape.

Rank-rank hypergeometric overlap (RRHO)
The R package RRHO2125 was used to perform RRHO analysis to evaluate the cutoff-free overlap in differential expression results

from FFA Clusters (C1-C5) versus human islets28 and mouse pancreatic beta cells.43 RRHO2 plots show a heatmap with four
Cell Metabolism 35, 887–905.e1–e11, May 2, 2023 e10



ll
OPEN ACCESS Resource
quadrants to display the overlap between expression list comparisons. This includes: downregulated observations in both data sets

(top right, Figures S2E and S2F), downregulated in the comparative data and upregulated observations in our data (bottom right,

Figures S2E and S2F), upregulated in the comparative data and downregulated observations in our data (top left, Figures S2E

and S2F) and upregulated observations in both data sets (bottom left, Figures S2E and S2F). For each comparison, one-sided enrich-

ment tests were used on -log(p-values) with default step size for each quadrant.

Structural analysis of FFAs
Molecular structural features were generated with the MOE software. A complete list of generated features are summarized in

Table S5. Detailed descriptions of these features are available in the MOE user manual (v2016.08). The molecular feature matrix

was filtered for non-constant features across the FFA library and transformed into z-scores. To decrease the linear dependence be-

tween features, meta-features were extracted from the original molecular features by hierarchical clustering based on Pearson cor-

relation and Ward’s linkage method (cutreeDynamic, WGCNA, R package).124 Clustering was performed iteratively until the

maximum Pearson r correlation coefficient between any two meta-features was less than 0.8 (n=3 iterations). The first principal

component of molecular feature clusters were used to define meta-features.

The random forest classifier (RFC) was performed (randomForest; R package).126 Optimal values for ntree (number of trees to

grow) and mtry (number of variables randomly sampled as candidates at each split) were determined empirically based on the clas-

sification accuracy of the RFC run on the entire dataset. The RFC was then run with leave-one-out cross validation. Meta-feature

importance measures for RFC prediction were calculated (importance).

Morphological feature analysis
Confocal images were acquired as described for Cell Painting using the Opera Phenix High Content Screening System

(#HH14000000, Perkin Elmer).31 Image analysis was performed using Harmony software (PerkinElmer). Single nuclei were first iden-

tified using Hoechst staining. Associated cell bodies around each nuclei were identified by the ‘‘find cytoplasm function’’ method A

(individual cutoff 0.1) from the Harmony software in the 488 nm channel. ER and mitochondrial regions were identified (Find Image

Region) based on their respective channels (stained with Concanavalin A and MitoTracker respectively) For each cell, the standard

morphological features (area and roundness); as well as advanced STAR (Symmetry, Threshold compactness, Axial or Radial) and

SER (Spots, Edges, Ridges) morphology for ER and mitochondria were calculated. A full list of extracted features is summarized in

Table S6. Data was exported per cell object, and downstream analysis was performed in R.

MAGMA analysis pipeline
The MAGMA software22 (v 1.07) was used to perform SNP annotation, gene analysis to generate ranked lists of genes from GWAS

summary statistics and gene set analysis (GSA) according to the instructions provided in the user manual. For multiple hypothesis

testing we used a permutation-based approach to generate an empirical Null Hypothesis to account for the enrichment of beta cell

genes in previous T2D GWAS analyses. For each gene set, we generated 1000 randomly sampled gene sets based on the MIN6

transcriptome of the same size and calculated the FDR accordingly.
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