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Cell Painting: a decade of discovery and 
innovation in cellular imaging
 

Srijit Seal    1,2,8  , Maria-Anna Trapotsi    3,8  , Ola Spjuth    4,5, 
Shantanu Singh    3, Jordi Carreras-Puigvert4,5, Nigel Greene6, 
Andreas Bender    2,7 & Anne E. Carpenter    1 

Modern quantitative image analysis techniques have enabled 
high-throughput, high-content imaging experiments. Image-based 
profiling leverages the rich information in images to identify similarities or 
differences among biological samples, rather than measuring a few features, 
as in high-content screening. Here, we review a decade of advancements and 
applications of Cell Painting, a microscopy-based cell-labeling assay aiming 
to capture a cell’s state, introduced in 2013 to optimize and standardize 
image-based profiling. Cell Painting’s ability to capture cellular responses to 
various perturbations has expanded owing to improvements in the protocol, 
adaptations for different perturbations, and enhanced methodologies for 
feature extraction, quality control, and batch-effect correction. Cell Painting 
is a versatile tool that has been used in various applications, alone or with 
other -omics data, to decipher the mechanism of action of a compound, 
its toxicity profile, and other biological effects. Future advances will likely 
involve computational and experimental techniques, new publicly available 
datasets, and integration with other high-content data types.

Phenotypic drug discovery (PDD) involves using a living system to 
identify compounds that alter the phenotype of a given disease. PDD 
has evolved from screening a few compounds in animals to testing 
millions in cell models. By contrast, target-based drug discovery 
(TDD) identifies compounds that interact with a pre-selected tar-
get. Although both approaches have yielded therapeutics, mounting 
evidence suggests that PDD yields more first-in-class medicines than 
does TDD1. Notably, many drugs approved by the US Food and Drug 
Administration (FDA) lack a defined molecular target, and several 
drugs do not work through their purported target2. Therefore, phe-
notypic strategies have gained favor precisely because they allow 
compounds to be explored in a target-agnostic manner, which is espe-
cially appealing for diseases that are polygenic or are associated with 
undruggable targets.

High-content screening (HCS) is an effective and efficient phe-
notypic screening strategy that uses microscopy as the readout3. HCS 
captures and measures cell phenotypes in images and can identify  
candidate targets (for example, when genetic perturbations are 
screened) and therapeutics (when small molecules are screened). At 
the core of HCS is cellular morphology—the visual appearance of cells, 
usually stained for cell structures or biomarkers—which is intricately 
linked to cell physiology, health, and function (Supplementary Table 1 
lists some common keywords used in HCS assays).

A major development emerged in 2004, when Perlman et al. dem-
onstrated that, instead of tailoring an image-based assay to measure 
a particular phenotype of interest, images can be used in a relatively 
unbiased way (aside from the choice of experimental conditions) to 
group drug treatments that have similar impacts on cell morphology4. 
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beyond the proper microscope filters and relying solely on dyes, rather 
than antibodies. Multiplex staining is followed by processing with 
automated imaging pipelines (whether deep-learning-based or using 
classical methods, such as in the open-source CellProfiler9) that extract 
morphological profiles and standardize them against reference and 
control compounds (Fig. 1b). This approach yields a high-dimensional 
dataset for each cell and captures more than 1,000 morphological fea-
tures, including size, shape, texture, and intensity. The morphological 
profiles are processed to apply various normalizations and batch-effect 
corrections and are then used for downstream analysis (Fig. 1c).

Although any image set can be used for image-based profiling, the 
Cell Painting assay is widely used in academic and industry research. 
Here, we aim to comprehensively examine the advances and impacts of 
Cell Painting in drug discovery and related areas over the past decade 

This finding, combined with advances such as transcriptional profiling 
and automated sample preparation and microscopy, helped launch 
the field of image-based profiling and the use of image assays that 
maximize information content5–7.

The most popular image-based profiling assay is Cell Painting, 
first described in 2013 (ref. 8). Cell Painting ‘paints’ the cell with many 
fluorescent dyes to mark major organelles or components, aiming to 
capture its phenotypic state and responses to perturbations (Fig. 1a). 
The standard dyes for Cell Painting are Hoechst 33342 (which stains 
DNA), concanavalin A (endoplasmic reticulum), SYTO 14 (nucleoli 
and cytoplasmic RNA), phalloidin (f-actin), wheat germ agglutinin 
(WGA) (Golgi apparatus and plasma membrane), and MitoTracker 
Deep Red (mitochondria). The Cell Painting assay was designed to be 
easy and inexpensive to implement, requiring no custom equipment 
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Fig. 1 | Morphological profiling using Cell Painting. a, Schematic of the Cell 
Painting assay; cells are incubated and perturbed and a set of six stains is 
applied. b, Images are then obtained in five channels by automated microscopy 
followed by nucleus and cell body segmentation. c, Appropriate software or 
deep-learning-based methods are applied to measure or calculate morphological 
features from the images. d, After feature preprocessing, downstream analysis 

is performed. This includes a variety of methods, including supervised and 
unsupervised machine learning, to better elucidate the biological effects of a 
compound, such as its mechanism of action or safety profile. e,f, Adaptations 
of the Cell Painting assay include BODIPY to mark lipid droplets in lipid-
accumulating cells (e) and a coronavirus antibody against human coronavirus 
229E (CoV-229E) viral protein (f).
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(2013–2023), following a systematic review format not aiming to cap-
ture the entire field of image-based profiling. We explore how meth-
odological advances have improved the robustness of the assay and 
discuss how Cell Painting has deepened our understanding of disease 
processes and shaped therapeutic discovery. Importantly, we discuss 
the integration of Cell Painting with machine learning and other -omics 
data. We also explore the role of Cell Painting in predictive toxicology 
and its significance in improving the safety and efficacy of drugs. 
Overall, we provide a comprehensive perspective on the impact and 
potential of the Cell Painting assay in drug discovery.

Systematic analysis of Cell Painting literature
Study selection
We conducted a systematic review of Cell Painting studies by retrieving 
340 articles from PubMed, Scopus, and ScienceDirect (accessed June 
2023) using the keyword ‘Cell Painting’ (in the title, abstract, subject 
terms, and/or keyword headings). The search was limited to articles 
written in English after 2012, and articles had to be peer-reviewed, with 
some exceptions for key preprints. Reviews, news articles, posters, 
thesis abstracts, and perspective papers were not included as primary 
research articles (these are instead listed in Supplementary Table 3 and 
referenced where applicable). After removing duplicates (207) and 
review articles (41), 92 articles underwent full-text analysis. Following 
further screening, 21 studies were excluded (18 were irrelevant and 3 
were a poster, thesis, or news article), and a manual search added 19 

relevant studies, including some published after June 2023 (listed in 
Supplementary Tables 2 and 3). This resulted in 90 studies for review, 
as shown in the preferred reporting items for systematic reviews and 
meta analyses flow chart (Fig. 2a), with included and excluded studies 
listed in Supplementary Tables 2 and 3, respectively.

Extracted data
We extracted data from Cell Painting assay publications, including 
authors, year, keywords, and journal title, and manually categorized the 
research question and major outcome. The assay’s usage is increasing, 
with most studies published between 2021 and 2023 (Fig. 2b). SLAS Dis-
covery (Society for Laboratory Automation and Screening) was the most 
popular journal (Fig. 2c), reflecting the assay’s acceptance in the drug 
discovery and screening community. Other top publication choices 
include computational journals (for example, in cheminformatics), 
and journals in chemical biology and toxicology.

Advancements in Cell Painting
Assay development
The Cell Painting protocol was first developed by Gustafsdottir et al.  
in 2013 at the Broad Institute. It was designed to be a low-cost, 
high-throughput single assay that could capture many biologically 
relevant phenotypes8. As described above, six stains were selected 
and imaged in five channels to reveal morphological changes for eight 
cellular components or organelles (Fig. 1b). Gustafsdottir’s publication 
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Fig. 2 | Overview of studies included in this systematic review and publication 
trends. a, The Preferred Reporting Items for Systematic Reviews and Meta 
Analyses flow chart showing the selection of the 90 studies included in this 
systematic review. Records from manual search included select articles 

published after the June 2023 cut-off date. b, The growth in the number of 
publications reviewed in this systematic review between 2013 and 2023. c, The 
journal titles in which the works were published.
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established the moniker ‘Cell Painting’; however, an updated protocol 
(v2), with minor adjustments, was published in 2016 by Bray et al.10.  
A recent effort optimized the assay’s cost and reproducibility, culminat-
ing in Cell Painting v3 in 2022 (ref. 11). To create the updated protocol, 
the JUMP-CP ( Joint Undertaking for Morphological Profiling – Cell 
Painting; www.jump-cellpainting.broadinstitute.org) Consortium 
used a positive control plate of 90 compounds covering 47 diverse 
mechanisms of action to, for the first time in our knowledge, quanti-
tatively optimize staining reagents, as well as experiment and imaging 
conditions11. Other studies optimized parameters, such as the duration 
of cell culture and image-acquisition conditions12,13.

Cell line selection. Flat cells that rarely overlap are best for 
image-based assays—most cell lines meet this criterion. In general, doz-
ens of cell lines have performed well in Cell Painting experiments, and 
thus the choice often depends on the goal. For example, the JUMP-CP 
Consortium used U2OS (osteosarcoma) cells because large-scale data 
existed in this cell type, and Cas9-expressing clones are available11,13,14.

A recent study investigated the selection of optimal cell lines for 
image-based profiling, because different cell lines can vary in their 
sensitivity to specific mechanisms of action (MoAs) of compounds15. 
Cell Painting was used to profile 3,214 small molecule compounds on 
six cell lines: A549, OVCAR4, DU145, 786-O, HEPG2, and a fibroblast cell 
line derived from a person without cancer. These compounds were all 
annotated with information about their putative target and MoA, and 
included FDA-approved drugs. The cell lines were ranked on the basis 
of their ability to detect compound activity (termed ‘phenoactivity’, 
or ‘phenotypic activity’) and to predict the compound’s MoA (termed 
‘phenotypic consistency’). Here, phenotypic activity refers to the 
strength of the morphological phenotypes detected by the Cell Paint-
ing assay, whereas MoA consistency describes the extent to which the 
compound phenocopies other compounds with the same annotated 
MoA. The best cell lines for detecting phenotypic activity had poor 
sensitivity for predicting MoA, and vice versa. This discrepancy could 
reflect the diverse genetic landscapes of different cell lines, which 
might influence the expression of targets and the cellular pathways. 
For example, the HEPG2 cell line’s tendency to grow in highly compact 
colonies makes it difficult to detect alterations in cell organelles and 
thus blurred phenotypic distinctions between compound-treated 
and control groups. It should be noted that in this study, compounds 
were tested in the same well positions across plates from different cell 
lines, which can inflate phenotypic activity metrics. To avoid potential 
effects owing to well position, the locations of the compounds can be 
scrambled across plates.

Another study showed that the Cell Painting sample-preparation 
protocol was effective without any cell-line-specific adjustment across 
six biologically diverse and morphologically distinct human-derived 
cell lines (U2OS, MCF7, HepG2, A549, HTB-9, and ARPE-19)16. It was nec-
essary to optimize image acquisition and cell-segmentation parameters 
only to account for differences in the size and three-dimensional (3D) 
shape of each cell line when cultured in monolayers. Most of the 14 
tested reference chemicals showed a pronounced phenotypic effect 
across all cell lines, often below cytotoxic and cytostatic concentra-
tions. However, for all but one chemical, the most sensitive features 
were different in each cell line. Thus, similar concentrations of a chemi-
cal altered the cellular morphology across cell types, but the specific 
morphological change depended on the cell type. Over the past decade, 
the basic Cell Painting protocol has been used on dozens more cell 
lines without adjustment, on the basis of our observations from the 
literature and personal communications.

Adaptations of the Cell Painting Assay. Adaptations of the Cell 
Painting assay have emerged that replace some of the original dyes 
with alternative fluorescent dyes to increase the spectral range and 
facilitate delineation of other cellular compartments and structures. 

For example, LipocyteProfiler (Fig. 1d) incorporates BODIPY to mark 
lipid droplets in lipid-accumulating cells to study metabolic disease17. 
In another study, MitoTracker was replaced with an antibody against 
human coronavirus 229E (CoV-229E) viral protein, introducing the 
opportunity to multiplex Cell Painting with specific targets (Fig. 1e)18.

Expanding the range of perturbations. In addition to modifying 
the assay protocol, some studies explored the type of perturbation, 
going beyond small-molecule compounds. Singh et al. explored RNA 
interference (RNAi)-induced knockdown using the Cell Painting assay 
and found that morphological signatures were highly sensitive and 
reproducible, but there were off-target ‘seed’ effects of RNAi rea-
gents that dominated the signatures19. These seed effects occur when 
a short region of the RNAi molecule, known as the seed sequence, binds 
non-specifically to multiple mRNAs. Other technologies include open 
reading frame (ORF) constructs that enable gene or protein overex-
pression20 and CRISPR knockout to deplete expression21. A challenge 
with a target-agnostic assay, such as Cell Painting, is that compounds 
that are active in the assay can have multiple mechanisms of action, 
complicating the interpretation of a given bioactivity20. One practical 
solution is to include known reference perturbations; various sets of 
recommended control and landmark perturbations have been recently 
introduced by the JUMP Consortium, including two compound plates 
and ORF and CRISPR perturbation plates12,14. Dahlin et al. generated 
a set of Cell Painting and cellular health profiles for 218 prototypical 
cytotoxic and prototypical ‘nuisance’ compounds in U2OS cells in a con-
centration–response format (0.6–20 µM)22. Nuisance compounds, in 
this context, are substances that frequently show up as hits in screening 
assays but are ultimately considered undesirable because their effects 
are often non-specific, artifactual, or due to properties that interfere 
with the assay rather than a specific biological activity of interest. This 
set of compounds thus serves as a valuable resource of controls to 
include in image-based profiling experiments.

Optimization of microscopy imaging parameters. Although 
high-throughput imaging platforms have advanced over the past 
decade, improving speed and resolution, Tromans-Coia et al. found 
that various microscope imaging systems performed similarly and 
changing acquisition settings only minimally affected Cell Painting pro-
file strengths12. Key setting alterations that improved morphological 
signatures included decreasing magnification, surprisingly, but only 
because this increases the number of cells imaged. The study provides a 
general set of recommendations for Cell Painting, applicable to several 
microscopes. It suggests that cells should be imaged at ×20 magnifica-
tion across four to nine sites (fields of view), capturing approximately 
2,500 cells per well, at least for the cell types considered in the study.

Extraction of morphological features from fluorescent images. 
Cell Painting images are often analyzed using software to extract 
morphological features, following the segmentation of cellular and 
subcellular structures. The open-source CellProfiler9 software is one 
example; however, other solutions are also used, including proprietary 
ones (for a detailed review, see Smith et al.23). Cimini et al. note that 
although small-scale image analysis can be performed using CellPro-
filer on desktop computers, large-scale analysis (>1,000 images) can 
be computationally intensive and time-consuming and is best run on a 
high-performance computing cluster or cloud computing resource11. 
We have not discussed processing times for Cell Painting data in detail 
because technological advances quickly render estimates obsolete.

Alternative approaches to classical feature extraction have 
emerged, leveraging deep-learning models to recognize features 
directly from raw images.These include DeepProfiler24, a tool specifi-
cally designed for morphological profiling of Cell Painting images; deep 
learning architectures such as convolutional neural networks (CNNs); 
and vision transformers such as DINO (a self-supervised learning 
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method)25,26. These approaches, in some cases, skip the single-cell 
segmentation and can increase the performance of Cell Painting pro-
files. For example, deep learning has shown an improvement of up to 
29% over CellProfiler features when assessed using mean average preci-
sion (mAP) for classifying chemical perturbations27. Steps to further 
process the Cell Painting data, from morphological feature extraction 
to profile normalization to batch-effect correction, discussed later, are 
also continually improving.

Extraction of morphological features from label-free brightfield 
images. Replacing the information in fluorescent images with bright-
field imaging enables the analysis of living cells over time, and reduces 
the costs, labor, and time needed to stain cells. Although brightfield 
imaging does not yield a clear contrast of all the cellular compartments 
labeled in Cell Painting, the use of deep-learning methods could poten-
tially augment the information available in brightfield images, making 
this a worthwhile tradeoff.

In one study, deep-learning models were used to predict five Cell 
Painting fluorescent channel images from brightfield images, and 
CellProfiler features were calculated from the predicted images and 
the ground-truth images28. The models were trained on approximately 
3,000 images (using one field of view per well from 17 batches) and 
then tested with 273 images. The predicted images achieved a mean 
Pearson correlation of 0.84 with the ground truth at the pixel level; 
the authors further compared extracted CellProfiler features from 
the ground-truth images versus predicted images obtained using 
brightfield microscopy. Although many morphological features 
extracted from the generated images showed substantial correlation 
with those from the ground-truth images (>0.6 correlation) and 30 
features showed a correlation greater than 0.8, prediction of the fea-
tures from the AGP (actin, Golgi, plasma membrane) and mitochondrial 
channels was more challenging. To determine whether this level of 
pixel-level and feature-level correlation is sufficient for biological goals, 
they performed a downstream analysis and investigated the ability of 
models to predict compounds similar to positive controls, finding 
eight compounds using ground truth and the label-free images, with 
four compounds in the intersection.

Another study tested the ability of CNN-based features extracted 
from brightfield images versus those extracted from fluorescence Cell 
Painting images to predict 10 MoA classes29. The features were addi-
tionally compared with CellProfiler features extracted from the Cell 
Painting images. Interestingly, all models showed comparable results 
in distinguishing the MoA of 231 compounds from 10 MoA classes29. 
Using activation maps, they determined which areas in the images were 
most activated for the deep-learning-based feature extractors, and 
found that the models focused on different cellular features depend-
ing on the image type used for training. For example, when predicting 
the MoA for the compound 4SC-202, the models had an accuracy of 
0.89, 0.04, and 0.29 when using brightfield, fluorescent images, and  
CellProfiler features, respectively; the brightfield heatmap showed 
strong activation for small vesicles that are visible in the brightfield 
images but are not stained in the Cell Painting protocol. Despite the 
limited number and range of MoAs tested, this study suggests that 
applying deep learning to brightfield images holds great promise 
to augment or replace fluorescent stains in Cell Painting assays, sav-
ing time and money. In fact, early reports from the biotech company 
Recursion indicate that a transition from using Cell Painting to more 
commonly using brightfield imaging is occurring30.

Feature selection for Cell Painting profiles. Not all morphological 
features extracted from cell images are informative. For a given task, or 
even for a general representation of cell phenotype, feature-selection 
methods are generally used to filter features and are available from 
virtually all data-analysis libraries (for example, www.scikit-learn.org). 
Pycytominer, a software package designed for analyzing Cell Painting 

data, incorporates feature-selection methods that reduce redundancy 
and increase informativeness of features31. Other approaches, such as 
AutoML (automated machine learning), enable the most informative 
features from Cell Painting datasets to be identified faster32. Using 
AutoML, Siegismund et al. found that a subset of only 20–30 features 
was sufficient to represent the most relevant information from the mor-
phological profile and to successfully differentiate between the control 
class and perturbations. However, results will likely vary, depending 
on the endpoint being classified and the amount of data and diversity 
of phenotypes in the profiled dataset.

Normalization and batch correction for Cell Painting profiles. 
Experimental design of Cell Painting assays can substantially impact 
the efficacy of normalization methods attempting to mitigate technical 
variation, such as batch effects. For example, Janosch et al. explored the 
selection of features solely using dimensionality reduction methods 
on images from negative controls in order to discover new phenotypes 
based on only negative controls33. Typical analysis pipelines use Pycy-
tominer to normalize data at the plate level, correcting each well either 
by using all wells on the plate, if they are not expected to be enriched 
in displaying a particular phenotype, or solely the negative control 
wells, if they are sufficient in number (using the RobustMAD method)31. 
Pycytominer also implements the sphering transformation (also called 
‘whitening’), which can be viewed as a multivariate standardization 
strategy18,33. Sphering Cell Painting profiles was found to increase the 
percent replicating score—a measure of reproducibility of replicates 
of each sample—from 24–30% to 83–84% (for compounds at 10 µM)34, 
but these results are likely confounded by plate layout effects and have 
not been consistently high across studies.

When analyzing Cell Painting data, computing median profiles is 
a popular choice that averages data from multiple cells within a well35. 
This approach offers benefits like reduced data size, faster analysis, 
simplified interpretation, and potentially less noise, but it assumes cell 
homogeneity, which can obscure subtle differences between cells36. 
Although median profiles provide a summary of the cell population 
with a single value per feature, single-cell analysis offers heterogene-
ity analysis but at the cost of increased complexity, noise, and longer 
analysis time.

Ongoing research aims to best capture the cell population hetero-
geneity to improve profile performance without unwarranted increase 
in processing speed or noise; van Dijk et al. discuss cell heterogene-
ity in representations of cell populations in the Cell Painting assay37. 
Single-cell analysis can identify subpopulations, characterize hetero-
geneity, and inform experimental design, making it valuable for study-
ing complex biological systems. Despite these advantages, median 
profiling remains the most popular approach for high-throughput 
image-based profiling campaigns.

As part of the JUMP Cell Painting Consortium, Arevalo et al. con-
ducted a thorough analysis of 10 batch effect correction methods 
selected and adapted from a single-cell mRNA profiling benchmark 
study but applied to Cell Painting average profiles38. They used quali-
tative visualizations in combination with 10 metrics to assess perfor-
mance on image-based profiles, focusing on batch effect reduction 
and preservation of biological signals. These methods were applied 
to JUMP Cell Painting Consortium data for five scenarios of increasing 
complexity: batches from within and between different laboratories, 
within and between different imaging equipment, and with low and 
high numbers of replicates. They found Harmony and Seurat RPCA 
noteworthy, consistently ranking among the top three methods for 
all tested scenarios while maintaining computational efficiency. Yet, 
overall, they found existing batch-correction methods’ efficacy under-
whelming. The proposed framework, benchmark, and metrics can be 
used to assess new batch-correction methods in the future. This work 
paves the way for improvements that enable the community to make 
the best use of public Cell Painting data for scientific discovery.

http://www.nature.com/naturemethods
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Deep-learning models are being explored for batch correction, 
aiming to distinguish noise from true biological signals in Cell Paint-
ing data. Yang et al. investigated a mean-teacher-based model called 
DeepNoise, which was tested on the RxRx1 dataset consisting of 125,510 
fluorescent microscopy images from Recursion for the CellSignal 
competition39. The study found that DeepNoise achieved a multiclass 
accuracy of 99.60%, compared with 74.58% using plate-based normali-
zation. The results should be interpreted with caution; the inaccessi-
bility of the test dataset labels prevented extensive comparisons with 
other models and further analysis of predictions on each of the four cell 
types, and additional metrics such as specificity and sensitivity would 
be helpful. Leakage from training to test set is likely also a confounding 
issue. Despite these limitations, the study indicates that deep-learning 
methods may be more effective at learning batch-effect patterns in 
Cell Painting datasets than are standard normalization approaches.

Publicly available datasets
Cell Painting has been used to profile chemical compounds and 
genetic-perturbation libraries in numerous datasets that are publicly 
available. The Cell Painting Gallery provides a centralized location for 
these datasets40. Currently, there are four large public datasets (each 
representing tens of thousands of perturbations) for compound and/
or genetic perturbations (Table 1). Figure 3a gives a distribution of the 
datasets used in the 90 studies reviewed in this work. Several visu-
alization tools have been developed to explore the JUMP-CP dataset: 
Broad Institute (broad.io/jump-explore), Ardigen (ai.ardigen.com/
jump-cp-consorcium), Spring Discovery (www.springscience.com/
jump-cp), and the Max Planck Institute of Molecular Physiology (cpcse.
pythonanywhere.com).

Applications of Cell Painting data
The processing and downstream analysis of Cell Painting data (Fig. 1c), 
often using machine-learning and statistical approaches, has enabled 
the identification of complex patterns and accurate predictions for 
many goals. Machine-learning algorithms are particularly well-explored 
for analyzing morphological profiles to predict the activity, safety, and 
toxicity of unknown compounds, both in vitro and in vivo, and to predict 
MoAs and targets. Supervised methods are used when labeled datasets 
are available (that is, the ‘correct answer’, or ground truth, is known for 
each sample), enabling the algorithms to be trained to predict specific 
outcomes and patterns from feature representations. Unsupervised 
methods are used to investigate the similarities among samples in 
the feature space itself (for example, to group genes or compounds) 
without needing labeled data. In the following sections, we discuss 
the applications of Cell Painting data, using machine-learning and 
statistical approaches, to aid drug discovery.

Predicting mechanisms of action
Cell Painting offers an unbiased view of cellular responses to compound 
perturbations, enabling the identification of MoAs for compounds that 
induce specific morphological changes (Table 2). This identification 
process involves comparing the phenotype of a query compound with 
those of ‘landmark compounds’ with known MoAs, or with the gene 

encoding the protein targeted by the compound (or other genetic 
perturbations in the same pathway). However, defining a compound’s 
MoA is complex because compounds can have multiple targets with 
varying affinities. Additionally, protein targets, and proteins up- and 
downstream of the direct targets, can be differentially expressed in vari-
ous cell types. As a result, binary annotations for MoAs in datasets often 
oversimplify reality (see Trapotsi et al. for more details)41. Moreover, 
the breadth of MoAs that can be adequately described by any profil-
ing assay, including Cell Painting, transcriptomics, or proteomics, is 
limited because none can capture every possible cellular response. The 
applicability of Cell Painting data for each MoA must be established 
separately. The most commonly detected MoAs in Cell Painting read-
outs include microtubule modulation42,43, DNA-damaging agents21, 
mitochondrial membrane depolarisation43–45, lysosomotropism46, 
and inhibitors of the plasma membrane Na+ pump43, among others 
(Table 2). It is important to note that MoA is a broad term, and studies 
in this section may involve protein-target-related MoA predictions 
(often termed drug–target interactions) or biological-process-related 
MoA predictions.

The impact of stain choices and cell type on MoA identification 
has recently been evaluated. Cimini et al. analyzed 90 compounds 
comprising 47 diverse MoA classes, and found that collected data were 
robust to dropping individual Cell Painting channels; however, data-
sets were small, and specific phenotype(s) of interest may depend on 
compartments that were less critical for the compounds in the study11. 
Although they did not use Cell Painting, Cox et al. studied the impact of 
diverse fluorescence markers and cultured cell lines in morphological 
profiling of 1,008 approved drugs and well-characterized compounds 
(218 unique MoAs) at four concentrations. They used 15 reporter 
cell lines (three cell lineages labeled with 12 organelle and pathway  
markers grouped in five combinations)47. The best individual cell 
line was able to distinguish 20 of 83 MoAs (the authors considered 
MoAs that had at least three active compounds). The number of dis-
tinguishable MoAs increased with each cell line but quickly plateaued;  
ultimately, 41 of 83 MoAs were readily distinguished using data from 
all 15 reporter cell lines.

Computational approaches can also improve MoA classification 
accuracy. For example, Janosch et al. explored dimensionality-reduction 
methods to improve compound MoA classification33. They hypothe-
sized that if a feature remains reproducible across all negative control 
wells, any significant changes would likely be due to a perturbation, 
rather than a technical variation. They benchmarked their method 
with a L1-norm regularization then classified MoAs using the reduced 
features. Removal of the noisiest parameters improved MoA classifi-
cation accuracies (from 17.66% to 20.19% for the BBBC022 dataset) 
and showed better generalization when they trained models without 
seeing a class. Therefore, this method can be used to select features for 
downstream analysis, and the authors suggest that it could be improved 
by applying deep-learning methodologies.

The MoA of many compounds has been determined using Cell 
Painting and a ‘guilt by association’ strategy48. Autoquin, a previously 
uncharacterized autophagy inhibitor, was found to induce similar 
morphological changes in the Cell Painting assay to those caused 

Table 1 | Large publicly available Cell Painting datasets covering compound or genetic perturbations

Dataset Release date Cell line Number of unique perturbations (compounds or genetic) References

Bray et al. Cell Painting dataset January 2017 U-2 OS 30,616 compounds 117

Recursion RxRx3 dataset January 2023 HUVEC 17,063 CRISPR–Cas9-mediated gene knockouts (most 
anonymized) and 1,674 compounds at 8 concentrations

118

JUMP-CP dataset March 2023 U-2 OS Over-expression of 12,602 genes, knockout of 7,975 genes 
using CRISPR–Cas9; 116,750 unique compounds

14

Periscope dataset August 2023 HeLa and A549 Whole-genome pooled optical, >20,000 single-gene  
CRISPR–Cas9-mediated gene knockout screens

119

http://www.nature.com/naturemethods
https://broad.io/jump-explore
https://ai.ardigen.com/jump-cp-consorcium
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by oxautin-1 (ref. 49). Both autoquin and oxautin-1 have been shown 
to inhibit autophagy through indirect modulation of the activity of 
lysosomal enzymes, and autoquin has been revealed to increase Fe2+ 
levels in lysosomes. Svenningsen et al. investigated the mechanism 
of action of 9-methylstreptimidone, finding a high Pearson correla-
tion (ρ = 0.94) with cycloheximide, a known protein-synthesis inhibi-
tor, and confirmed its similar effects in a dose-dependent manner50. 
Other compounds have been found to modulate microtubules42 and 
inhibit pyrimidine biosynthesis (inhibiting target dihydroorotate 
dehydrogenase)51.

Despite these successes, predicting MoAs for cases in which ref-
erence (or ‘landmark’) compounds do not exist remains a significant 
challenge. These unclassified MoAs involve changes in cellular behav-
ior not seen in reference compounds, making it difficult to identify 
and characterize these mechanisms through guilt by association. 
The lack of prior knowledge and annotations for unclassified MoAs 
hinders the development of effective machine-learning models for 
prediction. Integrating orthogonal approaches can provide a more 
comprehensive understanding of cellular behavior and alleviate this 
barrier. In one instance, combining Cell Painting with thermal pro-
teome profiling enabled the discovery of diaminopyrimidine DP68 
as a σ1 receptor antagonist52. In this case, Cell Painting revealed many 
potentially lysosomotropic central-nervous-system-targeting drugs 
that were biosimilar to diaminopyrimidine DP68, and it was challeng-
ing to discern whether the lysosomotropic effect or the σ1 receptor 
interaction was responsible for the phenotype52. Thermal proteome 

profiling allowed the authors to narrow it down to the σ1 receptor 
interaction.

Cell Painting assays have also been used to determine the MoA of 
dark chemical matter (DCM). DCM compounds have drug-like features 
but, after hundreds of assays, have revealed no biological activity, 
raising the question of whether they are indeed inert or whether their 
biological activity is very precise and just not yet discovered53. Pahl 
et al. profiled 7,700 DCM compounds with the Cell Painting assay and 
discovered that a remarkable 12% resulted in significant morphological 
changes (compared with a DMSO control)54. They were able to select a 
subset of morphological features most affected by compounds from 
13 distinct bioactivty clusters. These subprofiles could then be used to 
identify the MoAs for new compounds by comparing them with com-
pounds with known MoAs. Using their approach, the authors identified 
compounds associated with microtubule modulation, DNA synthesis, 
and pyrimidine biosynthesis.

Not all MoAs are desirable; in fact, some compounds are known 
to be frequent hits in assays with well-characterized toxic effects and 
are thus dubbed nuisance compounds. Dahlin et al. found that some 
morphological clusters of nuisance compounds were associated with 
cellular injury (for example, a genotoxin cluster and a tubulin poi-
sons cluster)22. Other clusters represented other MoAs, including 
non-specific ‘historical’ KAT inhibitors (hKATIs). Interestingly, at higher 
concentrations, some compounds triggered a cellular response called 
a ‘cytotoxicity burst’ that activated multiple stress responses within 
the cell, rather than affecting a singular target.
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Fig. 3 | Analysis of datasets and leading institutions in studies using Cell 
Painting datasets. a, Analysis of the frequency of various Cell Painting datasets 
used in reviewed studies. Of the 90 studies reviewed in this work (some studying 
more than one dataset), smaller scale datasets or in-house datasets were 
analyzed in at least 44 studies, Broad Institute datasets in 35 studies, and the 
JUMP-CP dataset was used in at least six studies, despite its recent release. ‘New/

Others’ refer to studies using datasets that were smaller in scale and/or in-house 
datasets that were not released publicly. b, Number of academic institutions, 
government agencies, pharmaceutical companies, and non-profit organizations 
that led studies evaluated in this work and/or are members of the JUMP-CP or 
OASIS consortium (left), with word cloud illustration (right). Further details are 
available in Supplementary Table 2 and Supplementary Table 4.
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MoA identification has been enhanced by the application of deep 
learning for image feature extraction. Instead of using pre-defined 
classical image features, deep-learning feature extractors are adept at 
extracting meaningful information directly from Cell Painting images 
and can therefore reduce bias and improve reproducibility by eliminat-
ing the need for feature engineering (Fig. 4).

An early study by Durr et al. developed a CNN that classified 
single-cell phenotypes on the basis of images generated from Cell Paint-
ing assays55. They trained CNNs to classify MoAs using approximately 
40,000 single-cell images for 75 bioactive compounds55. For unbiased 

testing, they used 2,223 cells in a test set, from perturbations of taxol, 
procaine, and peruvoside; these were excluded from the training set. 
The CNN model, misclassifying 2.7% of all cells, performed better than 
CellProfiler features in a linear discriminant analysis classification 
model, which misclassified 5.4% of cells.

In addition to CNNs, transfer learning—in which the knowledge 
of a pre-trained model is transferred or fine-tuned to another model 
to perform a similar task—is useful, reducing the need to train mod-
els from scratch; this is being increasingly explored for cell imaging 
data56. Kensert et al. used CNN models pretrained on the 13 million 
natural images in the ImageNet dataset to predict 12 different MoAs 
across 38 compounds and 103 treatments (compound–concentra-
tion pairs)56. The pre-trained models achieved an accuracy between 
95% and 97%; training from scratch resulted in an accuracy between 
70% and 91%.

Weakly supervised deep learning can extract useful representa-
tions for unsupervised tasks by training a model on a pretext task, such 
as identifying replicates of biological samples from among all samples 
in the experiment. Moshkov et al. improved this approach by training 
an EfficientNet architecture on phenotypically strong compounds 
from diverse Cell Painting datasets, enhancing downstream analysis 
for matching biological compounds by 30% compared with classical 
features24. Advances in representation learning are expected to further 
improve results in various unsupervised Cell Painting applications 
beyond MoA determination. These learned representations can cap-
ture important phenotypic features and confounding factors, which 
can then be used to improve downstream analyses, such as predict-
ing MoAs or matching biological compounds. Several studies have 
explored various approaches to representation learning using deep 
learning in Cell Painting assays57,58,59.

Cell Painting in assay activity prediction
Images have proven useful in predicting compounds with desirable 
biological activity and identifying novel active compounds with thera-
peutic potential. A landmark study by Simm et al. in 2018 used images 
from a three-channel glucocorticoid receptor high-throughput assay 
to predict the activity of compounds in 535 assays spanning a wide 
variety of biological pathways and diseaseareas60. Although not using 
the full Cell Painting assay, the multitask models performed very well 
(AUC-ROC > 0.90) for 31 out of 535 assays; they validated two of these in 
prospective follow-up work. This study generated substantial interest 
in using Cell Painting for assay prediction. Hofmarcher et al. later used 
publicly available Cell Painting and ChEMBL data to explore the ability 
of CNNs trained directly using Cell Painting images to predict particular 
bioactivities of compounds in 209 biological assays, achieving a mean 
AUC-ROC of 0.73 (ref. 61). These performed better than fully connected 
neural networks trained using classically extracted numerical features 
(mean AUC-ROC = 0.68), suggesting that raw-image CNN models can 
capture information that might be overlooked by models trained on 
predefined CellProfiler features61.

Nyffeler et al. compared various computational strategies, 
including multiconcentration approaches and single-concentration 
approaches, to identify bioactivity hits using a Cell Painting assay and 
showed that nine of ten approaches were highly concordant for 82% 
of the tested chemicals62.

Cell Painting has also been integrated with chemical structure 
information to improve prediction ability. When a BMF Macau model 
was used with Cell Painting profiles as supplementary data, assay 
prediction accuracies were notably higher, with AUCs greater than 
0.80 for 100 out of 224 targets. By contrast, models relying solely 
on chemical structural data reached AUCs greater than 0.80 for 
only 90 out of 224 targets63. In another study, models combining 
structural information with Cell Painting profiles, using similarities 
to training data, had improved performance over those that used 
only chemical structure information: for the combination models, 

Table 2 | Mechanisms of action detected by Cell Painting

MoA Biological process, direct targets Source

Cell cycle inhibition Cell cycle arrest in the S or G2 phase 66,120

Microtubule disruption Microtubule organization, 
aurora kinase inhibitors,tubulin 
polymerization inhibitor

42,58,66

Cytoskeletal 
disruption

Actin dynamics, microtubule 
destabilizers

42

Protein synthesis 
inhibition

Protein synthesis inhibitors 66

DNA damage Ribonucleotide reductase inhibitors, 
PARP inhibitors, topoisomerase 
inhibitors, pyrimidine biosynthesis

58,66,121

Apoptosis induction Caspase activation, mitochondrial 
disruption, death receptor signaling

43,80

Autophagy Autophagosome formation, 
lysosomal degradation, autophagy 
flux

49,84

Membrane integrity 
disruption

Membrane poration, lipid 
peroxidation

22

Mitochondrial 
dysfunction

Mitochondrial respiration, ATP 
synthesis

43,122

Oxidative stress ROS production, antioxidant 
response

84

ER stress Unfolded protein response, 
ER-associated degradation

84

Hormonal modulation Hormone receptor activation, signal 
transduction, retinoid receptor 
agonists

66

Lipid metabolism 
inhibition

Lysosomotropism and cholesterol 
homeostasis regulation, HMGCR 
inhibition

66,121

Signal transduction 
inhibition

ALK tyrosine kinase receptor 
inhibition, src inhibitor, JAK inhibitors, 
AKT–PI3K–MTOR inhibitors

58,66,121

Ion channel 
modulation

Na+/K+ ATPase 121

Epigenetics HDAC inhibitors, BET proteins 66,121

Metabolism PPAR receptor antagonism, carbonic 
anhydrase inhibition HMGCR 
inhibition, ATPase inhibitors

58,66

Protein homeostasis HSP inhibitors 66

Adhesion disruption Cadherin function, integrin signaling

Angiogenesis 
inhibition

VEGFR inhibitor 122

Immune modulation Receptor antagonist, tumor necrosis 
factor

122

Proteolysis inhibition Matrix metalloprotease inhibitors 58

Cell Painting has detected various MoAs across multiple pathways, as shown in publicly 
available studies. However, this is not an exhaustive list, and MoAs are not always annotated. 
As such, signals for MoAs in Cell Painting data must be established on a case-by-case basis.
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an additional 20% of assays had an AUC greater than 0.70 (79 out of  
177 assays)64.

Most recently, Sanchez-Fernandez et al. developed CLOOME, a 
multi-modal contrastive learning algorithm, to combine chemical 
structure data and Cell Painting images into a unified space. Their 
retrieval system correctly identified the image corresponding to a given 
compound with an accuracy approximately 70 times higher than that 
of a random baseline model; this system was also used to predict com-
pound activity (in a similar setting as Hofmarcher et al.), and CLOOME 
achieved an AUC of 0.714 ± 0.20 across all prediction tasks65. This result 
indicates that the learned representations are transferable to different 
tasks (in this case bioactivity prediction) because no activity data were 
used to train the CLOOME encoders. Using images directly therefore 
enables unbiased insight into information contained within that image 
without requiring classical feature-extraction algorithms. Overall, sev-
eral studies have now confirmed that adding Cell Painting image data to 
chemical structure information can enhance prediction ability64,66–68.

Phenotypic profiling of bioactivity to guide chemistry
Phenotypic profiling, particularly with Cell Painting, is increasingly 
being used to evaluate and characterize compounds as they are syn-
thesized, assessing the bioactivity of analogs with small changes to 
their structure, a process known as determining structure–activity 
relationship (SAR). Gerry et al. piloted this concept by synthesizing a 
small set of compounds and annotating their biological effects through 
Cell Painting69. They concluded that this rapid-feedback analysis could 
reveal unexpected phenotypes and advocated for integrating Cell Paint-
ing annotation into routine synthetic organic chemistry to accelerate 
medicinal chemistry.

Nelson et al. explored the use of Cell Painting-based phenotypic 
profiling to compare the biological activity of certain sp3-rich com-
pounds (carbon atoms with four single bonds), and found that two 
epoxy ketone diastereomers induced consistent, striking morphologi-
cal changes for all doses, prompting studies to compare their morpho-
logical signatures with those of reference compounds70. Studies using 
structurally diverse, reduced flavones and their Cell Painting profiles 
have shown that the fraction of sp3-hybridized atoms is not the only 
factor in enhanced biodiversity; stereochemistry and appendage 
diversity are also contributors71,72.

More recently, biology-oriented synthesis has focused on 
pseudo-natural products. To this end, Christoforow et al. characterized 
the potential bioactivity of new classes of pyrano-furo-pyridone (PFP) 
pseudo-natural products73. They found that, among the five initial hits 
exhibiting bioactivity in the assay, the morphological profiles exhibited 

more than 70% similarity to the reference compound profiles; this then 
helped them to decipher their MoAs. Other studies have explored the 
use of target-agnostic Cell Painting to determine the phenotypic roles 
of novel compounds compared with reference compounds, including 
indocinchona alkaloids74, a natural-product inspired flavonoid library75; 
spiroindane pyrrolidines76; pyrroquinoline pseudo-natural products77; 
and indofulvin pseudo-natural products78. Overall, phenotypic profil-
ing enables rapid evaluation of the bioactivity, and sometimes MoA, 
of synthesized compounds without requiring a custom assay for each 
chemical series.

Predicting compound toxicity
Cell Painting assays have been used to predict multiple safety- and 
toxicity-related assay outcomes. For example, Way et al. found that 
Cell Painting data could predict aspects of cell health beyond a simple 
cell count, including the percentage of dead cells (R2 = 0.62), num-
ber of S-phase cells (R2 = 0.64), level of DNA damage in G1-phase cells 
(R2 = 0.51), and percentage of apoptotic cells (R2 = 0.37)21. In addition 
to the specific cell health phenotypes mentioned above21,79, the Cell 
Painting assay could predict the outcomes of 12 cytotoxicity- and 
proliferation-related in vitro assays using Cell Painting profiles80. These 
models achieved an AUC of 0.71, compared with an AUC of 0.56 achieved 
by models using only chemical structure data (Morgan fingerprints). 
Trapotsi et al. successfully predicted mitochondrial toxicity with an 
AUC = 0.93 when using Cell Painting profiles81. Interestingly, this study 
included both small-molecule compounds and proteolysis targeting 
chimeras (PROTACs), which have garnered attention owing to their 
unique bifunctional nature and potential ability to degrade ‘undrug-
gable’ targets81. The authors showed that Cell Painting could identify 
PROTAC phenotypic signatures, which were often unique as compared 
with the Cell Painting profiles of their individual components. Com-
bining proxy-DILI labels with chemical and pharmacokinetic features 
achieved improved detection accuracy and differentiation between 
animal and human DILI sensitivity; it remains to be seen whether Cell 
Painting can be used for DILI prediction82, which is one of the aims of 
the recently established OASIS consortium (www.oasisconsortium.
org). Cell Painting is thus particularly useful in assessing the toxicity of 
new therapeutic modalities that lack the experience and best practices 
that have been established for small molecules.

Cell Painting is an in vitro cell-based assay, but several studies have 
explored its ability to predict compound perturbation effects in whole 
organisms. Nyffeler et al. performed an in vitro-to-in vivo extrapola-
tion (IVIVE) of in vitro potency estimates obtained through Cell Paint-
ing83 and compared them with effect values from in vivo mammalian 
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Fig. 4 | Summary of convolutional neural network analyses of Cell Painting 
images, one type of deep-learning network that can be used to extract image 
features. The input image consists of a matrix with pixel values, which can be 
a single cropped cell or a larger field of view. The convolution filters (smaller 
weight matrices) slide over the input image, detecting patterns such as edges, 

textures, and shapes, resulting in a feature map. An activation function (for 
example, ReLU) is then applied elementwise, which introduces non-linearity into 
the model. Pooling then reduces the spatial dimensions of the feature maps (Step 
1). The final step involves extracting high-level features from the image which can 
then be used for model training (Step 2).
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toxicity studies. Sixty-eight percent of the Cell Painting-based results 
were either similar to or more conservative than those of the in vivo 
studies, affirming the potential use of Cell Painting data in IVIVE83. 
More recently, Nyffeler et al. extended this strategy to assess whether 
the concentrations of environmental chemicals that induce strong 
phenotypic changes in the Cell Painting assay could predict unintended 
biological effects at the exposure at levels humans typically encoun-
ter in real-world scenarios84. On a larger scale, the US Environmental 
Protection Agency is working towards using transcriptomics and Cell 
Painting data in their risk assessments85. In the future, new sources of 
relevant in vivo toxicity annotations, such as hepatotoxicity86,87 and 
cardiotoxicity88, and the inclusion of pharmacokinetic information89,90, 
might be used to augment Cell Painting data in predictive toxicology.

Phenotypic profiling of compound mixtures
Cell Painting has also been used to profile compound mixtures. For 
example, Pierozan et al. identified synergy in the responses of human 
breast epithelial cells to low-concentration mixtures of perfluoroocta-
noic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), two widely 
used industrial chemicals91. Rietdijk et al. explored using Cell Painting 
to profile the effects of combining environmental chemicals on four 
cell lines; in one example, bisphenol A (BPA) did not cause significant 
morphological changes to cells when screened on its own, but in three 
out of four cell lines, it caused synergistic effects when combined with 
another industrial chemical92. Computational methods are still in devel-
opment, to attempt to deconvolute the impacts of compounds on 
multiple target proteins in the related case of polypharmacology93.

Using Cell Painting assays to advance disease understanding
Understanding disease biology and developing potential therapeutic 
interventions involves many steps, including disease modeling and 
biomarker discovery. The Cell Painting assay has been used to uncover 
functional associations between human genes and disease-associated 
alleles on the basis of cellular morphology when the relevant genes are 
perturbed or alleles are present. Rohban et al. used this approach to 
group 110 genes with a detectable phenotype, revealing a previously 
unknown interaction between the NF-κB pathway and Hippo pathways94, 
and then later to identify promising compounds that match a desired 
phenotypic profile affecting those pathways95. Cancer-associated 
somatic variants could also be overexpressed in cells, to predict their 
functional impacts, including those at the single-cell level20.

Morphological signatures can also serve as biomarkers for disease 
diagnosis or prognosis, or be used to monitor therapeutic responses. 
For example, Cell Painting assays have been used to model cancer cell 
morphologies to identify the distinct morphological signatures asso-
ciated with esophageal adenocarcinoma and responses to selective 
modulators for these phenotypes96,97.

In antiviral drug discovery, Cell Painting has been used to identify 
virus-induced phenotypic signatures that distinguish infected from 
non-infected cells18,98,99. Rietdijk et al. showed that treatment of infected 
cells with a panel of various host- and virus-targeting antivirals could 
reverse the morphological profile of infected host cells towards that of 
a non-infected cell92. Further, Cell Painting has been used to investigate 
transcription factor EB (TFEB) signaling and lysosomal dysfunction 
by detecting phenotypic changes in organelles in response to TFEB 
localization100. Finally, Kelley et al. used the assay to investigate drug 
resistance in anti-cancer therapy by identifying the morphological 
signature of bortezomib treatment resistance in cells101.

Cell Painting has also been used to create disease models by lev-
eraging natural human genetic variation. Tegtmeyer et al. aimed to 
investigate relationships between genetic variants and cellular mor-
phology in induced pluripotent stem cells (iPSCs), identifying several 
novel associations (cell morphology quantitative trait loci)102. McDi-
armid et al. used Cell Painting data to reveal 16 FDA-approved drugs in 
five mechanistic groups that could reverse morphological signatures 

associated with Alzheimer’s disease linked to variants of the SORL1 risk 
gene in neural progenitor cells103. Schiff et al. showed that unbiased 
phenotypic profiling using Cell Painting and primary fibroblasts from 
91 people with Parkinson’s disease and matched healthy controls could 
distinguish LRRK2 and sporadic Parkinson’s disease lines from healthy 
controls104. Another pilot study, involving 12 healthy controls and 12 
participants with the severe genetic neurological disorder spinal mus-
cular atrophy (SMA), demonstrated that a CNN model trained on Cell 
Painting data from primary skin fibroblasts could distinguish disease 
states in cells from an unseen control–SMA pair among individuals with 
the disease105. Overall, the broad and multidimensional data generated 
by Cell Painting assays not only provide opportunities for new insights 
into complex cellular responses, but can also reveal novel therapeutic 
targets and strategies for drug discovery and repurposing.

Integrating Cell Painting, transcriptomics, and proteomics 
data
Given that Cell Painting readouts describe only one category of bio-
logical phenotype, predictive models might be improved by inte-
grating Cell Painting data with further biological data, such as gene 
expression and proteomic data106. Nassiri and McCall compared Cell 
Painting data with gene expression data from the Library of Integrated 
Network-Based Cellular Signatures for improved insight into MoAs107. 
They used a reference database of 9,515 compounds to identify sig-
nificant associations between changes in cell morphology and gene 
expression, revealing an interdependence that assists in inferring  
compound MoAs.

The relationship between Cell Painting and gene expression data 
was also explored in studies showing that, together, they provide 
complementary information for mapping cell states34,108. In Way et al., 
compounds sharing the same MoA were grouped together by Cell Paint-
ing 44% of the time and by mRNA profiles 50% of the time (across all 
doses); when combined, this reached 69% (ref. 34). Likewise, Haghighi 
et al. used morphology features from Cell Painting perturbations to 
predict levels of gene expression108. They found that cell morphology 
data could capture distinct biological information that was often not 
associated with the particular stains in the Cell Painting assay, high-
lighting that Cell Painting captures more information than just that 
for particular labeled components or some of these genes had unan-
notated functions. Another study combined RNA-sequencing and Cell 
Painting data to estimate the phenotype-altering concentration of a set 
of 11 mechanistically diverse compounds, and found that for 10 out of 
11 compounds, both modalities could determine potency estimates 
within half an order of magnitude109.

Morphological features and gene expression data were also used 
by Cerisier et al. to explore associations between chemicals and dis-
ease by developing a biological network combining chemical–gene–
pathway–morphological perturbation and disease relationships110. 
They investigated two chemicals (amiodarone and prochlorperazine) 
because both showed a risk for drug-induced liver injury (DILI) in 
humans and thus, they assessed whether they share common infor-
mation in Cell Painting and the L1000 dataset. They found a direct 
link between deregulated genes and cell morphology observations. 
Seal et al. used machine learning to predict mitochondrial toxic-
ity by combining gene expression, Cell Painting data, and chemical 
structures, with detection scores of 0.40, compared with 0.25 using 
chemical structures alone43. The combination of cell morphology and 
gene expression at the single-cell level is an exciting research area that 
remains to be explored, given the higher computational demands for 
single-cell analysis and the technical challenges in measuring both 
kinds of profiles in the same assay111.

The benefits of integrating Cell Painting data might also apply 
to protein profiling. One study tested 306 well-characterized com-
pounds with established MoAs using Cell Painting and nELISA protein 
profiling, finding a 26.7% and 21.2% retrieval rate for MoA classes, 
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respectively, with an additional 33% of MoAs when combining nELISA 
with Cell Painting112. Another study combined morphological profiling 
with proteome analyses to reveal lysosomotropic activity leading to 
cholesterol homeostasis and localization for tetrahydroindolo[2,3-a]
quinolizine derivative, a natural-product-inspired compound113. Over-
all, considering multiple modalities can help in elucidating chemical–
phenotype observations. The integration of Cell Painting with diverse 
and complementary -omics modalities, such as transcriptomics and 
proteomics, can offer more comprehensive insights into the biological 
impacts of compounds.

Status check: lessons learned from the first  
10 years
Over the past decade, the Cell Painting assay has become a widely used 
tool for drug discovery and cell biology. Cell Painting data are being 
used in more than 36 academic laboratories or screening centers and 
51 companies worldwide, with at least 13 offering the assay as a service, 
providing a range of outputs including images, profiles, or matching of 
customer samples to an internal database of samples (Fig. 3b and Sup-
plementary Table 4). At least four candidate therapeutics discovered 
using Cell Painting have entered phase 2 clinical trials (www.recursion.
com/pipeline). Cell Painting uses the maximum number of channels 
of a typical microscope and minimizes costs and wash steps, making 
it amenable to screening millions of samples in a high-throughput 
pharmaceutical setting and testing a few samples in any academic labo-
ratory. The assay is remarkably robust; extensive testing of different 
staining and imaging conditions yielded relatively similar results11,12. 
Together with image-based profiling using other assays, Cell Painting 
has provided insights into the complex world of cellular morphology, 
expanding our understanding of disease mechanisms and enhancing 
drug-discovery processes.

So far, Cell Painting has been most widely used for uncovering 
compounds’ MoAs, by mapping similarity to compounds with known 
mechanisms. Identification of disease-associated phenotypes and 
prediction of assay outcomes (including various types of toxicity) are 
increasingly common. The potential of Cell Painting for predicting 
organ-level toxicity is promising and is actively being explored by 
the OASIS Consortium (https://oasisconsortium.org/). Less common 
but proven applications include characterizing newly synthesized 
compounds to discern structure–activity relationships, functionally 
annotating gene and allele impact, identifying compound mimics of 
a gene perturbation, designing diverse and phenotypically impactful 
compound libraries, and lead hopping.

The Cell Painting assay continues to evolve with advances in 
staining protocols, cell line diversity, and data-analysis algorithms, 
but its core strengths lie in striking a balance between speed, 
cost-effectiveness, easy implementation, and information richness, 
with the added potential for automation. Its affordability enables 
high-throughput screening, including multiple doses, varied time 
points, and additional cell lines per perturbation, providing a com-
prehensive biological perspective. Recent publications from Bayer, 
Pfizer and AstraZeneca, among others, have shown that Cell Painting 
is a promising tool in the pharmaceutical industry58,68,44. The potential 
for automation further increases its appeal, enabling large-scale phe-
notypic screening with minimal manual intervention.

Challenges and future directions
There are many avenues for improving image-based profiling in the 
future. Matching profiles across modalities—from compounds to 
genetic perturbations—has proven difficult so far13. Improving meth-
odology for this task would accelerate several applications, such as 
identifying compounds with the same cellular impact as a given gene 
of interest. Also, although Cell Painting is widespread in matching 
the MoA of a query compound to known compounds, it remains to be 
tested whether matching compounds to genetic perturbations might 

aid in the much more challenging situation in which no compounds 
exist for a given mechanism.

Interpretation of morphological profiles is another chal-
lenge. Although sophisticated image-analysis algorithms and 
machine-learning methods can extract and analyze complex mor-
phological signatures, interpreting them can be challenging, even for 
classical algorithms in which features are precisely defined mathemati-
cally. The BioMorph space attempts to address this by linking 827 Cell 
Painting features to 412 descriptive terms, on the basis of mapping to 
assays capturing phenotypes of cell health79. However, for broad utility, 
mapping to more assay data would be needed.

Data handling and storage requires attention—the high-content 
nature of the Cell Painting assay generates vast amounts of data, 
which can be challenging to store, manage, and share, and the data 
require considerable computational resources to process and analyze. 
Cloud-based solutions and open-source software tools can address 
these challenges114, but increasing their user-friendliness would expand 
the use of this data type.

We see great promise in extending the Cell Painting assay to 3D cell 
cultures, organoids115, tissue slices, and live cell imaging116. Improve-
ments in deep-learning methods are also expected to dramatically alter 
Cell Painting, particularly in batch-correction methods that can extract 
biologically meaningful signals from technical noise38.

The recent availability of large Cell Painting datasets stands 
to empower a new wave of discoveries, particularly as methods for 
matching new batches of data to public sets mature. Consortia serve 
a valuable role in creating these data sets and evaluating applications 
of Cell Painting data, by pooling resources and contributing expertise 
to experimental design. In summary, with the availability of larger 
datasets, increased academic and industry interest, and the poten-
tial for collaboration through consortia, the future of Cell Painting  
looks bright.

Reporting summary
Further information on research design is available in the Nature 
 Portfolio Reporting Summary linked to this article.
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