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Evaluating batch correction methods for
image-based cell profiling
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High-throughput image-based profiling platforms are powerful technologies
capable of collecting data from billions of cells exposed to thousands of per-
turbations in a time- and cost-effective manner. Therefore, image-based pro-
filing data has been increasingly used for diverse biological applications,
such as predicting drug mechanism of action or gene function. However,
batch effects severely limit community-wide efforts to integrate and inter-
pret image-based profiling data collected across different laboratories and
equipment. To address this problem, we benchmark ten high-performing
single-cell RNA sequencing (scRNA-seq) batch correction techniques,
representing diverse approaches, using a newly released Cell Painting
dataset, JUMP. We focus on five scenarios with varying complexity, ranging
from batches prepared in a single lab over time to batches imaged using
different microscopes in multiple labs. We find that Harmony and Seurat
RPCA are noteworthy, consistently ranking among the top threemethods for
all tested scenarios while maintaining computational efficiency. Our pro-
posed framework, benchmark, and metrics can be used to assess new batch
correctionmethods in the future. This work paves the way for improvements
that enable the community to make the best use of public Cell Painting data
for scientific discovery.

Image analysis has become a cornerstone of biological and biomedical
research. Combining fluorescent labeling with advanced optical
microscopy now allows us to visualize biological morphology, struc-
tures, and processes at unprecedented spatial and temporal resolu-
tion. Furthermore, high-throughput microscopy can now extract
precise information about morphological changes caused by thou-
sands of specific genetic or chemical perturbations. Analysis of the
resulting image-based profiles – the typically thousands of measure-
ments extracted from images of cells to capture their phenotype – can
be used to deduce gene functions and disease mechanisms, as well as
characterize mechanism and toxicity of potential therapeutics1,2. An
image-based profile is a vector of valueswhere each value corresponds
to a particular morphological feature such as size, shape, intensity or
texture of the cell or of subcellular structures. Image-based profiles are
measured at the single-cell level but can be aggregated to the well or

perturbation level, such that an experiment produces a very large
matrix with rows as samples (cells, wells, or perturbations) and col-
umns as features.

The most commonly used multiplex image-based profiling assay
is Cell Painting3,4. Cell Painting uses six dyes to label eight cellular
components (nucleus, nucleolus, endoplasmic reticulum (ER), Golgi,
mitochondria, plasma membrane, cytoplasm, and cytoskeleton) that
are imaged in five channels. Thus, each image-based profile captures
rich morphological features that are extracted using automatic image
processing and analysis pipelines. This approach offers single-cell
resolution, captures valuable population heterogeneity, and provides
distinct information frommRNAprofiling5–10 andproteinprofiling11 at a
low cost, with reagent costs of less than 25 cents per well and a yield of
1000–2000 single cells per well3. Importantly, Cell Painting image-
based profiles of cells exposed to different genetic or chemical
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perturbations have been successfully combinedwithmachine learning
strategies to generate predictivemodels that support key steps indrug
discovery and development1,12.

The broad applicability and the predictive power of Cell Painting
data improves with the number of image-based profiles that can be
used to either generate mechanistic hypotheses or build predictive
models. Despite efforts from individual companies to create proprie-
tary datasets12, a large-scale, publicly available Cell Painting dataset is
needed for thefield tomaximally advance.Otherfields of biology, such
as genomics, have proven the benefits of having a shared dataset in
addition to shared goals.

Thus, to construct such a database, we recently partnered with
colleagues from pharmaceutical companies, technology providers,
and non-profit organizations to form the Joint Undertaking for Mor-
phological Profiling (JUMP) Cell Painting Consortium13. These efforts
resulted in the 2023 release of the first large-scale public dataset of
image-based Cell Painting profiles, capturing data from more than
140,000 chemical and genetic perturbations13,14. A large, public dataset
is most useful if it can be successfully queried using new profiles
generated by individual laboratories in the future. With this in mind,
the Consortium went to great lengths to embrace technical variation
by exchanging compounds and generating images across twelve dif-
ferent laboratories which use varying pieces of equipment. This pro-
cess created the opportunity to develop strong batch correction
methods to align the data sources, which can then be used by future
data generators.

The key challenge in aligning data across datasets is the presence
of “batch effects”15. In large-scale biological experiments, data is often
collected in multiple batches, where a batch refers to a group of
samples processed together under uniform conditions. Batch effects
are data variations that are not due to the biological variables being
studied, but rather due to unintended technical differences arising
from factors such as reagent lots, processing times, equipment cali-
bration, or experimental platforms.

The definition of batch depends on the context of the data. In this
paper, we consider two levels of batches: experimental batches, where
multiple plates are produced simultaneously, and laboratory batches,
where multiple experimental batches are produced within the same
facility. Notably, even within a single laboratory, data may still be
subject to batch effects due to factors such as unintentional changes in
lamp intensity, staining concentration, and cell seeding or growth rate.
Furthermore, Cell Painting experiments have an inherent hierarchical
structure,with each readout originating froma regionwithin awell of a
multi-well plate, which in turn comes from an experimental batch at a
particular laboratory.

Batch correction refers to methods which reduce batch effects,
thus improving the ability to detect true biological signals. Only a
handful of batch correction methods have been developed and tested
for image-based profiling. No systematic and comprehensive com-
parison and evaluation of such methods has been performed, making
it unclear whether the available methods offer a reliable approach for
dealing with batch effects in image-based profiling. Recent evaluations
of single-cell RNA sequencing (scRNA-seq) batch correction methods
have highlighted important limitations. These include the insufficient
performance of normalization alone for removing batch effects16, the
lack of a consistently superior method16–19, the introduction of new
artifacts while performing batch correction20, and the need for expert
guidance when applying these methods21,22. Therefore, it remains
unknownwhether any of the scRNA-seq batch correctionmethods can
be reliably applied to image-based profiles.

Here, we analyzed ten high-performing scRNA-seq batch correc-
tion methods, representing diverse approaches. We used qualitative
visualizations along with four metrics that capture reduction in batch
effects and six metrics that capture preservation of biological signals.
We used the newly released public database created by the JUMP Cell

Painting Consortium13 to test the performance in the context of five
commonuse cases:multiple batches froma single laboratory,multiple
laboratories using the same microscope with few and many com-
pounds, and multiple laboratories using different microscopes with
few and many compounds. Given the practical constraints of working
with large image-based profiling data, we focused our evaluation on
population-averaged well-level profiles rather than single-cell level
profiles. Population-averaged well-level profiles are computed by
mean-averaging themorphological feature vectors for all cells in a well
extracted with CellProfiler23. We analyzed correction methods in the
context of the replicate retrieval task (finding the replicate sample of a
given compound across batches/laboratories), and we found that
existing methods are effective in reducing batch effects in image-
based profiles for some of the evaluated scenarios. Among the meth-
ods tested, Harmony24 and Seurat25,26, both developed for processing
scRNA-seq data, offered the best balance of removing batch effects
and conserving biological variance. More broadly, the benchmark
dataset, evaluation framework, and metrics we describe here will
enable future assessment of novel batch correction methods as they
emerge. Effective batch correction will advance the field and allow Cell
Painting data to realize its potential for scientific discovery.

Results
Selection of batch correctionmethods and evaluation strategies
A major part of our work was to comprehensively survey methods for
batch correction, as well as strategies for their evaluation. Given the
rapid advancements in the field of scRNA-seq, particularly in the
development of methods to address batch correction, we focused our
attention on this area. We decided to test a subset of the better-
performingmethods identified in a recent analysis of scRNA-seq batch
correction methods17,19. These methods were available in Python or R
and required no additional metadata. Additionally, the chosen meth-
ods were representative of different approaches and included linear
methods (Combat27 and Sphering28), neural-network based methods
(scVI29 and DESC30), a mixture-model based method (Harmony24), and
nearest neighbor-based methods (MNN31, fastMNN32, Scanorama33,
Seurat-CCA25, and Seurat-RPCA26). We excludedmethods like BBKNN34

that do not correct the underlying profiles (Supplementary Table 3).
We will briefly summarize the main characteristics of these

methods, to enable the reader to place our results in the appropriate
context. Combat27 models batch effects as multiplicative and additive
noise to the biological signal and uses a Bayesian framework to fit
linear models that factor such noise out of the readouts. Sphering28

computes a whitening transformation matrix35 based on negative
controls and applies this transformation to the entire dataset. It
requires every batch to include negative control samples for which
variations are expected to be solely technical. scVI29 is a variational
autoencoder model for scRNA-seq data and learns a low-dimensional
latent representation of each input that reduces batch effects. DESC30

trains an autoencoder along with an iterative clustering algorithm to
remove batch effects and preserve biological variation, and requires
the knowledgeof thebiological variable of interest as input, whichmay
be unknown at the batch correction stage. Harmony24 is an iterative
algorithm based on expectation-maximization that alternates between
finding clusterswith highdiversity of batches, and computingmixture-
based corrections within such clusters. The MNN, fastMNN, Scanor-
ama, and two Seurat methods all rely on identifying pairs of mutual
nearest neighbor profiles across batches, and correcting for batch
effects based on differences between these pairs. MNN31 was the first
implementation of this concept, with each of the other methods pre-
senting adaptations optimized for specific applications. fastMNN32 is a
computationally-efficient implementation for batch correction of
large datasets by some of the original MNN authors, where the main
speed gains are achieved by performing PCA prior to finding the
nearest neighbors. Scanorama33 is optimized for large, heterogeneous
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datasets by finding approximate nearest neighbors within a low-
dimensional space, and by finding nearest neighbors across all data-
sets instead of between each pair of datasets. This relaxes the
assumption that each pair of datasets must contain at least one com-
mon sub-population and is supposed to prevent overcorrection. The
Seurat methods each search for neighbors within some joint low-
dimensional space (Seurat-CCA25 defined by canonical correlation
analysis and Seurat-RPCA26 defined by reciprocal PCA). CCA makes
stronger assumptions about shared sub-populations and performs
well when the cell state/type composition is similar between datasets,
while RPCA allows for more heterogeneity between datasets and is
faster36 for large datasets (Supplementary Fig. 7). The nearest neighbor
methods differ across many specific implementation details and in
whether they return batch corrected data in the original feature space
or in some low-dimensional latent space. We refer interested readers
to the original publications for more details. All tested batch correc-
tion methods except Sphering require batch labels, Sphering alone
requires negative control samples, andonlyDESC additionally requires
biological labels. FastMNN, MNN, Scanorama, and Harmony necessi-
tate recomputing batch correction across the entire dataset whenever
new profiles are incorporated. While Sphering, Combat, scVI, and
DESC don’t require recomputation, they don’t guarantee performant
corrections for new profiles from an unseen source.

Developed initially for scRNA-seq data, these methods also apply
to morphological profiles, despite inherent biological and statistical
differences. Most foundational assumptions about the methods,
including the use of vector space metrics to reveal similarities, remain
valid in the image-based profiling domain (SeeMethods:Distributional
assumptions). However, we note a crucial difference in the manner we
have applied these methods. Given the sheer volume of data in large
image-based profiling datasets, which may contain billions of single
cells (SupplementaryTable 1) compared to themillions typically found
in scRNA-seq, it is computationally impractical to apply thesemethods
at the single-cell level. Importantly three out of the ten methods
require computing batch correction across the entire dataset. This
means that subsampling, a strategy often used to manage large data-
sets, is not a viable option for those. Thus, we evaluated thesemethods
based on their ability to correct batch effects in population-averaged
well-level (or pseudo-bulk) profiles, rather than single-cell level pro-
files. Importantly, this shift does alter the distribution of the features,
but we believe this is an acceptable trade-off given the computational
constraints and the overall goal of correcting batch effects at a
broader level.

Beyond batch correction methods for scRNA-seq, we also
reviewed those specifically designed for image-based profiling data
analysis. A small handful of past research in this domain incorporated a

step for batch correction. Such approaches can be split broadly into
two categories: those based on (a) pre-computed feature transforma-
tion and (b) representation learning.

Pre-computed feature transformation approaches learn a trans-
formation of features that have been extracted from images. In such
workflows, commonnormalization steps have been described37 to deal
with interplate and intraplate normalization - these aim to reduce local
variances, but they are limited when technical variations are strong.
Sphering28 is the most used batch correction method for feature-
transformation-based profiles widely applied in Cell Painting
pipelines9,38 and was included in our testing.

Next, we considered which dataset to use as a benchmark in our
evaluation. RxRx139 and RxRx340 datasets are resources for image-
based profiling, with millions of images associated with thousands of
compounds, but derive from a single, highly-quality-controlled
laboratory so cannot be used to assess methods aiming to correct
more dramatic batch effects. We chose the JUMP Cell Painting Con-
sortium data specifically because it originated from a diverse range of
laboratories using different instruments and protocols, thus capturing
the heterogeneity typical of large public datasets. Unlike other public
resources that contain data from a single source, the diversity of data
sources in the JUMP dataset provides a robust testbed to develop
methods that can generalize to other heterogeneous datasets. It also
allows mimicking a situation where an individual laboratory might
attempt to align their data with public data collected in multiple
laboratories. We assess five batch correction scenarios with increasing
technical heterogeneity where each scenario represents a more chal-
lenging batch correction task.

We computed four metrics that report the effectiveness in
removing batch effects and six metrics to measure how well the cor-
rection preserves biological information (Fig. 1), previously reported in
scRNA-seq benchmarks16,17,19. The list of the ten quantitativemetrics we
used in this study are described in the Metrics section. We also use
UMAP41 visualizations as a qualitative tool for assessing batch correc-
tion effectiveness.

Scenario 1: Single microscope type, single laboratory, multiple
batches, few compounds, multiple replicates
In this scenario, we analyzed 302 landmark compounds present on the
Target2 plates (see Methods: Dataset description), where each com-
pound is present in each of the 13 experimental runs/batches pro-
duced by a single laboratory (source_6). There were a median of 21
replicates per compound. Given that profiles were generated in the
same laboratory, with many replicates and relatively low technical
variance, this simplified scenario helped us establish a baseline for the
best possible results while also guiding the pipeline that could be

Num Replicates
Scenario Microscopes Labs Compounds (mode/median)
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2

3
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1

1

1

3

3

1

3

3

3

5

302

302
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Fig. 1 | Evaluationpipeline.Weevaluatedfive image-basedprofiling scenarioswith
different image acquisition equipment (high-throughputmicroscopes), laboratory,
number of compounds and number of replicates. We used a state-of-the-art

pipeline for image analysis. We compared ten batch correction methods using
qualitative and quantitative metrics.
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applied across all more complex scenarios. We considered the
experimental run as the batch variable because it is themost dominant
confounding source within a single laboratory’s data.

Image-based profiling requires carefully designing feature
extraction and preprocessing pipelines to accurately represent the
biological content of images. Preprocessing refers to the transforma-
tion and filtering steps that prepare raw data for in-depth analysis42.
Our preprocessing pipeline comprised four steps: (1) low-variance
feature removal; (2) median absolute deviation normalization43, which
rescales plate-wise individual features; (3) rank-based inverse normal
transformation44, which transforms a variable into one that more clo-
sely resembles a standard normal distribution; and (4) feature selec-
tion, which removes redundant features using by correlation
thresholding. See Methods: Preprocessing pipeline for details. We
refer to this processed representation as the Baseline.

To quantify batch correctionmethods, we examined two kinds of
metrics16,17,19: (1) batch removalmetrics that capture howwell amethod
removes confounding variation from data; and (2) conservation of
biological variance, termed here as bio-metrics for short, that capture
the ability to preserve the variation related to a known biological
variable (e.g, chemical compound in our case). There is a trade-off
between bio-metrics and batch removal metrics. A method could
remove all of the confounding batch variation but simultaneously
destroy the biological signal in the data. Also notice that someof these
metrics are sensitive to the number of samples per concept of interest
(e.g. compound), others focus on a notion of local neighborhood, and
others consider more global arrangement. Because different metrics
capture different aspects of the correction procedure, and no indivi-
dual metric captures both effects, we took them all into consideration
when making comparisons between multiple batch correction meth-
ods. The average of such metric scores has been shown to be a rea-
sonable ranking criterion17,19. To make interpretation easier, every
metric here was normalized between 0 and 1, with 0 being the worst
performance and 1 being the best. These quantitative metrics (Sup-
plementary Fig. 1) guided the selection of the preprocessing steps to

be used as our Baseline approach, in agreement with established
protocols in the field43. All remaining results in this paper apply this
four-step preprocessing.

Following the preprocessing, we applied each of the ten batch
correction methods described above that have previously been
identified as top-performing methods when applied to scRNA-seq
data. We reiterate that we used pseudo-bulk profiles and did not
attempt batch correction at the single-cell level due to the compu-
tational time required to process up to billions of cells included in a
typical image-based profiling experiment. Qualitatively, the 2D
projection of the profiles after applying ten different methods, in
addition to our Baseline, shows no clusters associated with any
particular batch (Supplementary Fig. 2). This suggests that all the
methods were successfully mixing the profiles from different bat-
ches. However, we noticed that Harmony, fastMNN, and the Seurat
methods better grouped the data points associated with the same
compound than others, suggesting that these methods are more
effective at preserving biological information. Here, positive control
compounds exhibited better clustering (see Methods: Dataset
description), which was expected as these compounds were chosen
based on the strong phenotype in previous Cell Painting
experiments45.

When evaluating the quantitative metrics (Fig. 2), all ten methods
showed similar performance overall. In comparison to the Baseline,
Combat and MNN achieved slightly better batch correction. In sum-
mary, Scenario 1 helped us optimize our evaluation pipeline, showing
that the Baseline preprocessing produced good quality data for sub-
sequent batch effect correction.

Scenario 2: Single microscope type, multiple laboratories, few
compounds, multiple replicates
In this scenario we analyzed the Target2 302 compounds from 43
experimental runs/batches produced by three laboratories using the
same model of microscope. Scenario 2 has the same compounds as
Scenario 1, but includes two additional laboratories and therefore has

Fig. 2 | Evaluation scenario 1. Quantitative comparison of ten batch correction
methods measuring batch effect removal (four batch correction metrics) and
conservation of biological variance (six bio-metrics). Metrics are mean aggregated

by category. Overall score is the weighted sum of aggregated batch correction and
bio-metrics with 0.4 and 0.6 weights respectively.
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more replicates (Fig. 1). We considered laboratory ID (identifier) as the
batch variable because it is the most dominant confounding source
(Supplementary Fig. 3). The Baseline approach was not able to inte-
grate data from multiple laboratories, and batch effects were notable
in the embedding, with the clusters being driven by the batch variable.

Unlike Scenario 1, Scenario 2 revealed variations in the efficacy
of the methods when removing the confounding variable effect.
Scanorama, the Seurat methods, Harmony, fastMNN, and scVI
clustered samples from multiple laboratories more effectively than
other methods. On the other hand, the Sphering correction did not
improve the performance with respect to the Baseline. MNN, Com-
bat and DESC did not differ substantially from the Baseline. When
observing the embeddings labeled by compound (Supplementary
Fig. 3), Scanorama, the Seurat methods, Harmony, fastMNN, and
scVI were able to group samples from the same compound. On the
other hand, the Baseline and Sphering showed clusters with
laboratory ID as the major separation criteria, creating one cluster
per laboratory–compound pair.

Consistent with these qualitative observations, Scanorama, the
Seurat methods, and Harmony were also the top performer in the
quantitative metrics (Fig. 3) for both batch removal and conservation
of biological variance criteria. Taken together, we observed that by
introducing stronger technical variations, i.e. analyzing data from
multiple laboratories, the performance of batch effect correction
methods decreased compared to Scenario 1; however, methods’
rankings remained relatively consistent, with Harmony and all nearest
neighbor-based methods except for MNN showing superior
performance.

Scenario 3: Single microscope type, multiple laboratories, mul-
tiple compounds, few replicates
In this scenario we analyzed 82,278 compounds from 43 experimental
batches produced by three laboratories using the same model of
microscope.We again used laboratory ID as the batch variable because
it is the most dominant confounding source (Supplementary Fig. 4).

This scenario posed an additional challenge due to the reduced
number of replicates for most of the compounds; around 15,000
compounds had only one replicate, and ~ 79,000 had 3 or fewer
replicates (Supplementary Fig. 7). Importantly, the eight positive
controls had around 2500 replicates each.

Quantitatively (Fig. 4), the Seurat methods, Scanorama, fastMNN,
Harmony, and scVI again obtained better results than the Baseline,
Sphering, Combat, and MNN achieved comparable performances to
the Baseline, while DESC underperformed in both bio-metrics and
batch metrics. Overall, the increased complexity of the dataset resul-
ted in all methods struggling to remove the batch effects, which
remained notable after correction attempts. Compared to Scenario 2,
the methods were generally less effective when dealing with more
compounds and fewer replicates.

Scenario 4: Multiple microscope types, multiple laboratories,
few compounds, multiple replicates
In this scenario we analyzed the Target2 302 compounds from 46
experimental runs/batches produced by five laboratories using three
different high-throughput imaging systems. Three sources used the
CellVoyager CV8000 system, one source used the ImageXpress Micro
Confocal system, and one source used the Opera Phenix system. This
Scenario was similar to Scenario 2 given the same number of unique
compounds; however, in Scenario 4 the batch effects are mainly
influenced by the differences in imaging technologies (Fig. 5D) We
again considered laboratory ID as the batch variable to stay consistent
with Scenarios 2 and 3.

The top sixmethods ranked by the quantitative metrics were also
qualitatively better (Fig. 5B, C, D), with Seurat CCA generating the best
quantitative results (Fig. 5A). Similar to Scenario 2 and 3, MNN and
Combat did not differ substantially from the Baseline. scVI out-
performed linear models, and DESC and Sphering underperformed
with respect to the Baseline. Compared to Scenario 2, the performance
consistently decreased across methods and metrics, with the batch
correction metrics exhibiting the highest drop. This indicates that the

Fig. 3 | Evaluation scenario 2. Quantitative comparison of ten batch correction
methods measuring batch effect removal (four batch correction metrics) and
conservation of biological variance (six bio-metrics). Metrics are mean aggregated

by category. Overall score is the weighted sum of aggregated batch correction
and bio-metrics with 0.4 and 0.6 weights respectively.
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introduction ofmultiplemicroscope types had a strong impact in each
method’s ability to align the data.

Compared to Scenario 2, the performance consistently decreased
across all of the methods in most of the metrics, and the batch
metrics exhibited the highest drop, indicating that differences
in instrumentation had a strong impact on the methods’ ability to
align the data. Notably, the bio-metrics did not change substantially
compared to Scenario 2, suggesting that relevant patterns can still be
uncovered in the presence of substantial batch effects so long as
the batch is not confounded with the experimental factors of
interest.

Scenario 5: Multiple microscope types, multiple laboratories,
multiple compounds, few replicates
In the final, most complex scenario, we analyzed 82,412 compounds
from 60 experimental runs/batches produced by five laboratories
using different microscope systems as described in Scenario 4. We
used laboratory ID as the batch variable. Again, we found that the
differences between microscopes were the strongest confounding
factor (Supplementary Fig. 5C). The 2D embeddings for Combat,
MNN and Sphering form several clusters; however those are still
dominated by the source (Supplementary Fig. 5B). Qualitative com-
parison helped us differentiate between methods that failed to
integrate data from different sources and/or laboratories, but was
less useful to check whether they preserved the biological informa-
tion given the number of compounds being plotted in only two
dimensions.

The quantitative results (Fig. 6) revealed that Seurat CCA out-
performed other methods in batch correction metrics, and the Seurat
methods and Harmony achieved the highest bio-metrics score. Com-
pared to the Baseline batch correction scores, scVI showed marginal
improvement, the linear methods performed similarly, and DESC
underperformed. Notably, this scenario yielded the weakest overall
performance, with a substantial decline in batch correction scores
compared to Scenario 3. This decline can be attributed to the

integration of data fromdiversemicroscope systems alongwith a large
number of unique compounds.

Discussion
High-throughput image-based assays represent powerful strategies for
making biological discoveries and facilitating development of new
therapeutics. These assays, such as Cell Painting, capture large
amounts of data that can be used to connect genetic or pharmacolo-
gical perturbations to specific changes in cellular morphology and/or
phenotype. Over the last decade, the amount of image-based data has
grown exponentially. However, the benchmarking, processing, man-
agement, comparison and evaluation of image-based profiles remains
challenging. One of the biggest challenges for the field has been the
lack of robust batch correction methods, making it difficult to com-
pare image-based profile data fromdifferent instruments, laboratories
or even between different batches from the same laboratory. Without
such solutions, public databases will be of limited use. Here, we
address this problem by creating a framework for evaluation and
systematic comparison of batch correction methods for image-based
profiling. We applied our strategy to comparing ten different batch
correctionmethods thatwere originally developed for usewith scRNA-
seq data.

Overall, across five relevant scenarios of increasing complexity
that we tested (batches within a lab, across laboratories and across
imaging instrumentation, all with more or fewer compounds), we
found that nearest-neighbor approaches such as Seurat, FastMNN and
Scanorama performed better than other tested methods when mea-
suring batch correction metrics (Supplementary Table 2). Harmony
and Seurat consistently performed well in bio-metrics. We consider
Harmony and Seurat RPCA to be noteworthy, obtaining top-three best
mean rank metrics for all the scenarios we tested and being compu-
tationally efficient. In less complex scenarios, simpler methods may
suffice; for example, for data generated in the same laboratory with
many replicates of the compounds, the Baseline was sufficient to
correctmost of the batch effects, even though fastMNNand the Seurat

Fig. 4 | Evaluation scenario 3. Quantitative comparison of ten batch correction
methods measuring batch effect removal (four batch correction metrics) and
conservation of biological variance (six bio-metrics). Metrics are mean aggregated

by category. Overall score is the weighted sum of aggregated batch correction and
bio-metrics with 0.4 and 0.6 weights respectively.
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methods performed slightly better. We observed that as technical and
biological variance increases in the latter scenarios, linearmodels such
as Combat or Sphering fall short in aligning the data.

It’s important to point out possible limitations for extensibility
of the most performant methods. Although Seurat CCA out-
performed othermethods tested, it does not scale well for large data;
we estimate it would take 17 days to process the entire JUMP dataset
(Supplementary Fig. 7). To the best of our knowledge, Seurat RPCA
and FastMNN currently only provide R implementations, which may
limit their adoption in the image-based profiling community that
relies mostly on Python libraries. Harmony, Scanorama, MNN, and
FastMNN require processing of all the data to re-align new batches
against an existing dataset. This has a major impact on the ability of
users to align their data with a large public dataset as it requires
reprocessing and modifying existing representations in their
entirety. Therefore, further strategies, such as domain adaptation
techniques46,47 and self-supervised methods tailored for tabular
data48 may represent promising alternatives. These methods,
grounded in machine learning principles, are inherently flexible,
allowing for incremental learning and the integration of new data
without altering the previously established representations. While
still in the exploratory stages for our context of image-based profil-
ing, these approaches have demonstrated potential in similar high-
dimensionality scenarios and may provide an effective solution to

batch alignment challenges that arise when incrementally expanding
large datasets49,50.

Importantly, we discovered that in the most difficult-to-align sce-
narios, when there are more than a few hundred compounds and more
than one microscope type, none of the methods are able to adequately
remove the batch effects (Supplementary Fig. 8). In fact, the best
methods provide the greatest improvement in the least difficult-to-align
scenarios. This raises a call for advancements from the field. Our study
focused on bulk (population-averaged) profiles, but applying batch
correction to single-cell profiles (likely subsampled) or even raw pixels
may yield better results. Although neural networks have been explored,
implementation and evaluation of these methods at the JUMP-dataset
scale with billions of cells still represents a challenge. Methods eval-
uated in this benchmark process tabular data extracted with standard
image processing algorithms23. An alternative approach is to learn
representations from images38,51. Designing neural network archi-
tectures and representation learning algorithms specifically for Cell
Painting is an active research area, as is studying the interaction
between these methods and batch correction techniques. Our bench-
mark establishes a baseline for future studies comparing the perfor-
mance of batch correctionmethods for learning-based representations.

Additionally, investigating quality control techniques beyond
those employed in this studymay further enhancebatch correction for
methods sensitive to outliers. In downstream tasks, occasional

Fig. 5 | Evaluation scenario 4. A Quantitative comparison of ten batch correction
methods measuring batch effect removal (four batch correction metrics) and
conservation of biological variance (six bio-metrics). Metrics are mean aggregated
by category. Overall score is the weighted sum of aggregated batch correction and
bio-metrics with 0.4 and 0.6 weights respectively. Visualization of integrated data
colored by B Compound, C Laboratory, and D Microscope. Left-to-right layout

reflects the methods’ descending order of performance. We selected 18 out of 302
compounds with replicates in different well positions to account for position
effects thatmay cause profiles to look similar; the embeddings are the same across
B-D but samples treated with compounds other than the selected 18 are not shown
in B. Alphanumeric IDs denote positive controls. Source data are provided as a
Source Data file.
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technical artifacts in a single batch are typically not a problem,because
it is commonplace to aggregate five replicates of the same perturba-
tion, with each replicate in a different batch, by computing themedian
profile. This reduces the impact of outlier wells or batches.

It is worth noting that most scenarios contain hierarchical com-
plexity, such as well position, plate, batch, and source/microscope,
yet all scenarios consider only a single batch label for correction.
Performing correction at multiple levels, for example, through itera-
tive merging where data are first aligned across plates, then across
batches, etc., could potentially improve results. However, this
approach may not be compatible with all correction methods, parti-
cularly those that transform the feature space.

In our evaluation, we aggregate multiple metrics into a single
score for method comparison. While this approach simplifies the
ranking process, alternative aggregation methods that consider the
relative importance and relationships between different metrics could
be explored. In addition to the performance metrics evaluated in our
study, usability criteria such as ease of installation and documentation
quality are important considerationswhen selecting abatch correction
method. Luecken et al.19 (Extended Data Fig 9) performed a detailed
assessment of usability that included all methods we tested, except
Sphering. Both of the top two methods in our study (Seurat and Har-
mony) scored very highly across all usability metrics.

Methods
We confirm our research complies with all relevant ethical regulations.
Given the computational nature of this study, no board committee or
institution was required to approve the protocol used. No statistical
method was used to predetermine sample sizes. No data were exclu-
ded from the analyses, other than the features that were removed in
the feature selection step (see Methods: Preprocessing pipeline).

Dataset description
The JUMP Cell Painting dataset13 is a collection of several datasets that
were either generated or reprocessed by the JUMP Cell Painting

Consortium. The primary dataset (cpg0016-jump, referred to as
cpg0016 for brevity) was generated during the data production phase
of the JUMP-CP project. It was generated across 13 data producing sites
(or sources) and comprises a compound dataset (116,753 perturba-
tions), an Open Reading Frame gene overexpression dataset (15,142
perturbations) and a CRISPR gene knockout dataset (7977
perturbations).

Apositive control plate of 302diverse compounds–named JUMP-
Target-2-Compound – was run with every batch of data generation.
These plates not only allow alignment of data within the JUMP dataset,
but also with future datasets generated outside the consortium and
can thus be considered as control plates. In this paper, JUMP-Target-2-
Compound plates are referred to as Target2 plates for brevity; the
remaining plates – comprising the 116,753 chemical perturbations –

are referred to as Production plates.
All Production plates have negative controls and several positive

controls to identify and/or correct for different experimental artifacts.
Dimethyl Sulfoxide (DMSO) -treated wells serve as negative controls.
They are used for detecting and correcting plate to plate variations.
They can also be used as a baseline for identifying perturbations with a
detectable morphological signal.

Metrics
Wesurveyed various evaluation strategies and considered them for the
context of image-based profiling batch correction. Unlike the scRNA-
seq domain, where multiple benchmark studies exist16,17,19, image-
based profiling lacks a comprehensive comparison of batch effect
correction methods and agreed evaluation criteria. Image-based pro-
filing warrants its own baseline and set of evaluation metrics because
the typical dataset design differs from scRNA-seq in several key ways.
Many scRNA-seq batch correction methods focus on preserving sub-
populations of different cell types with partly known labels inferred
from thedata itself - a challenging evaluation task. Additionally, scRNA-
seq datasets usually cover a relatively small set of perturbation/donor-
level labels due to logistical and financial constraints. In contrast,

Fig. 6 | Evaluation scenario 5. Quantitative comparison of ten batch correction
methods measuring batch effect removal (four batch correction metrics) and
conservation of biological variance (six bio-metrics). Metrics are mean aggregated

by category. Overall score is the weighted sum of aggregated batch correction and
bio-metrics with 0.4 and 0.6 weights respectively.
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image-based profiling typically involves a single cell type but covers
hundreds to tens of thousands of different perturbations. This vast
increase in known labels enables more rigorous, quantitative evalua-
tion of batch correction methods, but also introduces computational
efficiency challenges.

Quantitative evaluation of batch correction methods takes two
main forms: using bespoke metrics to directly quantify batch effect
removal and conservation of biological variance, or indirectly exam-
ining the expressivity of corrected image-based profiles through sub-
sequent analysis tasks. An indirect approach is to utilize downstream
tasks such as image classification52 and perturbation replicate retrieval
across batches53 as a measure of the expressivity of the image-based
profiles after correction. Used in isolation, this indirect approach may
fail to detect the presence of batch effects in situations where the
experimental covariates (e.g. plate ID) correlate with the labels of the
downstream task (e.g. samples’ replicates).

Sypetkowski et al.39 proposes a direct approach with their batch
generalization and batch classification accuracy metrics. Batch gen-
eralization utilizes a perturbation classifier to compute the perfor-
mance ratio between batches used for training the classifier and a
held-out set of batches. A high ratio indicates a corrected repre-
sentation that’s not heavily influenced by the batch. Batch accuracy
trains a classifier to predict the batch ID based on the corrected
representation; batch accuracy is low if batch correction has per-
formed well. However, this approach also requires the tuning of
additional classification pipelines during evaluation, making the
comparison of batch correction methods somewhat less straight-
forward. Lastly, Kim et al.‘s51 evaluation provides another direct
approach, using silhouette score, graph connectivity, and local
inverse Simpson’s index (LISI) to quantify batch effects across dif-
ferent representation learningmethods. Their evaluation is similar to
our Scenarios 1 and 2.

We computed four metrics for batch removal efficiency and six
metrics to measure how well the correction preserves biological
information, previously reported in scRNA-seq benchmarks16,17,19. They
are implemented in the scib package19. To make interpretation easier,
every metric is normalized between 0 and 1, with 0 being the worst
performance and 1 being the best. Metrics are mean aggregated by
category.

A short description of each metric is provided below. Mathema-
tical definitions are provided in Luecken et al.19.

• ASW-based: The average silhouette width (ASW) is a measure of
how well a sample is assigned to its cluster. Silhouette Label
metric considers the compound as the cluster ID; while Silhouette
Batchmetric considers the confounding variable as the cluster ID.

• Graph_conn: Uses the k-NN graph to measure the connectivity of
each sample and those that belong to the same compound. This
metric assumes that if the batch effects were effectively removed,
then the elements of the same biological concept should be close
together.

• LISI-based: Local Inverse Simpson’s Index (LISI) is a metric based
on the Simpson’s diversity Index to measure the diversity of a
sample’s local neighborhood in the data. LISI batch uses the
confounding variable to measure such diversity; while LISI label
uses the compound annotations to measure such diversity.
Variability in LISI label scores is <1e-3 formost of the scenarios.We
confirmed this high-value low-variance behavior is also present in
the scRNA-seq benchmarks19. We keep it for the completeness of
its counterpart LISI batch.

• kBET: K-nearest neighbour batch effect test (kBET) compares the
global distribution and the local distribution of the confounding
variable for each sample in the dataset. If the confounding
variable is effectively removed, then such distributions should be
similar.

• Leiden ARI and Leiden NMI: Adjusted Rand Index (ARI) and Nor-
malized Mutual Information (NMI) measure the agreement
between two clustering assignments. Leiden ARI and Leiden NMI
metrics computes agreement between the clustering assignments
of the Leiden algorithm applied over the corrected data and the
compound annotations.

We additionally report mean average precision (mAP)54 as a bio-
metric (how distinguishable are samples of the same compound
from other compounds – i.e., are they retrieved towards
the top of a list of samples ranked by similarity to the query com-
pound?). We measure similarity between samples using cosine
similarity.

Following the information retrieval convention, each sample in
the dataset is considered a query; M � 1 other samples sharing the
same compound are considered positive elements to be retrieved; and
N samples comprising either (1) wells from the same plate as the query
but treated with a different compound (mAP nonrep), or (2) the
negative controls from the same plate (mAP control), are considered
negative elements. For each query, a rank list is computed using the
cosine similarity between the query profiles and the remaining ðM �
1Þ+N profiles. This ranked list is scored using average precision55,
which assesses the probability that positive elements will rank highly
on the list. AP of the ith query can be expressed via relative change in
recall:

APi =
XðM�1Þ+N

k = 1

ðRk�1 � RkÞPk ,

where
Rk =

TPk
M�1 is recall at rank k (recall@k)

Pk =
TPk
k is precision at rank k (precision@k),

TPk is the number of all positive elements retrieved up to rank k.
Finally, we average the AP across all replicates of the compound,

termed mAP for that compound.

mAP =
1
M

XM
i= 1

APi

UMAP visualization
We utilize UMAP visualizations as a qualitative tool for assessing
batch correction effectiveness. While we acknowledge the issues
associated with UMAP, as highlighted in recent studies showing how
extreme dimensionality reduction can significantly distort high-
dimensional data56, we still employ UMAP visualizations for qualita-
tive assessment of batch correction. This approach is useful for visual
analysis: clusters corresponding to biological characteristics suggest
successful correction, but clusters aligned with batch variables
may indicate inadequate correction. Nevertheless, we recognize the
need for caution in interpreting these visualizations due to the
potential distortions inherent in such dimensionality reduction
techniques.

Distributional assumptions of tested batch correction methods
The batch correction methods tested in this work make different
assumptions about the data distributions:

• scVI: Assumes negative binomial distribution for the features.
• Harmony: Assumes batch effects can be removed by iterative
linear transformations. There are no assumptions on feature
distributions.

• Combat: Assumes features are normally distributed and batch
effects are multiplicative and additive noise27.
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• DESC: Assumes technical differences across batches are smaller
than true biological variations. There are no assumptions on fea-
ture distributions.

• Sphering: Assumes that negative controls sampled from different
batches ought to be similar to each other in the biological sense,
and anydeviations from this normal-looking phenotype are rather
technical. We applied sphering as described in Caicedo et al.9.

• MNN: Assumes batch effects are orthogonal to the biological
information.

• fastMNN: Same assumption as MNN. Also assumes that nearest
neighbors in low-dimensional space (PCA) correspond to nearest
neighbors in high-dimensional space.

• Scanorama: Same assumption as MNN. Also assumes that nearest
neighbors found by hyperplane locality sensitive hashing and
random projection trees approximately correspond to the opti-
mal nearest neighbors.

• Seurat CCA: Same assumption as MNN. By searching for nearest
neighbors within the shared CCA latent space, it also assumes a
high sub-population overlap across datasets.

• Seurat RPCA: Same assumption as MNN. By searching for near-
est neighbors on reciprocal projections onto each dataset’s
PCA space, it assumes less sub-population overlap than
Seurat-CCA.

Preprocessing pipeline
The 4762 CellProfiler features measure shape, color, texture, and pixel
statistics. These features vary widely in scale and distribution, neces-
sitating preprocessing. After exploring various strategies (detailed in
SupplementaryMaterial: Preprocessing Exploration), we implemented
the following four-step procedure:

Variation filtering
The first step is to filter out features with low variance. We defined the
absolute coefficient of variation Cvar of a feature X as:

Cvar =
eσ
eX
����

����,

whereeX = median Xð Þeσ = median Xi � eX��� ���� �
We compute Cvar for every feature plate-wise using control wells

only. We discard features with any Cvar < 1e�3.

Median absolute deviation
For every plate, we compute eX and eσ using the control wells only. Then
for every well in a plate we transform the feature values as follows:

bXi =
Xi � eX

eσ

Rank-based Inverse normal transformation (INT)44

Y i =Φ
�1 ri � c

N � 2c+ 1

� �

With ri being the rank of the i-th sample,N the number of samples
and c = 3

8 as suggested in Blom44

Feature selection
We select features using the correlation_threshold function
in Pycytominer57. For feature pairs with correlation exceeding 0.9, the
feature showing the highest total correlation with other features is
excluded.

Statistics & reproducibility
No statistical method was used to predetermine sample sizes. No data
were excluded from the analyses, other than the features that were
removed in the feature selection step.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the corresponding data is available as part of the cpg0016-jump
dataset13, available from the Cell Painting Gallery on the Registry of
Open Data on AWS, and released under CC0 1.0 Universal license.

Code availability
All code to reproduce this analysis is provided as a reproducible
Snakemake58 pipeline at https://github.com/carpenter-singh-lab/2023_
Arevalo_BatchCorrection59.
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