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Modern quantitative image analysis techniques have enabled
high-throughput, high-content imaging experiments. Image-based

profiling leverages the rich information inimages to identify similarities or
differences among biological samples, rather than measuring a few features,
asin high-content screening. Here, we review a decade of advancements and
applications of Cell Painting, a microscopy-based cell-labeling assay aiming
to captureacell’s state, introduced in 2013 to optimize and standardize
image-based profiling. Cell Painting’s ability to capture cellular responses to
various perturbations has expanded owing to improvementsin the protocol,
adaptations for different perturbations, and enhanced methodologies for
feature extraction, quality control, and batch-effect correction. Cell Painting

isaversatile tool that has been used in various applications, alone or with
other -omics data, to decipher the mechanism of action of acompound,

its toxicity profile, and other biological effects. Future advances will likely
involve computational and experimental techniques, new publicly available
datasets, and integration with other high-content data types.

Phenotypic drug discovery (PDD) involves using a living system to
identify compounds that alter the phenotype of agiven disease. PDD
has evolved from screening a few compounds in animals to testing
millions in cell models. By contrast, target-based drug discovery
(TDD) identifies compounds that interact with a pre-selected tar-
get. Althoughbothapproaches haveyielded therapeutics, mounting
evidence suggests that PDD yields more first-in-class medicines than
does TDD'. Notably, many drugs approved by the US Food and Drug
Administration (FDA) lack a defined molecular target, and several
drugs do not work through their purported target®. Therefore, phe-
notypic strategies have gained favor precisely because they allow
compoundsto be exploredin atarget-agnostic manner, whichis espe-
cially appealing for diseases that are polygenic or are associated with
undruggable targets.

High-content screening (HCS) is an effective and efficient phe-
notypic screening strategy that uses microscopy as the readout’. HCS
captures and measures cell phenotypes in images and can identify
candidate targets (for example, when genetic perturbations are
screened) and therapeutics (when small molecules are screened). At
the core of HCS is cellular morphology—the visual appearance of cells,
usually stained for cell structures or biomarkers—which is intricately
linked to cell physiology, health, and function (Supplementary Table 1
lists some common keywords used in HCS assays).

Amajor developmentemergedin 2004, when Perlmanetal. dem-
onstrated that, instead of tailoring an image-based assay to measure
a particular phenotype of interest, images can be used in a relatively
unbiased way (aside from the choice of experimental conditions) to
group drug treatments that have similarimpacts on cell morphology*.
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Fig.1|Morphological profiling using Cell Painting. a, Schematic of the Cell
Painting assay; cells are incubated and perturbed and a set of six stains is

applied. b, Images are then obtained in five channels by automated microscopy
followed by nucleus and cell body segmentation. ¢, Appropriate software or
deep-learning-based methods are applied to measure or calculate morphological
features from theimages. d, After feature preprocessing, downstream analysis

Concanavalin A: ER

is performed. Thisincludes a variety of methods, including supervised and
unsupervised machine learning, to better elucidate the biological effects of a
compound, such as its mechanism of action or safety profile. e, f, Adaptations
ofthe Cell Painting assay include BODIPY to mark lipid dropletsin lipid-
accumulating cells (e) and a coronavirus antibody against human coronavirus
229E (CoV-229E) viral protein (f).

This finding, combined with advances such as transcriptional profiling
and automated sample preparation and microscopy, helped launch
the field of image-based profiling and the use of image assays that
maximize information content®”’.

The most popular image-based profiling assay is Cell Painting,
first describedin 2013 (ref. 8). Cell Painting ‘paints’ the cell with many
fluorescent dyes to mark major organelles or components, aiming to
captureits phenotypic state and responses to perturbations (Fig. 1a).
The standard dyes for Cell Painting are Hoechst 33342 (which stains
DNA), concanavalin A (endoplasmic reticulum), SYTO 14 (nucleoli
and cytoplasmic RNA), phalloidin (f-actin), wheat germ agglutinin
(WGA) (Golgi apparatus and plasma membrane), and MitoTracker
Deep Red (mitochondria). The Cell Painting assay was designed to be
easy and inexpensive to implement, requiring no custom equipment

beyond the proper microscopefilters and relying solely on dyes, rather
than antibodies. Multiplex staining is followed by processing with
automated imaging pipelines (whether deep-learning-based or using
classical methods, such asinthe open-source CellProfiler’) that extract
morphological profiles and standardize them against reference and
control compounds (Fig. 1b). This approachyields a high-dimensional
dataset for each cell and captures more than1,000 morphological fea-
tures, including size, shape, texture, and intensity. The morphological
profiles are processed to apply various normalizations and batch-effect
corrections and are then used for downstream analysis (Fig. 1c).
Although anyimage set canbe used forimage-based profiling, the
Cell Painting assay is widely used in academic and industry research.
Here, we aim to comprehensively examine the advances and impacts of
Cell Painting indrug discovery and related areas over the past decade
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Fig.2| Overview of studies included in this systematic review and publication
trends. a, The Preferred Reporting Items for Systematic Reviews and Meta
Analyses flow chart showing the selection of the 90 studies included in this
systematic review. Records from manual searchincluded select articles
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published after the June 2023 cut-off date. b, The growth in the number of
publications reviewed in this systematic review between 2013 and 2023. ¢, The
journal titles in which the works were published.

(2013-2023), following a systematic review format not aiming to cap-
ture the entire field of image-based profiling. We explore how meth-
odological advances have improved the robustness of the assay and
discuss how Cell Painting has deepened our understanding of disease
processes and shaped therapeutic discovery. Importantly, we discuss
theintegration of Cell Painting with machine learning and other -omics
data. Wealso explore the role of Cell Painting in predictive toxicology
and its significance in improving the safety and efficacy of drugs.
Overall, we provide a comprehensive perspective on the impact and
potential of the Cell Painting assay in drug discovery.

Systematic analysis of Cell Painting literature

Study selection

We conducted a systematic review of Cell Painting studies by retrieving
340 articles from PubMed, Scopus, and ScienceDirect (accessed June
2023) using the keyword ‘Cell Painting’ (in the title, abstract, subject
terms, and/or keyword headings). The search was limited to articles
writtenin English after 2012, and articles had to be peer-reviewed, with
some exceptions for key preprints. Reviews, news articles, posters,
thesis abstracts, and perspective papers were notincluded as primary
researcharticles (these areinstead listed in Supplementary Table 3and
referenced where applicable). After removing duplicates (207) and
review articles (41), 92 articles underwent full-text analysis. Following
further screening, 21 studies were excluded (18 were irrelevant and 3
were a poster, thesis, or news article), and a manual search added 19

relevant studies, including some published after June 2023 (listed in
Supplementary Tables 2 and 3). This resulted in 90 studies for review,
as shown in the preferred reporting items for systematic reviews and
meta analyses flow chart (Fig. 2a), withincluded and excluded studies
listed in Supplementary Tables 2 and 3, respectively.

Extracted data

We extracted data from Cell Painting assay publications, including
authors, year, keywords, and journal title, and manually categorized the
research question and major outcome. The assay’s usage is increasing,
with most studies published between 2021 and 2023 (Fig. 2b). SLAS Dis-
covery(Society for Laboratory Automation and Screening) was the most
popularjournal (Fig. 2c), reflecting the assay’s acceptancein the drug
discovery and screening community. Other top publication choices
include computational journals (for example, in cheminformatics),
and journals in chemical biology and toxicology.

Advancementsin Cell Painting

Assay development

The Cell Painting protocol was first developed by Gustafsdottir et al.
in 2013 at the Broad Institute. It was designed to be a low-cost,
high-throughput single assay that could capture many biologically
relevant phenotypes®. As described above, six stains were selected
andimaged infive channels to reveal morphological changes for eight
cellular components or organelles (Fig. 1b). Gustafsdottir’s publication
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established the moniker ‘Cell Painting’; however, an updated protocol
(v2), with minor adjustments, was published in 2016 by Bray et al.”.
Arecent effort optimized the assay’s cost and reproducibility, culminat-
ingin Cell Painting v3in 2022 (ref.11). To create the updated protocol,
the JUMP-CP (Joint Undertaking for Morphological Profiling — Cell
Painting; www.jump-cellpainting.broadinstitute.org) Consortium
used a positive control plate of 90 compounds covering 47 diverse
mechanisms of action to, for the first time in our knowledge, quanti-
tatively optimize staining reagents, as well as experiment and imaging
conditions". Other studies optimized parameters, such as the duration
of cell culture and image-acquisition conditions'>".

Cell line selection. Flat cells that rarely overlap are best for
image-based assays—most cell lines meet this criterion. Ingeneral, doz-
ens of celllines have performed well in Cell Painting experiments, and
thus the choice often depends on the goal. For example, the JUMP-CP
Consortium used U20S (osteosarcoma) cells because large-scale data
existedin this cell type, and Cas9-expressing clones are available>',

Arecent study investigated the selection of optimal cell lines for
image-based profiling, because different cell lines can vary in their
sensitivity to specific mechanisms of action (MoAs) of compounds®.
Cell Painting was used to profile 3,214 small molecule compounds on
six cell lines: A549, OVCAR4, DU145, 786-0, HEPG2, and afibroblast cell
line derived from a person without cancer. These compounds were all
annotated with information about their putative target and MoA, and
included FDA-approved drugs. The cell lines were ranked on the basis
of their ability to detect compound activity (termed ‘phenoactivity’,
or ‘phenotypicactivity’) and to predict the compound’s MoA (termed
‘phenotypic consistency’). Here, phenotypic activity refers to the
strength of the morphological phenotypes detected by the Cell Paint-
ing assay, whereas MoA consistency describes the extent towhich the
compound phenocopies other compounds with the same annotated
MoA. The best cell lines for detecting phenotypic activity had poor
sensitivity for predicting MoA, and vice versa. This discrepancy could
reflect the diverse genetic landscapes of different cell lines, which
might influence the expression of targets and the cellular pathways.
For example, the HEPG2 cell line’s tendency to grow in highly compact
colonies makes it difficult to detect alterations in cell organelles and
thus blurred phenotypic distinctions between compound-treated
and control groups. It should be noted that in this study, compounds
were tested inthe same well positions across plates from different cell
lines, which caninflate phenotypic activity metrics. To avoid potential
effects owing to well position, the locations of the compounds can be
scrambled across plates.

Another study showed that the Cell Painting sample-preparation
protocolwas effective without any cell-line-specific adjustment across
six biologically diverse and morphologically distinct human-derived
celllines (U20S, MCF7,HepG2, A549, HTB-9, and ARPE-19)". It was nec-
essary to optimizeimage acquisition and cell-segmentation parameters
onlyto account for differencesin the size and three-dimensional (3D)
shape of each cell line when cultured in monolayers. Most of the 14
tested reference chemicals showed a pronounced phenotypic effect
across all cell lines, often below cytotoxic and cytostatic concentra-
tions. However, for all but one chemical, the most sensitive features
were differentin each cellline. Thus, similar concentrations of achemi-
cal altered the cellular morphology across cell types, but the specific
morphological change depended onthe celltype. Over the past decade,
the basic Cell Painting protocol has been used on dozens more cell
lines without adjustment, on the basis of our observations from the
literature and personal communications.

Adaptations of the Cell Painting Assay. Adaptations of the Cell
Painting assay have emerged that replace some of the original dyes
with alternative fluorescent dyes to increase the spectral range and
facilitate delineation of other cellular compartments and structures.

For example, LipocyteProfiler (Fig. 1d) incorporates BODIPY to mark
lipid dropletsinlipid-accumulating cells to study metabolic disease”.
In another study, MitoTracker was replaced with an antibody against
human coronavirus 229E (CoV-229E) viral protein, introducing the
opportunity to multiplex Cell Painting with specific targets (Fig. 1e)™s.

Expanding the range of perturbations. In addition to modifying
the assay protocol, some studies explored the type of perturbation,
going beyond small-molecule compounds. Singh et al. explored RNA
interference (RNAi)-induced knockdown using the Cell Painting assay
and found that morphological signatures were highly sensitive and
reproducible, but there were off-target ‘seed’ effects of RNAIi rea-
gents that dominated the signatures'. These seed effects occur when
ashortregion ofthe RNAimolecule, known as the seed sequence, binds
non-specifically to multiple mRNAs. Other technologies include open
reading frame (ORF) constructs that enable gene or protein overex-
pression®® and CRISPR knockout to deplete expression®. A challenge
with atarget-agnostic assay, such as Cell Painting, is that compounds
that are active in the assay can have multiple mechanisms of action,
complicating the interpretation of agiven bioactivity”®. One practical
solution is to include known reference perturbations; various sets of
recommended control and landmark perturbations have beenrecently
introduced by theJUMP Consortium, including two compound plates
and ORF and CRISPR perturbation plates'>". Dahlin et al. generated
a set of Cell Painting and cellular health profiles for 218 prototypical
cytotoxic and prototypical ‘nuisance’ compoundsin U20S cellsinacon-
centration-response format (0.6-20 pM)?*. Nuisance compounds, in
this context, are substances that frequently show up as hitsin screening
assays but are ultimately considered undesirable because their effects
are often non-specific, artifactual, or due to properties that interfere
withthe assay rather than aspecific biological activity of interest. This
set of compounds thus serves as a valuable resource of controls to
include inimage-based profiling experiments.

Optimization of microscopy imaging parameters. Although
high-throughput imaging platforms have advanced over the past
decade, improving speed and resolution, Tromans-Coia et al. found
that various microscope imaging systems performed similarly and
changingacquisition settings only minimally affected Cell Painting pro-
file strengths™. Key setting alterations that improved morphological
signatures included decreasing magnification, surprisingly, but only
because thisincreasesthe number of cellsimaged. The study provides a
general set of recommendations for Cell Painting, applicable to several
microscopes. It suggests that cells should be imaged at x20 magnifica-
tionacross four to nine sites (fields of view), capturing approximately
2,500 cells per well, at least for the cell types considered in the study.

Extraction of morphological features from fluorescent images.
Cell Painting images are often analyzed using software to extract
morphological features, following the segmentation of cellular and
subcellular structures. The open-source CellProfiler® software is one
example; however, other solutions are also used, including proprietary
ones (for a detailed review, see Smith et al.”*). Cimini et al. note that
although small-scale image analysis can be performed using CellPro-
filer on desktop computers, large-scale analysis (1,000 images) can
be computationally intensive and time-consuming andisbestrunona
high-performance computing cluster or cloud computing resource”.
We have not discussed processing times for Cell Painting datain detail
because technological advances quickly render estimates obsolete.
Alternative approaches to classical feature extraction have
emerged, leveraging deep-learning models to recognize features
directly from raw images.These include DeepProfiler?, a tool specifi-
cally designed for morphological profiling of Cell Painting images; deep
learning architectures such as convolutional neural networks (CNNs);
and vision transformers such as DINO (a self-supervised learning
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method)>?. These approaches, in some cases, skip the single-cell
segmentation and can increase the performance of Cell Painting pro-
files. For example, deep learning has shown animprovement of up to
29% over CellProfiler features when assessed using mean average preci-
sion (mAP) for classifying chemical perturbations?. Steps to further
process the Cell Painting data, from morphological feature extraction
to profile normalization to batch-effect correction, discussed later, are
also continually improving.

Extraction of morphological features from label-free brightfield
images. Replacing the informationin fluorescentimages with bright-
fieldimaging enables the analysis of living cells over time, and reduces
the costs, labor, and time needed to stain cells. Although brightfield
imaging does notyield a clear contrast of all the cellular compartments
labeledin Cell Painting, the use of deep-learning methods could poten-
tially augment the informationavailablein brightfield images, making
this aworthwhile tradeof.

In one study, deep-learning models were used to predict five Cell
Painting fluorescent channel images from brightfield images, and
CellProfiler features were calculated from the predicted images and
the ground-truthimages®. The models were trained on approximately
3,000 images (using one field of view per well from 17 batches) and
then tested with 273 images. The predicted images achieved a mean
Pearson correlation of 0.84 with the ground truth at the pixel level;
the authors further compared extracted CellProfiler features from
the ground-truth images versus predicted images obtained using
brightfield microscopy. Although many morphological features
extracted from the generated images showed substantial correlation
with those from the ground-truth images (>0.6 correlation) and 30
features showed a correlation greater than 0.8, prediction of the fea-
tures fromthe AGP (actin, Golgi, plasma membrane) and mitochondrial
channels was more challenging. To determine whether this level of
pixel-level and feature-level correlationis sufficient for biological goals,
they performed adownstream analysis and investigated the ability of
models to predict compounds similar to positive controls, finding
eight compounds using ground truth and the label-free images, with
four compoundsin the intersection.

Another study tested the ability of CNN-based features extracted
frombrightfield images versus those extracted from fluorescence Cell
Painting images to predict 10 MoA classes”. The features were addi-
tionally compared with CellProfiler features extracted from the Cell
Paintingimages. Interestingly, allmodels showed comparableresults
in distinguishing the MoA of 231 compounds from 10 MoA classes®.
Usingactivation maps, they determined which areasin theimages were
most activated for the deep-learning-based feature extractors, and
found that the models focused on different cellular features depend-
ing ontheimage type used for training. For example, when predicting
the MoA for the compound 4SC-202, the models had an accuracy of
0.89, 0.04, and 0.29 when using brightfield, fluorescent images, and
CellProfiler features, respectively; the brightfield heatmap showed
strong activation for small vesicles that are visible in the brightfield
images but are not stained in the Cell Painting protocol. Despite the
limited number and range of MoAs tested, this study suggests that
applying deep learning to brightfield images holds great promise
to augment or replace fluorescent stains in Cell Painting assays, sav-
ing time and money. In fact, early reports from the biotech company
Recursion indicate that a transition from using Cell Painting to more
commonly using brightfield imaging is occurring™.

Feature selection for Cell Painting profiles. Not all morphological
features extracted from cellimages areinformative. For agiventask, or
evenforageneral representation of cell phenotype, feature-selection
methods are generally used to filter features and are available from
virtually all data-analysis libraries (for example, www.scikit-learn.org).
Pycytominer, a software package designed for analyzing Cell Painting

data, incorporates feature-selection methods that reduce redundancy
andincrease informativeness of features®. Other approaches, such as
AutoML (automated machine learning), enable the most informative
features from Cell Painting datasets to be identified faster®’. Using
AutoML, Siegismund et al. found that a subset of only 20-30 features
was sufficient to represent the most relevantinformation from the mor-
phological profile and to successfully differentiate between the control
class and perturbations. However, results will likely vary, depending
ontheendpoint being classified and the amount of data and diversity
of phenotypesin the profiled dataset.

Normalization and batch correction for Cell Painting profiles.
Experimental design of Cell Painting assays can substantially impact
the efficacy of normalization methods attempting to mitigate technical
variation, such as batch effects. For example, Janosch et al. explored the
selection of features solely using dimensionality reduction methods
onimages from negative controlsin order to discover new phenotypes
based on only negative controls®. Typical analysis pipelines use Pycy-
tominer tonormalize dataat the platelevel, correcting each well either
by using all wells on the plate, if they are not expected to be enriched
in displaying a particular phenotype, or solely the negative control
wells, if they are sufficient innumber (using the RobustMAD method)®..
Pycytominer alsoimplements the sphering transformation (also called
‘whitening’), which can be viewed as a multivariate standardization
strategy'®*. Sphering Cell Painting profiles was found to increase the
percent replicating score—a measure of reproducibility of replicates
of each sample—from 24-30% to 83-84% (for compounds at 10 pM)**,
buttheseresults are likely confounded by plate layout effects and have
not been consistently high across studies.

When analyzing Cell Painting data, computing median profiles is
apopular choice that averages data from multiple cells within a well™.
This approach offers benefits like reduced data size, faster analysis,
simplified interpretation, and potentially less noise, but it assumes cell
homogeneity, which can obscure subtle differences between cells.
Although median profiles provide a summary of the cell population
with a single value per feature, single-cell analysis offers heterogene-
ity analysis but at the cost of increased complexity, noise, and longer
analysis time.

Ongoingresearch aimsto best capture the cell population hetero-
geneity toimprove profile performance without unwarranted increase
in processing speed or noise; van Dijk et al. discuss cell heterogene-
ity in representations of cell populations in the Cell Painting assay™.
Single-cell analysis canidentify subpopulations, characterize hetero-
geneity, and inform experimental design, makingit valuable for study-
ing complex biological systems. Despite these advantages, median
profiling remains the most popular approach for high-throughput
image-based profiling campaigns.

As part of the JUMP Cell Painting Consortium, Arevalo et al. con-
ducted a thorough analysis of 10 batch effect correction methods
selected and adapted from a single-cell mRNA profiling benchmark
study but applied to Cell Painting average profiles®. They used quali-
tative visualizations in combination with 10 metrics to assess perfor-
mance on image-based profiles, focusing on batch effect reduction
and preservation of biological signals. These methods were applied
toJUMP Cell Painting Consortium data for five scenarios of increasing
complexity: batches from within and between different laboratories,
within and between different imaging equipment, and with low and
high numbers of replicates. They found Harmony and Seurat RPCA
noteworthy, consistently ranking among the top three methods for
all tested scenarios while maintaining computational efficiency. Yet,
overall, they found existing batch-correction methods’ efficacy under-
whelming. The proposed framework, benchmark, and metrics canbe
used to assess new batch-correction methods in the future. This work
paves the way for improvements that enable the community to make
the best use of public Cell Painting data for scientific discovery.
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Table 1| Large publicly available Cell Painting datasets covering compound or genetic perturbations

Dataset Release date Cellline Number of unique perturbations (compounds or genetic) References
Bray et al. Cell Painting dataset January 2017 U-20S 30,616 compounds 17
Recursion RxRx3 dataset January 2023 HUVEC 17,063 CRISPR-Cas9-mediated gene knockouts (most 18
anonymized) and 1,674 compounds at 8 concentrations
JUMP-CP dataset March 2023 U-20S Over-expression of 12,602 genes, knockout of 7,975 genes 14
using CRISPR-Cas9; 116,750 unique compounds
Periscope dataset August 2023 HelLaand A549  Whole-genome pooled optical, >20,000 single-gene 19

CRISPR-Cas9-mediated gene knockout screens

Deep-learning models are being explored for batch correction,
aiming to distinguish noise from true biological signals in Cell Paint-
ing data. Yang et al. investigated a mean-teacher-based model called
DeepNoise, which was tested on the RxRx1 dataset consisting 0f 125,510
fluorescent microscopy images from Recursion for the CellSignal
competition®. The study found that DeepNoise achieved amulticlass
accuracy 0of 99.60%, compared with 74.58% using plate-based normali-
zation. The results should be interpreted with caution; the inaccessi-
bility of the test dataset labels prevented extensive comparisons with
other models and further analysis of predictions on each of the four cell
types, and additional metrics such as specificity and sensitivity would
be helpful. Leakage from training to test setis likely also a confounding
issue. Despite these limitations, the study indicates that deep-learning
methods may be more effective at learning batch-effect patterns in
Cell Painting datasets than are standard normalization approaches.

Publicly available datasets

Cell Painting has been used to profile chemical compounds and
genetic-perturbation libraries in numerous datasets that are publicly
available. The Cell Painting Gallery provides a centralized location for
these datasets*’. Currently, there are four large public datasets (each
representing tens of thousands of perturbations) for compound and/
or genetic perturbations (Table 1). Figure 3a gives adistribution of the
datasets used in the 90 studies reviewed in this work. Several visu-
alization tools have been developed to explore the JUMP-CP dataset:
Broad Institute (broad.io/jump-explore), Ardigen (ai.ardigen.com/
jump-cp-consorcium), Spring Discovery (www.springscience.com/
jump-cp),and the Max Planck Institute of Molecular Physiology (cpcse.
pythonanywhere.com).

Applications of Cell Painting data

The processing and downstream analysis of Cell Painting data (Fig. 1c),
often using machine-learning and statistical approaches, has enabled
the identification of complex patterns and accurate predictions for
many goals. Machine-learning algorithms are particularly well-explored
for analyzing morphological profiles to predict the activity, safety, and
toxicity of unknown compounds, bothinvitroandinvivo,and to predict
MoAs and targets. Supervised methods are used when labeled datasets
areavailable (thatis, the ‘correct answer’, or ground truth, is known for
each sample), enabling the algorithms to be trained to predict specific
outcomes and patterns from feature representations. Unsupervised
methods are used to investigate the similarities among samples in
the feature space itself (for example, to group genes or compounds)
without needing labeled data. In the following sections, we discuss
the applications of Cell Painting data, using machine-learning and
statistical approaches, to aid drug discovery.

Predicting mechanisms of action

Cell Painting offers an unbiased view of cellular responses to compound
perturbations, enabling the identification of MoAs for compounds that
induce specific morphological changes (Table 2). This identification
processinvolves comparing the phenotype of aquery compound with
those of ‘landmark compounds’ with known MoAs, or with the gene

encoding the protein targeted by the compound (or other genetic
perturbationsinthe same pathway). However, defining acompound’s
MoA is complex because compounds can have multiple targets with
varying affinities. Additionally, protein targets, and proteins up- and
downstream of the direct targets, can be differentially expressed in vari-
ous celltypes. Asaresult, binary annotations for MoAs in datasets often
oversimplify reality (see Trapotsi et al. for more details)*’. Moreover,
the breadth of MoAs that can be adequately described by any profil-
ing assay, including Cell Painting, transcriptomics, or proteomics, is
limited because none can capture every possible cellular response. The
applicability of Cell Painting data for each MoA must be established
separately. The most commonly detected MoAs in Cell Painting read-
outs include microtubule modulation****, DNA-damaging agents?,
mitochondrial membrane depolarisation**°, lysosomotropism®*,
and inhibitors of the plasma membrane Na* pump*, among others
(Table 2).Itisimportant to note that MoA is abroad term, and studies
in this section may involve protein-target-related MoA predictions
(often termed drug-targetinteractions) or biological-process-related
MoA predictions.

The impact of stain choices and cell type on MoA identification
has recently been evaluated. Cimini et al. analyzed 90 compounds
comprising47 diverse MoA classes, and found that collected datawere
robust to dropping individual Cell Painting channels; however, data-
sets were small, and specific phenotype(s) of interest may depend on
compartments that were less critical for the compoundsin the study".
Although they did not use Cell Painting, Cox et al. studied the impact of
diverse fluorescence markers and cultured cell lines in morphological
profiling of 1,008 approved drugs and well-characterized compounds
(218 unique MoAs) at four concentrations. They used 15 reporter
cell lines (three cell lineages labeled with 12 organelle and pathway
markers grouped in five combinations)*. The best individual cell
line was able to distinguish 20 of 83 MoAs (the authors considered
MoAs that had at least three active compounds). The number of dis-
tinguishable MoAs increased with each cell line but quickly plateaued;
ultimately, 41 of 83 MoAs were readily distinguished using data from
all15reporter celllines.

Computational approaches can also improve MoA classification
accuracy. Forexample,Janosch et al.explored dimensionality-reduction
methods to improve compound MoA classification®. They hypothe-
sized thatif afeature remains reproducible across all negative control
wells, any significant changes would likely be due to a perturbation,
rather than a technical variation. They benchmarked their method
withaLl-normregularization then classified MoAs using the reduced
features. Removal of the noisiest parameters improved MoA classifi-
cation accuracies (from 17.66% to 20.19% for the BBBC022 dataset)
and showed better generalization when they trained models without
seeingaclass. Therefore, thismethod canbe used to select features for
downstream analysis, and the authors suggest thatit couldbeimproved
by applying deep-learning methodologies.

The MoA of many compounds has been determined using Cell
Painting and a ‘guilt by association’ strategy*®. Autoquin, a previously
uncharacterized autophagy inhibitor, was found to induce similar
morphological changes in the Cell Painting assay to those caused
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Fig. 3| Analysis of datasets and leading institutions in studies using Cell
Painting datasets. a, Analysis of the frequency of various Cell Painting datasets
used inreviewed studies. Of the 90 studies reviewed in this work (some studying
more than one dataset), smaller scale datasets or in-house datasets were
analyzed in at least 44 studies, Broad Institute datasets in 35 studies, and the
JUMP-CP dataset was used in at least six studies, despite its recent release. ‘New/

AstraZeneca
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Others’ refer to studies using datasets that were smaller in scale and/or in-house
datasets that were not released publicly. b, Number of academic institutions,
government agencies, pharmaceutical companies, and non-profit organizations
that led studies evaluated in this work and/or are members of the JUMP-CP or
OASIS consortium (left), with word cloud illustration (right). Further details are
available in Supplementary Table 2 and Supplementary Table 4.

by oxautin-1 (ref. 49). Both autoquin and oxautin-1 have been shown
to inhibit autophagy through indirect modulation of the activity of
lysosomal enzymes, and autoquin has been revealed to increase Fe*'
levels in lysosomes. Svenningsen et al. investigated the mechanism
of action of 9-methylstreptimidone, finding a high Pearson correla-
tion (p = 0.94) with cycloheximide, a known protein-synthesis inhibi-
tor, and confirmed its similar effects in a dose-dependent manner®’.
Other compounds have been found to modulate microtubules* and
inhibit pyrimidine biosynthesis (inhibiting target dihydroorotate
dehydrogenase)®.

Despite these successes, predicting MoAs for cases in which ref-
erence (or ‘landmark’) compounds do not exist remains a significant
challenge. These unclassified MoAs involve changes in cellular behav-
ior not seen in reference compounds, making it difficult to identify
and characterize these mechanisms through guilt by association.
The lack of prior knowledge and annotations for unclassified MoAs
hinders the development of effective machine-learning models for
prediction. Integrating orthogonal approaches can provide a more
comprehensive understanding of cellular behavior and alleviate this
barrier. In one instance, combining Cell Painting with thermal pro-
teome profiling enabled the discovery of diaminopyrimidine DP68
asaolreceptorantagonist®. In this case, Cell Painting revealed many
potentially lysosomotropic central-nervous-system-targeting drugs
that were biosimilar to diaminopyrimidine DP68, and it was challeng-
ing to discern whether the lysosomotropic effect or the o1 receptor
interaction was responsible for the phenotype®. Thermal proteome

profiling allowed the authors to narrow it down to the ol receptor
interaction.

Cell Painting assays have also been used to determine the MoA of
dark chemical matter (DCM). DCM compounds have drug-like features
but, after hundreds of assays, have revealed no biological activity,
raising the question of whether they are indeed inert or whether their
biological activity is very precise and just not yet discovered*>. Pahl
etal. profiled 7,700 DCM compounds with the Cell Painting assay and
discovered thataremarkable12% resulted insignificant morphological
changes (compared withaDMSO control)**. They were able toselecta
subset of morphological features most affected by compounds from
13 distinct bioactivty clusters. These subprofiles could then be used to
identify the MoAs for new compounds by comparing them with com-
pounds with known MoAs. Using their approach, the authors identified
compounds associated with microtubule modulation, DNA synthesis,
and pyrimidine biosynthesis.

Not all MoAs are desirable; in fact, some compounds are known
to be frequent hits in assays with well-characterized toxic effects and
are thus dubbed nuisance compounds. Dahlin et al. found that some
morphological clusters of nuisance compounds were associated with
cellular injury (for example, a genotoxin cluster and a tubulin poi-
sons cluster)?. Other clusters represented other MoAs, including
non-specific ‘historical’ KAT inhibitors (hKATIs). Interestingly, at higher
concentrations, some compounds triggered a cellular response called
a ‘cytotoxicity burst’ that activated multiple stress responses within
the cell, rather than affecting a singular target.
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Table 2 | Mechanisms of action detected by Cell Painting

MoA Biological process, direct targets Source
Cell cycle inhibition Cellcycle arrestinthe Sor G2 phase 66,120
Microtubule disruption  Microtubule organization, 42,58,66
aurora kinase inhibitors,tubulin
polymerization inhibitor
Cytoskeletal Actin dynamics, microtubule 42
disruption destabilizers
Protein synthesis Protein synthesis inhibitors 66
inhibition
DNA damage Ribonucleotide reductase inhibitors,  58,66,121
PARP inhibitors, topoisomerase
inhibitors, pyrimidine biosynthesis
Apoptosis induction Caspase activation, mitochondrial 43,80
disruption, death receptor signaling
Autophagy Autophagosome formation, 49,84
lysosomal degradation, autophagy
flux
Membrane integrity Membrane poration, lipid 22
disruption peroxidation
Mitochondrial Mitochondrial respiration, ATP 43,122
dysfunction synthesis
Oxidative stress ROS production, antioxidant 84
response
ER stress Unfolded protein response, 84
ER-associated degradation
Hormonal modulation ~ Hormone receptor activation, signal 66
transduction, retinoid receptor
agonists
Lipid metabolism Lysosomotropism and cholesterol 66,121
inhibition homeostasis regulation, HMGCR
inhibition
Signal transduction ALK tyrosine kinase receptor 58,66,121
inhibition inhibition, src inhibitor, JAK inhibitors,
AKT-PIBK-MTOR inhibitors
lon channel Na*/K" ATPase 121
modulation
Epigenetics HDAC inhibitors, BET proteins 66,121
Metabolism PPAR receptor antagonism, carbonic 58,66
anhydrase inhibition HMGCR
inhibition, ATPase inhibitors
Protein homeostasis HSP inhibitors 66
Adhesion disruption Cadherin function, integrin signaling
Angiogenesis VEGFR inhibitor 122
inhibition
Immune modulation Receptor antagonist, tumor necrosis 122
factor
Proteolysis inhibition Matrix metalloprotease inhibitors 58

Cell Painting has detected various MoAs across multiple pathways, as shown in publicly
available studies. However, this is not an exhaustive list, and MoAs are not always annotated.
As such, signals for MoAs in Cell Painting data must be established on a case-by-case basis.

MoA identification has been enhanced by the application of deep
learning for image feature extraction. Instead of using pre-defined
classicalimage features, deep-learning feature extractors are adept at
extracting meaningful information directly from Cell Painting images
and cantherefore reduce bias and improve reproducibility by eliminat-
ing the need for feature engineering (Fig. 4).

An early study by Durr et al. developed a CNN that classified
single-cell phenotypes onthe basis ofimages generated from Cell Paint-
ing assays®. They trained CNNs to classify MoAs using approximately
40,000 single-cellimages for 75 bioactive compounds®. For unbiased

testing, they used 2,223 cellsin a test set, from perturbations of taxol,
procaine, and peruvoside; these were excluded from the training set.
The CNN model, misclassifying 2.7% of all cells, performed better than
CellProfiler features in a linear discriminant analysis classification
model, which misclassified 5.4% of cells.

In addition to CNNs, transfer learning—in which the knowledge
of apre-trained modelis transferred or fine-tuned to another model
to perform a similar task—is useful, reducing the need to train mod-
els from scratch; this is being increasingly explored for cellimaging
data*®. Kensert et al. used CNN models pretrained on the 13 million
natural images in the ImageNet dataset to predict 12 different MoAs
across 38 compounds and 103 treatments (compound-concentra-
tion pairs)*°. The pre-trained models achieved an accuracy between
95% and 97%; training from scratch resulted in an accuracy between
70% and 91%.

Weakly supervised deep learning can extract useful representa-
tions for unsupervised tasks by training amodel on a pretext task, such
asidentifyingreplicates of biological samples from amongall samples
inthe experiment. Moshkov et al. improved this approach by training
an EfficientNet architecture on phenotypically strong compounds
from diverse Cell Painting datasets, enhancing downstream analysis
for matching biological compounds by 30% compared with classical
features®. Advances in representation learning are expected to further
improve results in various unsupervised Cell Painting applications
beyond MoA determination. These learned representations can cap-
ture important phenotypic features and confounding factors, which
can then be used to improve downstream analyses, such as predict-
ing MoAs or matching biological compounds. Several studies have
explored various approaches to representation learning using deep
learning in Cell Painting assays®***’,

Cell Painting in assay activity prediction

Images have proven useful in predicting compounds with desirable
biological activity and identifying novel active compounds with thera-
peutic potential. Alandmark study by Simm et al.in2018 used images
fromathree-channel glucocorticoid receptor high-throughput assay
to predict the activity of compounds in 535 assays spanning a wide
variety of biological pathways and diseaseareas®’. Although not using
the full Cell Painting assay, the multitask models performed very well
(AUC-ROC > 0.90) for 31 out of 535 assays; they validated two of these in
prospective follow-up work. This study generated substantial interest
inusing Cell Painting for assay prediction. Hofmarcher et al. later used
publicly available Cell Painting and ChEMBL data to explore the ability
of CNNs trained directly using Cell Painting images to predict particular
bioactivities of compoundsin209 biological assays, achieving amean
AUC-ROC of 0.73 (ref. 61). These performed better than fully connected
neural networks trained using classically extracted numerical features
(mean AUC-ROC = 0.68), suggesting that raw-image CNN models can
capture information that might be overlooked by models trained on
predefined CellProfiler features®.

Nyffeler et al. compared various computational strategies,
including multiconcentration approaches and single-concentration
approaches, toidentify bioactivity hits using a Cell Painting assay and
showed that nine of ten approaches were highly concordant for 82%
of the tested chemicals®.

Cell Painting has also been integrated with chemical structure
information toimprove prediction ability. When a BMF Macau model
was used with Cell Painting profiles as supplementary data, assay
prediction accuracies were notably higher, with AUCs greater than
0.80 for 100 out of 224 targets. By contrast, models relying solely
on chemical structural data reached AUCs greater than 0.80 for
only 90 out of 224 targets®. In another study, models combining
structural information with Cell Painting profiles, using similarities
to training data, had improved performance over those that used
only chemical structure information: for the combination models,
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Fig. 4| Summary of convolutional neural network analyses of Cell Painting
images, one type of deep-learning network that can be used to extractimage
features. The input image consists of a matrix with pixel values, which can be
asingle cropped cell or alarger field of view. The convolution filters (smaller
weight matrices) slide over theinputimage, detecting patterns such as edges,
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connected
textures, and shapes, resulting in a feature map. An activation function (for
example, ReLU) is then applied elementwise, which introduces non-linearity into
the model. Pooling then reduces the spatial dimensions of the feature maps (Step
1). The final step involves extracting high-level features from the image which can
thenbe used for model training (Step 2).

an additional 20% of assays had an AUC greater than 0.70 (79 out of
177 assays)®*.

Most recently, Sanchez-Fernandez et al. developed CLOOME, a
multi-modal contrastive learning algorithm, to combine chemical
structure data and Cell Painting images into a unified space. Their
retrieval system correctly identified theimage correspondingtoagiven
compound with anaccuracy approximately 70 times higher than that
ofarandom baseline model; this system was also used to predict com-
pound activity (in asimilar setting as Hofmarcheretal.), and CLOOME
achieved an AUC of 0.714 + 0.20 across all prediction tasks®. This result
indicatesthat thelearned representations are transferable to different
tasks (inthis case bioactivity prediction) because no activity datawere
used to train the CLOOME encoders. Using images directly therefore
enables unbiased insightinto information contained within thatimage
withoutrequiring classical feature-extraction algorithms. Overall, sev-
eral studies have now confirmed that adding Cell Painting image datato
chemical structure information can enhance prediction ability®*%°%,

Phenotypic profiling of bioactivity to guide chemistry
Phenotypic profiling, particularly with Cell Painting, is increasingly
being used to evaluate and characterize compounds as they are syn-
thesized, assessing the bioactivity of analogs with small changes to
their structure, a process known as determining structure-activity
relationship (SAR). Gerry et al. piloted this concept by synthesizing a
small set of compounds and annotating their biological effects through
Cell Painting®. They concluded that this rapid-feedback analysis could
reveal unexpected phenotypes and advocated for integrating Cell Paint-
ing annotationinto routine synthetic organic chemistry toaccelerate
medicinal chemistry.

Nelson et al. explored the use of Cell Painting-based phenotypic
profiling to compare the biological activity of certain sp*>rich com-
pounds (carbon atoms with four single bonds), and found that two
epoxy ketone diastereomersinduced consistent, striking morphologi-
calchanges for all doses, prompting studies to compare their morpho-
logical signatures with those of reference compounds™. Studies using
structurally diverse, reduced flavones and their Cell Painting profiles
have shown that the fraction of sp*>-hybridized atoms is not the only
factor in enhanced biodiversity; stereochemistry and appendage
diversity are also contributors””2,

More recently, biology-oriented synthesis has focused on
pseudo-natural products. To this end, Christoforow et al. characterized
the potential bioactivity of new classes of pyrano-furo-pyridone (PFP)
pseudo-natural products”. They found that, among the five initial hits
exhibiting bioactivity in the assay, the morphological profiles exhibited

morethan 70% similarity to the reference compound profiles; this then
helped themto decipher their MoAs. Other studies have explored the
use of target-agnostic Cell Painting to determine the phenotypicroles
of novel compounds compared with reference compounds, including
indocinchonaalkaloids™, anatural-productinspired flavonoid library”;
spiroindane pyrrolidines™; pyrroquinoline pseudo-natural products’’;
and indofulvin pseudo-natural products’®. Overall, phenotypic profil-
ing enables rapid evaluation of the bioactivity, and sometimes MoA,
of synthesized compounds without requiring acustom assay for each
chemicalseries.

Predicting compound toxicity

Cell Painting assays have been used to predict multiple safety- and
toxicity-related assay outcomes. For example, Way et al. found that
Cell Painting data could predict aspects of cell health beyond asimple
cell count, including the percentage of dead cells (R?=0.62), num-
ber of S-phase cells (R*=0.64), level of DNA damage in G1-phase cells
(R*=0.51), and percentage of apoptotic cells (R*=0.37)*. In addition
to the specific cell health phenotypes mentioned above”’’, the Cell
Painting assay could predict the outcomes of 12 cytotoxicity- and
proliferation-related in vitro assays using Cell Painting profiles®. These
modelsachieved an AUC of 0.71, compared withan AUC of 0.56 achieved
by models using only chemical structure data (Morgan fingerprints).
Trapotsi et al. successfully predicted mitochondrial toxicity with an
AUC = 0.93 when using Cell Painting profiles®'. Interestingly, this study
included both small-molecule compounds and proteolysis targeting
chimeras (PROTACs), which have garnered attention owing to their
unique bifunctional nature and potential ability to degrade ‘undrug-
gable’ targets®. The authors showed that Cell Painting could identify
PROTAC phenotypic signatures, which were often unique as compared
with the Cell Painting profiles of their individual components. Com-
bining proxy-DILIlabels with chemical and pharmacokinetic features
achieved improved detection accuracy and differentiation between
animal and human DILI sensitivity; it remains to be seen whether Cell
Painting can be used for DILI prediction®, which is one of the aims of
the recently established OASIS consortium (www.oasisconsortium.
org). Cell Painting is thus particularly useful in assessing the toxicity of
new therapeutic modalities that lack the experience and best practices
that have been established for small molecules.

Cell Paintingis anin vitro cell-based assay, but several studies have
exploredits ability to predict compound perturbation effectsinwhole
organisms. Nyffeler et al. performed an in vitro-to-in vivo extrapola-
tion (IVIVE) of in vitro potency estimates obtained through Cell Paint-
ing® and compared them with effect values from in vivo mammalian

Nature Methods


http://www.nature.com/naturemethods
http://www.oasisconsortium.org
http://www.oasisconsortium.org

Review article

https://doi.org/10.1038/s41592-024-02528-8

toxicity studies. Sixty-eight percent of the Cell Painting-based results
were either similar to or more conservative than those of the in vivo
studies, affirming the potential use of Cell Painting data in IVIVE®>,
Morerecently, Nyffeler et al. extended this strategy to assess whether
the concentrations of environmental chemicals that induce strong
phenotypic changesin the Cell Painting assay could predict unintended
biological effects at the exposure at levels humans typically encoun-
ter in real-world scenarios®*. On a larger scale, the US Environmental
Protection Agency is working towards using transcriptomics and Cell
Painting data in their risk assessments®. In the future, new sources of
relevant in vivo toxicity annotations, such as hepatotoxicity**® and
cardiotoxicity®, and theinclusion of pharmacokineticinformation®°,
might be used to augment Cell Painting data in predictive toxicology.

Phenotypic profiling of compound mixtures

Cell Painting has also been used to profile compound mixtures. For
example, Pierozan et al. identified synergy in the responses of human
breast epithelial cells to low-concentration mixtures of perfluoroocta-
noicacid (PFOA) and perfluorooctanesulfonic acid (PFOS), two widely
used industrial chemicals”. Rietdijk et al. explored using Cell Painting
to profile the effects of combining environmental chemicals on four
celllines; in one example, bisphenol A (BPA) did not cause significant
morphological changes to cellswhen screened onits own, butinthree
outoffour celllines, it caused synergistic effects when combined with
anotherindustrial chemical®’. Computational methods are still in devel-
opment, to attempt to deconvolute the impacts of compounds on
multiple target proteins in the related case of polypharmacology®.

Using Cell Painting assays to advance disease understanding
Understanding disease biology and developing potential therapeutic
interventions involves many steps, including disease modeling and
biomarker discovery. The Cell Painting assay has been used to uncover
functional associations between human genes and disease-associated
alleles on the basis of cellular morphology when the relevant genes are
perturbed or alleles are present. Rohban et al. used this approach to
group 110 genes with a detectable phenotype, revealing a previously
unknowninteractionbetween the NF-kB pathway and Hippo pathways*,
and then later to identify promising compounds that match a desired
phenotypic profile affecting those pathways®. Cancer-associated
somatic variants could also be overexpressed in cells, to predict their
functional impacts, including those at the single-cell level*°.

Morphological signatures can also serve as biomarkers for disease
diagnosis or prognosis, or be used to monitor therapeutic responses.
For example, Cell Painting assays have been used to model cancer cell
morphologies toidentify the distinct morphological signatures asso-
ciated with esophageal adenocarcinoma and responses to selective
modaulators for these phenotypes®”.

Inantiviral drug discovery, Cell Painting has been used to identify
virus-induced phenotypic signatures that distinguish infected from
non-infected cells’®***°, Rietdijk et al. showed that treatment of infected
cells with a panel of various host- and virus-targeting antivirals could
reverse the morphological profile of infected host cells towards that of
anon-infected cell’. Further, Cell Painting has been used to investigate
transcription factor EB (TFEB) signaling and lysosomal dysfunction
by detecting phenotypic changes in organelles in response to TFEB
localization'®. Finally, Kelley et al. used the assay to investigate drug
resistance in anti-cancer therapy by identifying the morphological
signature of bortezomib treatment resistance in cells'”".

Cell Painting has also been used to create disease models by lev-
eraging natural human genetic variation. Tegtmeyer et al. aimed to
investigate relationships between genetic variants and cellular mor-
phologyininduced pluripotent stem cells (iPSCs), identifying several
novel associations (cell morphology quantitative trait loci)'*%. McDi-
armid etal. used Cell Painting data to reveal 16 FDA-approved drugsin
five mechanistic groups that could reverse morphological signatures

associated with Alzheimer’s disease linked to variants of the SORLI risk
gene in neural progenitor cells'®. Schiff et al. showed that unbiased
phenotypic profiling using Cell Painting and primary fibroblasts from
91people with Parkinson’s disease and matched healthy controls could
distinguish LRRK2 and sporadic Parkinson’s disease lines from healthy
controls'. Another pilot study, involving 12 healthy controls and 12
participants with the severe genetic neurological disorder spinal mus-
cular atrophy (SMA), demonstrated that a CNN model trained on Cell
Painting data from primary skin fibroblasts could distinguish disease
statesin cells froman unseen control-SMA pair amongindividuals with
thedisease'®. Overall, the broad and multidimensional data generated
by Cell Painting assays not only provide opportunities for new insights
into complex cellular responses, but can also reveal novel therapeutic
targets and strategies for drug discovery and repurposing.

Integrating Cell Painting, transcriptomics, and proteomics
data

Given that Cell Painting readouts describe only one category of bio-
logical phenotype, predictive models might be improved by inte-
grating Cell Painting data with further biological data, such as gene
expression and proteomic data'’®. Nassiri and McCall compared Cell
Painting data with gene expression datafromthe Library of Integrated
Network-Based Cellular Signatures forimproved insight into MoAs'"”.
They used a reference database of 9,515 compounds to identify sig-
nificant associations between changes in cell morphology and gene
expression, revealing an interdependence that assists in inferring
compound MoAs.

Therelationship between Cell Painting and gene expression data
was also explored in studies showing that, together, they provide
complementary information for mapping cell states®*'%, In Way et al.,
compounds sharing the same MoA were grouped together by Cell Paint-
ing 44% of the time and by mRNA profiles 50% of the time (across all
doses); when combined, thisreached 69% (ref. 34). Likewise, Haghighi
et al. used morphology features from Cell Painting perturbations to
predict levels of gene expression'®®, They found that cellmorphology
data could capture distinct biological information that was often not
associated with the particular stains in the Cell Painting assay, high-
lighting that Cell Painting captures more information than just that
for particular labeled components or some of these genes had unan-
notated functions. Another study combined RNA-sequencing and Cell
Painting data to estimate the phenotype-altering concentration of aset
of 11 mechanistically diverse compounds, and found that for 10 out of
11 compounds, both modalities could determine potency estimates
within half an order of magnitude'®.

Morphological features and gene expression data were also used
by Cerisier et al. to explore associations between chemicals and dis-
ease by developing a biological network combining chemical-gene-
pathway-morphological perturbation and disease relationships".
They investigated two chemicals (amiodarone and prochlorperazine)
because both showed a risk for drug-induced liver injury (DILI) in
humans and thus, they assessed whether they share common infor-
mation in Cell Painting and the L1000 dataset. They found a direct
link between deregulated genes and cell morphology observations.
Seal et al. used machine learning to predict mitochondrial toxic-
ity by combining gene expression, Cell Painting data, and chemical
structures, with detection scores of 0.40, compared with 0.25 using
chemical structures alone*. The combination of cellmorphology and
gene expression at the single-cell levelis an exciting research area that
remainsto be explored, given the higher computational demands for
single-cell analysis and the technical challenges in measuring both
kinds of profiles in the same assay'".

The benefits of integrating Cell Painting data might also apply
to protein profiling. One study tested 306 well-characterized com-
pounds with established MoAs using Cell Painting and nELISA protein
profiling, finding a 26.7% and 21.2% retrieval rate for MoA classes,
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respectively, withan additional 33% of MoAs when combining nELISA
with Cell Painting™. Another study combined morphological profiling
with proteome analyses to reveal lysosomotropic activity leading to
cholesterol homeostasis and localization for tetrahydroindolo[2,3-a]
quinolizine derivative, a natural-product-inspired compound™. Over-
all, considering multiple modalities can help in elucidating chemical-
phenotype observations. The integration of Cell Painting with diverse
and complementary -omics modalities, such as transcriptomics and
proteomics, can offer more comprehensive insights into the biological
impacts of compounds.

Status check: lessons learned from the first

10 years

Over the past decade, the Cell Painting assay has become awidely used
tool for drug discovery and cell biology. Cell Painting data are being
used inmore than 36 academic laboratories or screening centers and
51companies worldwide, with at least 13 offering the assay asaservice,
providing arange of outputs including images, profiles, or matching of
customer samples to aninternal database of samples (Fig. 3b and Sup-
plementary Table 4). At least four candidate therapeutics discovered
using Cell Painting have entered phase 2 clinical trials (www.recursion.
com/pipeline). Cell Painting uses the maximum number of channels
of atypical microscope and minimizes costs and wash steps, making
itamenable to screening millions of samples in a high-throughput
pharmaceutical setting and testing a few samplesin any academic labo-
ratory. The assay is remarkably robust; extensive testing of different
staining and imaging conditions yielded relatively similar results™ .
Together withimage-based profiling using other assays, Cell Painting
has provided insights into the complex world of cellular morphology,
expanding our understanding of disease mechanisms and enhancing
drug-discovery processes.

So far, Cell Painting has been most widely used for uncovering
compounds’ MoAs, by mapping similarity to compounds with known
mechanisms. Identification of disease-associated phenotypes and
prediction of assay outcomes (including various types of toxicity) are
increasingly common. The potential of Cell Painting for predicting
organ-level toxicity is promising and is actively being explored by
the OASIS Consortium (https://oasisconsortium.org/). Less common
but proven applications include characterizing newly synthesized
compounds to discern structure-activity relationships, functionally
annotating gene and allele impact, identifying compound mimics of
agene perturbation, designing diverse and phenotypically impactful
compound libraries, and lead hopping.

The Cell Painting assay continues to evolve with advances in
staining protocols, cell line diversity, and data-analysis algorithms,
but its core strengths lie in striking a balance between speed,
cost-effectiveness, easy implementation, and information richness,
with the added potential for automation. Its affordability enables
high-throughput screening, including multiple doses, varied time
points, and additional cell lines per perturbation, providing a com-
prehensive biological perspective. Recent publications from Bayer,
Pfizer and AstraZeneca, among others, have shown that Cell Painting
isa promising toolin the pharmaceutical industry******, The potential
forautomation further increases its appeal, enabling large-scale phe-
notypic screening with minimal manual intervention.

Challenges and future directions

There are many avenues for improving image-based profiling in the
future. Matching profiles across modalities—from compounds to
genetic perturbations—has proven difficult so far”®. Improving meth-
odology for this task would accelerate several applications, such as
identifying compounds with the same cellularimpact as agiven gene
of interest. Also, although Cell Painting is widespread in matching
the MoA of a query compound to known compounds, it remains to be
tested whether matching compounds to genetic perturbations might

aid in the much more challenging situation in which no compounds
exist for agiven mechanism.

Interpretation of morphological profiles is another chal-
lenge. Although sophisticated image-analysis algorithms and
machine-learning methods can extract and analyze complex mor-
phological signatures, interpreting them can be challenging, even for
classical algorithms in which features are precisely defined mathemati-
cally. The BioMorph space attempts to address this by linking 827 Cell
Painting features to 412 descriptive terms, on the basis of mapping to
assays capturing phenotypes of cell health’”®. However, for broad utility,
mapping to more assay data would be needed.

Data handling and storage requires attention—the high-content
nature of the Cell Painting assay generates vast amounts of data,
which can be challenging to store, manage, and share, and the data
require considerable computational resources to process and analyze.
Cloud-based solutions and open-source software tools can address
these challenges™, butincreasing their user-friendliness would expand
the use of this data type.

We see great promise in extending the Cell Painting assay to 3D cell
cultures, organoids', tissue slices, and live cell imaging"®. Improve-
mentsindeep-learning methods are also expected to dramatically alter
Cell Painting, particularly inbatch-correction methods that can extract
biologically meaningful signals from technical noise™.

The recent availability of large Cell Painting datasets stands
to empower a new wave of discoveries, particularly as methods for
matching new batches of data to public sets mature. Consortia serve
avaluablerolein creating these data sets and evaluating applications
of Cell Painting data, by pooling resources and contributing expertise
to experimental design. In summary, with the availability of larger
datasets, increased academic and industry interest, and the poten-
tial for collaboration through consortia, the future of Cell Painting
looks bright.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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