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A versatile information retrieval framework
for evaluating profile strength and similarity
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Large-scale profiling assays capture a cell population’s state by measuring
thousands of biological properties per cell or sample. However, evaluating
profile strength and similarity remains challenging due to the high dimen-
sionality and non-linear, heterogeneous nature of measurements. Here, we
develop a statistical framework using mean average precision (mAP) as a sin-
gle, data-driven metric to address this challenge. We validate the mAP fra-
mework against established metrics through simulations and real-world data,
revealing its ability to capture subtle and meaningful biological differences in
cell state. Specifically, we use mAP to assess a sample’s phenotypic activity
relative to controls, as well as the phenotypic consistency of groups of per-
turbations (or samples). We evaluate the framework across diverse datasets
and on different profile types (image, protein, mRNA), perturbations (CRISPR,
gene overexpression, small molecules), and resolutions (single-cell, bulk). The
mAP framework, together with our open-source software package copairs, is
useful for evaluating high-dimensional profiling data in biological research and
drug discovery.

Today, the study of complex diseases and biological processes at the
systems level increasingly relies on the use of multiplex and high-
throughput experiments. One particular experimental design, known
as “profiling,” has emerged as a powerful approach to characterize
biological functions, classify patient subpopulations, and identify
promising therapeutic targets1–6. A typical profiling experiment mea-
sures hundreds to tens of thousands of features of a biological system
simultaneously across many samples. The measurements can report
on bulk properties or offer single-cell resolution, depending on the
experimental design and research question asked. Thus, they convey
information about the molecular (e.g., genomic, epigenomic, tran-
scriptomic, proteomic, or metabolomic) or cellular (e.g., morpholo-
gical, spatial, viability across cell lines) status of the system. In some
profiling experiments biological samples are subjected to various
perturbations, usually chemical compounds or genetic reagents6–13.

Ultimately, by combining high-dimensional readouts, diverse biologi-
cal samples, and a large number of perturbations, profiling can reveal
the mechanisms of biological processes and potential therapeutic
avenues.

By casting a wide and systematic net, profiling experiments pro-
vide a rich source of information for elucidatingmolecular and cellular
responses to perturbations through comparing their readout sig-
natures. Profiling data analyzes enable functional annotation of
uncharacterized perturbations, identification of perturbation groups
using clustering, and visualization of complex relationships with
dimensionality reduction techniques2–6,11. Due to the variation in
responses to different perturbations, it is crucial to prioritize pertur-
bations that exhibit strong and reproducible phenotypic effects that
are more likely to reflect true biological signals. Likewise, it is impor-
tant to be able to distinguish treatments that produce cells that
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genuinely resemble each other (such as chemicals with the same
mechanism or genes with the same function) and those that appear
similar due to biological variation and confounding factors. However,
the variety of perturbations, high dimensionality of readouts, and the
overall heterogeneous nature of profiling datasets make it challenging
to discern biologically meaningful patterns from noise and technical
variation14–19. The ability to systematically prioritize perturbations for
downstream analysis, optimize preprocessing and experimental
design choices, and evaluate profile similarity is essential for max-
imizing the utility of these datasets.

Unlike differential feature analysis that aims to identify individual
readouts that differ between samples20, profiling data analysis treats
readout signatures as holistic representations that comprehensively
reflect the cellular state2,4,5,15. The most commonly used methods for
evaluating profile strength and similarity are either based on statistical
testing or, more recently, on machine learning (ML)15,16. Traditional
multivariate statistical tests such as MANOVA and Hotelling’s T2 along
with other recent parametric approaches21,22 still rely on assumptions
that each feature’s measurements are normally distributed, sample
sizes are larger than feature space dimensionality, and that, for the
most part, observed phenomena are linear and not co-dependent15,23.
Thus, these approaches broadly oversimplify the behavior of biologi-
cal systems24. Multivariate nonparametric kernel tests25 still assume
sufficient sample size to obtain informative embeddings of distribu-
tions and require careful choice of the kernel. On the other hand, ML
strategies use a classifier to sort measured phenotypes into distinct
groups, where biological replicability and activity are determined by a
better ability to classify samples fromcontrols or each other. However,
these methods are not readily adopted by the community for this
purpose, because in addition to the high computational cost of
creating numerous pairwise classifiers, ML strategies face the dual
challenges of limited replicates in biological studies and overfitting,
which requires extensive model evaluation, analytical design (e.g.,
model selection, train/test splitting), and parameter tuning. Addi-
tionally, ML approaches can overfit confounding variables, such as
batch effects, which can be hard to ascertain, especially if the model is
not fully explainable26. This precludes the selection of a single set of
parameters that applies to all scenarios, because these choices are (and
should be) influenced by each particular experimental design or
application. Data-driven profile evaluation that does not require
extensive parameter tuning and adapts easily across various experi-
mental designs is therefore preferred.

To overcome these issues, we proposed to approach profile eva-
luation as an information retrieval problem and developed a statistical
framework and open-source software for retrieval-based assessment
of profile strength and similarity. Specifically, we employ mean aver-
age precision (mAP) as a single data-driven evaluation metric that we
adapt to multiple useful tasks in profiling analysis, including deter-
mining the similarity of perturbations or groups of perturbations to
controls and/or to each other. mAP assesses the probability that
samples of interestwill rank highly on a list of samples rank ordered by
some distance or similarity metric. With appropriate distance metric
choice, mAP is inherently multivariate, nonparametric, and does not
make linearity or sample size assumptions, unlike most commonly
used alternatives.We provide a detailed description ofmAPproperties
in this context and a method for assigning statistical significance to
mAP scores such that resulting p-values can be used to filter profiles by
phenotypic activity and/or consistency. We show the advantages of
mAP over existing metrics using simulated data and illustrate the uti-
lity of mAP on a variety of real-world datasets, including image-based
(Cell Painting27), protein (nELISA12), and mRNA (Perturb-seq7–10) pro-
filing data, some at the single-cell level, and involving several pertur-
bation types (CRISPR gene editing, gene overexpression, and small
molecules). We provide a Python package copairs implementing a
flexible framework for grouping profiles based on metadata, and

efficient calculation of mAP scores and corresponding p-values for
easy and scalable application of our method to other datasets. We
expect that the mAP framework we provide will streamline hypothesis
generation and improve hit prioritization from a wide range of large-
scale, high-throughput biological profiling data.

Results
Profile evaluation as information retrieval
A fundamental goal of profiling analysis is to identify biologically
meaningful relationships between samples by comparing their phe-
notypic signatures. One important application of this is the ability to
annotate previously uncharacterized perturbations by comparing
them to a reference dataset of annotated profiles (or
“compendium”)1,2,4,6. For example, a compound with an unknown
mechanism of action (MoA) can be compared against a compendium
of compoundswith knownMoAs. If the unknown compound exhibits a
phenotypic signature highly similar to those of compounds targeting a
specific pathway, it suggests a shared mechanism and potential ther-
apeutic relevance.

This problem naturally aligns with principles of information
retrieval, where the goal is to rank and retrieve relevant items from a
large dataset (annotated perturbation profiles) based on their simi-
larity to a given query (uncharacterized perturbation profile)28.
Similarity-based retrieval allows evaluating how similar a query profile
is to a given group (e.g., a shared MoA) in a data-driven manner,
without making assumptions about the distribution or interpretability
of features, linear separability, or the number of reference samples
per group.

In high-throughput profiling experiments, perturbations vary
widely in their effects, from strong, reproducible phenotypic changes
to those indistinguishable from controls. To ensure that retrieval-
based annotation is meaningful, both the reference compendium and
the uncharacterized profiles should exhibit robust phenotypic signals.
Similarity-based retrieval also provides an effective way to evaluate
this task by assessing whether a perturbation reliably retrieves its own
replicates over controls—a task we refer to as phenotypic activity—only
requiring the minimum of two replicates per perturbation. By filtering
out phenotypically inactive perturbations, we can focus on perturba-
tions that induce biologically relevant effects. Additionally, if most
perturbations (or known strong perturbations) fail to retrieve their
own replicates or are indistinguishable fromcontrols, thismay indicate
systemic issues with the whole dataset that can prevent detecting real
effects. For phenotypically active perturbations with known annota-
tions, retrieval-based assessment can also be used to evaluate pheno-
typic consistency—the degree to which perturbations with a shared
annotation (e.g., a known MoA) exhibit a distinct and cohesive sig-
nature compared to other groups. Assessment of phenotypic con-
sistency in profiling data using mAP can help prioritizing perturbation
groups that produce robust phenotypes but also find useful and pre-
viously unrecognized connections. Finally, we also can assess pheno-
typic distinctiveness of an active perturbation by retrieving its
replicates against all other active perturbations. Because all these tasks
are framed as information retrieval (Supplementary Table 1), we can
leverage a single retrieval-basedmetric (mean average precision,mAP)
for their evaluation. Hence, we refer to our approach to profile eva-
luation as the mAP framework.

By assessing both phenotypic activity and consistency through
information retrieval, we can enhance the ability to distinguish
meaningful biological relationships from artifacts of experimental
noise or technical variation in downstream analyses.

The mAP framework overview
In this section, we demonstrate through a simple example the appli-
cation of the proposed mAP framework to evaluating phenotypic
activity of a perturbation (Fig. 1).
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Mean average precision (mAP) is a performance metric routinely
used in information retrieval and machine learning, particularly in the
context of ranking tasks28,29. mAP measures the ability to retrieve
samples within a group (“correct” samples) from a collection of sam-
ples from another group (“incorrect” samples). We used mAP to

indicate the degree to which profiles from one group exhibit greater
intra-group similarity compared to their similarity with the profiles
from a second group.

In a typical profiling experiment, both perturbations and controls
are represented by multiple biological replicates, i.e., the same

Fig. 1 | Schematic overview of the mAP framework. A A typical output of a
profiling experiment contains multiple replicate profiles for each perturbation and
controls. B To measure average precision (AP) per perturbation replicate, we
selected one replicate profile as a query and measured distances to its other
replicates and controls. C Profiles were then ranked by decreasing similarity
(increasing distance) to the query; the rank list was converted to binary form and
used to calculate precision Pk and recall Rk at each rank k.D Average precision was
calculatedby averagingprecision values over those ranksk containingperturbation
replicates, which corresponds to a non-interpolated approximation of the area

under the precision-recall curve. E By applying this procedure to each perturbation
replicate, we calculated a set of AP scores that were then averaged to obtain amAP
score for a perturbation’s phenotypic activity. F One can also apply the same fra-
mework to retrieving groups of perturbations with the same biological annotations
(rather than groups of replicates of the same perturbation)—for example, com-
pounds that share the same mechanism of action (MoA)—by calculating the mAP
score per each group of perturbations (MoA). Source data are provided as a Source
Data file.
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perturbation is replicated acrossmultiple wells and, depending on the
experiment’s scale, even multiple plates and batches (Fig. 1A). These
replicate profiles can be obtained directly at the well level or first
measured at the single-cell level and then aggregated. We illustrate
calculation of mAP for phenotypic activity assessment through
retrieving a group of perturbation replicate profiles against a group of
control replicate profiles. This example demonstrates the simplest
block design, whenwegroupprofiles only by the replicate identity and
not other metadata variables, such as well position, plate, etc (Fig. 1A).
In experimental design, a block design refers to the arrangement of
experimental units into groups (blocks) that are similar to one another,
to reduce sources of variability and increase the precision of the
comparisons beingmade30. The choice of block design can impact the
mAP calculation, as it determines which profiles are considered “cor-
rect” or “incorrect” when evaluating retrieval performance. As dis-
cussed later, more complex block designs can be used to account for
the impact of other sources of variation (e.g., well position or plate
effects) on the retrieval task of interest by grouping profiles
accordingly.

Profiles can be viewed as points in a high-dimensional feature or
representation space, where the closeness between pairs corresponds
to profile similarity. Profile similarity can be assessed bymeasuring the
distance between these points defined by any relevant distance func-
tion, such as cosine, Euclidean, Mahalanobis, etc., such that a larger
distance between points indicates lower similarity and vice versa.
Following a typical information retrieval workflow28, we began by
designating one profile from a replicate group as a query and mea-
suring distances between the query and the rest of this perturbation’s
replicates as well as control replicates (Fig. 1B).

We rank profiles by their decreasing similarity to the query, such
that the most similar profile is at the top of the list (Fig. 1C). We then
convert this ranked list to a binary form by replacing perturbation
replicates with ones (these are “correct matches”, i.e., expected to be
more similar to the query) and controls with zeros (they are” incorrect
matches”, i.e., expected to be less similar to the query). In an ideal
scenario where a perturbation produces a strong signal that is tech-
nically replicable, all perturbation replicates are more similar to each
other than to controls and, hence, will appear on the top of the list.
However, in practice, it is often challenging to detect differences from
controls, especially given the presence of technical variation (Supple-
mentary Fig. S1). Having a binary rank list allows calculating precision
and recall at each rank k. Precision at rank k (also called Precision@k) is
the fraction of ranks 1 to k that contain correct matches (ones). Recall
at rank k is the fractionof the correctmatches (ones) across ranks from
1 to k.

Although there are multiple possible ways to aggregate precision
and/or recall values, we chose to calculate average precision (AP)
because of its statistical properties. It has an underlying theoretical
basis as it corresponds to the area under the precision-recall curve29, it
allows a probabilistic interpretation31, it has a natural top-heavy bias32

(top-ranked correct matches contribute more than low-ranked), it is
highly informative for predicting other metrics such as R-precision33,
and finally, it results in good performancewhen used as an objective in
learning-to-rankmethods34. Althoughmany formulations of AP exist35,
we calculate the conventional non-interpolated AP score as the aver-
age value of precision over those ranks k that contain correct
matches29 (Fig. 1D).

By sequentially using each replicate as a query to retrieve the
remaining replicates, we calculate replicate-level AP scores (Fig. 1E).
These scores can identify outlier replicates that deviate substantially
from their group. Averaging these scores yields the perturbation-level
meanAverage Precision (mAP) score29. This score effectivelyquantifies
the phenotypic activity of a perturbation, reflecting the average extent
to which its replicate profiles were more similar to each other com-
pared to control profiles (Fig. 1E). We also calculate mAP to assess the

phenotypic consistency of multiple group members annotated with
common biological mechanisms or modes of action (Fig. 1F). In this
setting, we first aggregate replicate profiles at the perturbation level
(for example, by taking the median value for each feature of single
cells). We then apply the mAP framework to quantify to what extent
perturbationswith relatedbiological annotationsproduceprofiles that
resemble each other compared to other perturbations in the experi-
ment. By using other perturbations for the null distribution instead of
negative controls, we assess the biological specificity of each group of
profiles relative to other samples.

The mAP framework is implemented such that it can accom-
modate any distancemeasure that accepts a pair of points and returns
their (dis)similarity, allowing for customization best suited for the
particular type of data at hand. The careful choice of the distance
metric is crucial and may vary across profiling experiments. In this
article, we used cosine distance due to its ability to identify related
samples from biological perturbational data based on the similarity of
their change patterns, rather than the extent of these changes36–38. As a
similarity-based approach, mAP is not immune to challenges typical
for the analysis of profiling data that can be noisy and sparse. To
enhance the observation of useful biological patterns, profile pre-
processing may include15,39: sample and feature filtering, missing value
imputation, dimensionality reduction, feature transformation, nor-
malization, and selection.

Statistical significance of mAP
In all cases, we determined the statistical significance of themAP score
using permutation testing, a common method for significance deter-
mination when distribution of the test statistic is unknown (for
example, not known to follow a normal distribution). This approach is
frequently applied in biological data analysis, including high-
throughput screening22. Under the null hypothesis, we assume that
both perturbation and control replicates were drawn from the same
distribution. We generate mAP distribution under the null hypothesis,
by repeatedly reshuffling the rank list and calculatingmAP. The p-value
is then estimated according to standard practices for permutation-
based methods, defined as the fraction of permutation-derived mAP
values that are greater than or equal to the original mAP value. This
approach aligns with the interpretation of significance values in para-
metric statistical analyzes, where a nominal significance cutoff of 0.05
is typically used. Finally, these p-values are corrected for multiple
comparisons using False Discovery Rate (FDR) control methods, such
as Benjamini–Hochberg procedure40 or its alternatives41. We refer to
the percentage of samples with calculated mAP scores having a cor-
rected p-value below 0.05 as the percent retrieved (see “Methods:
Assigning significance to mAP scores” for details). Very low values of
percent retrieved can indicate widespread assay insensitivity, sub-
optimal feature extraction, or uncontrolled experimental variation.

We therefore concluded that the mAP framework, as described
and applied, could assess various qualities of high-dimensional pro-
filing data by quantifying the similarity within a group of profiles in
contrast to their similarity to another group. Unlike existing solutions,
mAP is completely data-driven, does not involve complex calculations
or parameter tuning, and is independent of the underlying nature of
the observations given the appropriate selection of the distance
measure. It is flexible across various experimental designs and offers a
robust means to ascertain the statistical significance of the observed
similarities or differences.

mAP detects profile differences introduced in simulated data
We next sought to rigorously assess and compare ourmAP framework
in phenotypic activity assessment against existing metrics using
simulated data, where profile characteristics could be carefully con-
trolled. Among established approaches, we selected the multi-
dimensional perturbation value22 (mp-value) for comparison because
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it is multivariate by design, can be applied to any two groups of pro-
files, and has been shown to outperform other approaches, including
univariate and clustering-based, in a simulation study with a similar
design22. It is based on a combination of principal component analysis,
Mahalanobis distance, and permutation testing to determine whether
two groups of profiles differ from each other. Another method we
choose to compare with mAP is maximum mean discrepancy test
(MMD)25, which is a nonparametric kernel-based method for multi-
variate two sample testing. Finally, we also directly clustered profiles
using the k-means algorithm, which was considered to be successful
when it correctly separates perturbation and control profiles. By
comparing our framework with these established methods in con-
trolled scenarios that mimic real-world experimental designs, we
aimed to evaluate mAP’s potential as a more effective tool for ana-
lyzing differences in profiling data.

We conducted simulations to evaluate mAP performance by
generating perturbation and control profiles such that each pertur-
bation had 2 to 4 replicates, in experiments with 12, 24, or 36 control
replicates (in all combinations). The simulated profiles varied in fea-
ture size, ranging from 100 to 5000, representing a typical range for
various kinds of profiles, particularly after feature reduction or selec-
tion. We generated control profile features using a standard normal
distributionN (0,1). For perturbation replicates, a certain proportion
of features (ranging from 1% to 64%) were sampled from a normal
distribution with a shifted mean N (1,1), while the rest were drawn
from N (0,1). Following the previously described method, we calcu-
latedmAP scores and corresponding p-values at the perturbation level
to assess phenotypic activity for each perturbation (see Fig. 1E). We
measured performance by calculating recall as the proportion of the
100 simulated perturbations for which eachmetric achieved statistical
significance (p < 0.05).

mAP consistently detected the same or higher proportion of
perturbations compared tomp-value,MMD, and k-means clustering in
most simulated scenarios (Fig. 2, Supplementary Fig. S2). Our findings
highlighted that all metrics were sensitive to the experimental design,
including the number of replicates and controls, the dimensionality
(number of features) of thedataset, and theproportionof features that
were perturbed. As expected, a decrease in the number of replicates
and controls generally led to reduced performance for all metrics.
mAP’s recall rate consistently improvedwith an increase in the number
of features and the proportion of perturbed features. This trend
highlights mAP’s adaptability to high-dimensional data, a critical
advantage in handling the vast feature spaces typical in modern pro-
filing assays. In contrast to mAP and k-means clustering, mp-value and
MMDwere less stable and often demonstrated stagnation or decline in
recall with an increase in the number of features. These results were
further confirmed by additional simulations that used a normal dis-
tribution with other parameters (Supplementary Fig. S3) and with a
more challenging heavy-tailed Cauchy distribution (Supplementary
Fig. S4). Finally, testing mAP with Pearson correlation and Euclidean
distance as a similarity metric showed performance competitive with
alternative metrics, albeit lower compared to our default choice of
cosine distance (Supplementary Fig. S5). All methods struggled to
reach a retrieval rate of 20% when perturbed profiles differed from
controls in only a few features. To alleviate this issue, we recommend
dimensionality reduction and feature selection to improve signal-to-
noise ratio prior to profile evaluation15. While in theory it is possible to
test for differences in individual features using mAP, it would not be
practical, because the main purpose of this framework lies in high-
dimensional profile similarity analysis; other methods aremore suited
to analyzing individual features20.

Taken together, our findings reveal mAP’s consistent perfor-
mance in most scenarios, highlighting its potential as an effective and
adaptable tool for biological data analysis compared to existing
methods. Specifically, we found mAP could sensitively detect subtle

differences between samples, in the context most relevant to large
high-dimensional profiling datasets: scenarios when the number of
features was much larger than the number of replicate profiles per
sample. While approaches such mp-value and MMD aim to represent
and compare distributions estimated from a very few high-
dimensional observations, mAP achieves better sensitivity by relying
on discretized ranking of pairwise distances. It is simpler and more
efficient, without requiring complex matrix operations needed for
calculating mp-value and MMD, and without multiple restarts needed
to reach a robust solution for k-means.

mAP captures diverse properties of real-world morphological
profiling data with both genetic and chemical perturbations
Next, we demonstrated the versatility of the mAP framework through
its application to different tasks on real-world data, evaluating the
effects of selected preprocessing methods and experimental designs.
We began with image-based profiles of genetic perturbations and
tested several ways mAP can be used for tasks beyond ranking per-
turbations by their phenotypic activity. We chose our published Cell
Health dataset of Cell Painting images of CRISPR-Cas9 knockout per-
turbations of 59 genes, targeted by 119 guides in three different cell
lines42. We used a subset of 100 guides that had exactly six replicates
(two replicates in three different plates) in each cell line.

We used mAP to evaluate phenotypic activity (replicate retrie-
vability against non-targeting cutting controls43) (Fig. 1E) for four dif-
ferent tasks (Fig. 3A–D). First, we assessed the overall quality of the
dataset by checking that at least some guides resulted in phenotypes
robustly distinguishable fromcontrols. Second,wecomparedhowtwo
different data preprocessing methods influence the effects of techni-
cal variability on the phenotypic activity of each guide across cell lines.
Third, we ranked individual guides by phenotypic activity and filtered
out inactive ones for downstream analysis of phenotypic consistency.
Finally, we compared the contributions of each fluorescent channel to
guide phenotypic activity.

First, we calculated mAP for guide phenotypic activity using two
different data preprocessing methods (Fig. 3A). The first preproces-
singmethod included data standardization by subtractingmeans from
feature values and dividing them by standard deviation using the
whole dataset. Alternatively, we used a robust version of standardiza-
tion, which replaces mean and variance with median and median
absolute deviation, correspondingly, and is appliedon aper-platebasis
(“MAD robustize”). In each scenario, we retrieved grouped profiles
against negative controls from both plates and reported percent
retrieved (percentage of mAP scores with a corrected p-value below
0.05). For both preprocessing methods and all three cell types,
retrieval percentages ranging 13%-94% indicated presence of pertur-
bations with distinguishable phenotypes, and the full range of mAP
values showed that perturbation effects varied from weak to very
strong, confirming the good overall dataset quality.

Then, we leveraged the fact that each guide had replicates in
differentwell positions and plates to formulate three profile groupings
for well position and plate effect assessment (Fig. 3A). The first group
only included profiles derived from different plates and well position;
the second group only included profiles from the same well position,
but different plates; and the third group only included profiles from
the same plate, but different wells. Our framework implementation
allows specifying which metadata columns should have the same or
different values for a pair of profiles to belong to the same group. In
the absence of well-position and plate effects on phenotypic activity,
all three tasks should demonstrate similar mAP values. However, as
expected, the data reveals differences in retrieval rates due to tech-
nical variation (Fig. 3A): with standardized profiles, retrieval of repli-
cates in a different well position and different plate had the lowest
scores (28% retrieved on average across cell lines), while sharing the
same well position or plate resulted in higher scores (46% and 44%
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Fig. 2 | The mAP framework evaluation on simulated data. Benchmarking
retrieval performance of mAP p-value (orange), mp-value (blue), MMD p-value
(green), and k-means clustering (purple) for retrieving phenotypic activity on
simulated data, where unperturbed and perturbed features are sampled from N

(0,1) andN (1,1), correspondingly. Recall indicates thepercentageof 100simulated
perturbations under each condition thatwere called accurately by eachmethod (as
distinguishable from negative controls, or not). The horizontal axis probes what
proportion of the features in the profile were different from controls (note the

binary exponential scaling). Marker and line styles indicate different numbers of
replicates per perturbation (# replicates of 2, 3, and 4). Columns correspond to the
different number of controls (# controls of 12, 24, and 36). Rows correspond to
different profile sizes (# features being 100, 200, 500, 1000, 2500, and5000).mAP,
mp-value, and MMD used a one-sided permutation test to obtain p-values without
adjusting for multiple comparisons; no statistical test was performed for k-means.
Source data are provided as a Source Data file.
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retrieved on average, correspondingly). Using standardization per
plate, results for A549and ES2 cell lines had higher retrieval rateswhen
considering replicates from the same plate (38% and 56% corre-
spondingly) vs not sharing the same plate (13% and 31%), indicating the
presence of plate-to-plate variability. For the HCC44 cell line, retrieval
rate on the same plate (38%) was not better than for replicates across
plates (39%). By contrast, using robust standardization (MAD

robustize) per-plate increased retrieval of profiles froma different well
position anddifferent plate (55%retrieved) to a larger extent than itdid
for the sameplate, differentwell test (51% retrieved). But it also inflated
retrieval of profiles that share the samewell position in different plates
(88% retrieved), demonstrating that well position effects were not
addressedby this pre-processing andmayaffectdownstreamanalyzes.
These results were observed on the level of individual cell lines as well,
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with all three having similar retrieval rates independently of sharing a
specific plate but showing substantially higher rates when sharing a
well position (Fig. 3A). We used MAD robustize to preprocess for all
subsequent analysis given its better performance on a challenging task
(retrieving from different well position, different plate). This example
showcased the flexibility of the mAP framework for grouping profiles
according to experimental properties and assessing impact of tech-
nical variation inprofilingdata onphenotypic activity of perturbations.
However, we note that evaluating batch effects and methods for their
correction is a complex problem that may require using multiple
specialized metrics for a comprehensive assessment17–19.

Next, we used all six replicates per CRISPR guide to assess its
phenotypic activity (Fig. 1E) by retrieving each perturbation’s repli-
cates against non-targeting controls in three cell types. Retrieval per-
centage varied 31-70% by cell line, respectively (Fig. 3B), showing that
mAP captures cell context-dependent differences of each guide’s
phenotypic activity, though potentially confounded by well-position
and plate effects. We also showed cell line-dependent differences in
individual replicate AP scores for a subset of guides (Fig. 3C). For
example, while five out of six replicates of the ATF4-1 guide in ES2 cells
showed high similarity and clear distinction from controls, the sixth
replicate did not, as indicated by its low AP score and high p-value,
suggesting it may be an outlier. We observed similar retrieval rates
using an alternate negative control, wells thatwere not perturbed at all
(Supplementary Fig. S6A). The significance of mAP was somewhat
negatively correlated with CERES scores44 (Supplementary Fig. S6B), a
measure of gene essentiality derived from viability experiments, con-
firming that many perturbations that impact viability also impact
morphology45, though one would expect many exceptions, for exam-
ple, for genes that are not expressed well in the given cell type. This
assessment allowed us to filter out “inactive” guides that produce
phenotypes indistinguishable from controls to ensure that at the next
step, perturbation similarities are not due to shared lack of activity.

Then, we applied the mAP framework to characterizing con-
tributions of different fluorescence channels by calculatingmetrics for
each single channel individually (Fig. 3D, Y axis); the mitochondria
channel proved the most independently useful for retrieving guide
replicates against controls. In most cases, dropping a channel (Fig. 3D,
X axis) only slightly diminished retrieval performance, a useful guide
for researchers wanting to swap out a channel for a particular marker
of interest. In a similar fashion, we assessed the contributions of dif-
ferent feature types extracted from different cell compartments and
found (Supplementary Fig. S6C) that, for example, excluding Radial-
Distribution or AreaShape features dropped the percentage of
retrieved guides to below 35%. Removing Texture or Intensity features
resulted in ~70% retrieval rates, which can hint at what phenotypic
responses were distinguishing for this gene set as a whole.

We next assessed phenotypic consistency of CRISPR guides that
targeted the samegeneby retrieving themagainst guides that targeted
other genes (similar to Fig. 1F), to see whether guides targeting the
same gene yielded a consistent and relatively distinctive phenotype.

First, we aggregated each guide’s six replicates by taking the median
value for each feature. Then, we filtered guides that did not pass the
significance threshold for phenotypic activity in each cell type (Fig. 3B)
to remove profiles that could not be confidently distinguished from
controls. There were two aggregated guide profiles per gene annota-
tion, which we retrieved against guide profiles of other genes (2
“replicates” vs 118 “controls” using the terms of Fig. 2). Retrieval per-
centages ranged from 54–92% across cell lines (Fig. 3E). We also
reported per-guide AP scores for a subset of individual genes (Fig. 3F),
demonstrating gene-to-gene differences and variability in guide con-
sistency across the three cell lines. For instance, in the case of CDK4,
A549 and HCC44 cell lines each had one guide that was inconsistent
with other guides targeting the same gene.

Finally, we applied the mAP framework to other perturbation
types (small molecules and gene overexpression, rather than CRISPR-
Cas9 knockouts), to assess their phenotypic activity and consistency
(Supplementary Fig. S7). We used the dataset “cpg0004”11, which
contains Cell Painting images of 1,327 small-molecule perturbations of
A549 human cells and the JUMPConsortium’s “cpg0016[orf]” dataset46

dataset of U2OS cells treated with 15,136 overexpression reagents
(open reading frame - ORFs), encompassing 12,602 unique genes,
including controls, making it the largest dataset in this study in terms
of number of perturbations. In both cases, we first calculated mAP to
assess the phenotypic activity of each perturbation by replicate
retrievability against controls, which resulted in 34% of small mole-
cules retrieved for cpg0004 (Supplementary Fig. S7A) and 56%ofORFs
retrieved (Supplementary Fig. S7B). Subsequently, we filtered out
perturbations that did not pass the phenotypic activity threshold and
aggregated the rest on a per-perturbation basis by computing the
median value for each feature across replicates. Finally, we calculated
mAP to assess phenotypic consistency (a measure of whether profiles
capture true biologicalmeaning, capturedhere bypublic annotations).
We tested for phenotypic consistency among small molecules that
were annotated as targeting the same gene (cpg0004) or amongORFs
encoding genes that produce proteins that were annotated as inter-
acting with each other, per the mammalian CORUM database47

(cpg0016[orf]). For cpg0004, 32% of target genes showed consistent
phenotypic similarity among small molecules targeting them (Sup-
plementary Fig. S7C); for cpg0016[orf] it was 4% of assessed protein
complexes (Supplementary Fig. S7D). Evaluating phenotypic con-
sistency by nature relies on the accuracy and completeness of external
annotations. Leveraging multiple sources of annotation, such as
combining pathway databases, can strengthen the interpretability of
phenotypic profiling, helping to recapitulate known relationships and
improving benchmarking outcomes48. For practical applications,
incorporating diverse annotations could similarly enhance profile
retrieval by allowing cross-validation of biological relationships under
different contexts, such as across cell types or experimental
conditions.

These results demonstrated that the proposed mAP framework
can be used for assessing various properties of real-world

Fig. 3 | ThemAP framework applied tomorphological profiling of CRISPR-Cas9
knockout perturbations (Cell Health dataset). AmAP is calculated to assess well
position and individual plate effects on phenotypic activity by retrieving guide
replicates against controls in three scenarios (replicates of a guide across different
plates and well positions; replicates of a guide across different plates, but in the
same well position; and replicates of a guide within the same plate, but in different
well position) and two data preprocessing methods (standardize and MAD robus-
tize per plate). Percentages retrieved indicate the percentage of scoreswith p-value
below 0.05 per cell line (and averaged across all cell lines in parenthesis). BmAP is
calculated to assess the phenotypic activity of perturbations by guide replicate
retrievability against controls in three cell lines individually (49% retrieved on
average across all three cell lines). Results included all three replicate plates avail-
able per cell line. C Replicate-level AP scores calculated for a subset of guides from

(B) highlight the variation from guide to guide across cell lines. D mAP
p-values estimated to assess the influence of individual fluorescence channels on
guide phenotypic activity against controls by either dropping a channel or
including only that single channel (percent retrieved is shown for each axis); these
results can be compared to 49% retrieved when all channels’ data is available (on
average across all three cell lines, as in B). E mAP is calculated to assess the phe-
notypic consistency of guides annotated with related target genes (against guides
annotated with other genes) in three cell lines individually. F Guide-level AP scores
calculated for a subset of genes from (E) highlight the variation from gene to gene
across cell lines. mAP p-values were estimated using a one-sided permutation test
and adjusted for multiple comparisons by Benjamini–Hochberg procedure. Per-
cent retrieved indicates the percentage of scores with p-value below 0.05. Source
data are provided as a Source Data file.
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morphological profiling data created with both genetic and chemical
perturbations. By changing how profile groupings are defined, mAP
can be used for multiple purposes: to characterize technical variation
in data, to evaluate methods to address them, to determine the con-
tributions of specific fluorescent channels or measured feature types,
and to ultimately select and rank perturbations by their phenotypic
activity and consistency for potential downstream analyzes.

mAPquantifies strength and similarity of protein and single-cell
mRNA profiling data
To demonstrate the applicability of the mAP framework beyond
image-based profiling, we applied it to other modalities, including
transcriptomics and proteomics.

The first dataset contained proteomic profiles from a 191-plex
nELISA, a high-throughput, high-plex assay designed for quantitative
profiling of the secretome12, which was performed in A549 cells across
306 well-characterized compound perturbations from the Broad
Institute’s drug repurposing library49. This dataset also had matching
Cell Painting morphological profiles imaged from the same physical
samples whose supernatants were nELISA-profiled.

First, we used mAP to assess phenotypic activity via replicate
retrievability for both assays. This analysis resulted in 72% of com-
pounds being retrieved using Cell Painting and 39% with nELISA
(Fig. 4A, B); the smaller percentage is likely due to the limitations in the
original experimental design thatwas not ideal for secretomeprofiling.
We further calculated mAP to assess phenotypic consistency by iden-
tifying compounds annotated with the same target gene. This analysis
yielded 23% retrieval for Cell Painting and 5% for nELISA (Fig. 4C, D).
Similarly to phenotypic activity results, much lower percent retrieved
for nELISAwas likely due toA549 cells’ limited secretory capacities, the
absence of immune stimulation, and a mismatch between pathways
targeted by small molecules and nELISA readouts12. This comparison
validated mAP’s utility in comparing two different profiling assays,
offering valuable insights for planning future studies, for example,
selecting an appropriate cell type for a particular assay.

Finally, we usedmAP to evaluate a Perturb-seq7–10 mRNA profiling
dataset of single cells treated with CRISPRi. The experiment assessed
howsingle-guideRNAs (sgRNAs) containingmismatches to their target
sites attenuate expression levels of target genes50. Specifically, 25
genes involved in a diverse range of essential cell biological processes
were targeted with 5–6 mismatched sgRNAs, covering the range from
full to low activity, and 10 nontargeting controls. Each mismatched
guide was characterized by its activity levels relative to the perfectly
matched sgRNA targeting the same gene50. We aggregated single-cell
profiles on the biological replicate level and compared mAP scores to
sgRNA relative activity, expecting that guide mismatches that disrupt
activity levels to a larger extent shouldhavemRNAprofiles that are less
easily distinguishable from controls. We indeed observed an overall
correlation betweenmAP scores for a sgRNA’s mRNA profile similarity
and its relative activity levels, (Fig. 4E), with more nuanced differences
in correlations for specific genes (Fig. 4F).

These applications demonstrate mAP’s robustness in quantifying
the strength and similarity of image, protein, and mRNA profiles,
affirming its broad utility across diverse profiling assays.

mAPcaptures subtle phenotypic impacts of perturbations at the
single-cell resolution
Single-cell profiling has become increasingly feasible, providing
detailed and nuanced insights into the complex nature of biological
systems, which are often obscured in bulk analyzes. To illustrate the
mAP framework’s utility in analyzing single-cell data, we applied it to
two distinct single-cell profiling datasets. BecausemAP is an average of
AP scores calculated by using each observation as a query, it is
straightforward to use single-cell AP scores to characterize individual
observations and the whole query group.

First, we repeated the analysis of the Perturb-seq mRNA profiling
dataset50 (Fig. 4E, F) on the single-cell level. The overall relationships
between single-cell AP scores and relative activity levels recapitulate
those observed in the bulk profiles with more fine-grained details
(Fig. 5A), while per-gene (Fig. 5B) and per-guide (Supplementary
Fig. S8) visualizations revealed varied levels of heterogeneity across
individual cells, even for guides with perfect relative activity levels.

The second dataset called “Mitocheck” contained cell images
of genome-wide gene silencing by RNA interference51. We used a
subset of these images, in which almost 3000 cells were
manually annotated with observed morphological classes and pro-
cessed by either CellProfiler52 or DeepProfiler53 feature extractors to
create single-cell morphological profiles54. After filtering out cells that
failed quality control or were out of focus, the subset contained 2456
single-cell profiles annotated with 15 morphological classes across
60 genes.

We used replicate retrievability against non-targeting controls to
compare phenotypic activity of single-cell CellProfiler- and
DeepProfiler-derived profiles grouped by morphological classes and
target genes. Both feature extraction methods showed on average
similar performance, retrieving morphological annotations with 0.33-
0.42 mAP and 93-95% retrieved (Fig. 5C, Supplementary Fig. S8A).
Interestingly, however, their performance varied across individual
classes (Fig. 5C, Supplementary Fig. S9C), indicating some com-
plementarity in phenotypes that are characterized more informatively
with one approach than the other. Although performance was lower
for both methods in the target gene retrieval task (Supplementary
Fig. S9B), the decrease was more severe for CellProfiler features (0.18
mAP, 89% retrieved) compared to DeepProfiler (0.22 mAP, 92%
retrieved). When comparing performance across both tasks, CellPro-
filer features overall demonstratedmore variability across the range of
mAP scores (Supplementary Fig. S9D) compared to more consistent
results of DeepProfiler (Fig. 5D). Visualizing embeddings of individual
morphological classes for both feature types indicated that those with
higher retrieval rates resulted in more consistent clusters (Supple-
mentary Fig. S10). Calculation of mAP p-values for gene phenotypic
activity took the longest for this dataset due to the large size of control
cells and the highly variable number of single cells per targeted gene
(Supplementary Table 2).

This analysis underscores the ability of the mAP framework to
discern phenotypic variability and heterogeneity inherent in single-cell
data, revealing both the strengths and complementary nature of dif-
ferent feature extraction methodologies.

Discussion
High-throughput profiling experiments have shown great promise in
elucidating biological functions, patient subpopulations, and ther-
apeutic targets. However, the high dimensionality and heterogeneity
of profiling datasets present a significant obstacle for traditional
methods in evaluating data quality and identifying meaningful rela-
tionships among profiles. Our work advances this domain by
reframing profile quality assessment as an information retrieval task
and by proposing a comprehensive statistical and computational
framework using mean average precision (mAP) to assess profile
strength and similarity. ThemAP framework can be applied to image-
based, protein, and gene expression profiling datasets created with
either genetic and chemical perturbations. By assessing replicability
of repeated experiments via retrieval of perturbation replicates
against negative controls, the mAP framework checks dataset for
potential dataset-scale issues, identifies phenotypically active per-
turbations and allows to filter out ones indistinguishable from con-
trols. It can also be used to measure phenotypic consistency among
different perturbations that share expected biological similarity,
such as chemical mechanisms of action and gene-gene relationships,
by retrieving perturbation groups. By selecting phenotypically active
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Fig. 4 | ThemAP frameworkapplied toproteomic andmRNAprofiling.AmAP is
calculated to assess the phenotypic activity of compounds by replicate retrieva-
bility against controls in matching Cell Painting and nELISA profiling data. B A
combined view of the data from (A) is presented, showing phenotypic activity
retrieval for both assays. CmAP is calculated to assess the phenotypic consistency
by retrieving phenotypically active compounds annotated with the same gene
target in matching Cell Painting and nELISA profiling data (note: the nELISA panel
includes 191 targets including cytokines, chemokines, and growth factorswhich are
not expected to respond well in these convenience samples from a prior study,
because there is no immune stimulation and the A549 cells used have limited
secretory capacity).D A combined view of the data from (C) is presented, showing

phenotypic consistency retrieval for both assays. EmAP is calculated to assess the
mRNA profile-based phenotypic activity of a mismatched CRISPRi guide from a
Perturb-seqexperiment (y-axis) andcorrelate itwith the guide’s activity relative to a
perfectly matching guide for that gene (x-axis). A linear model fit is shown in black
with gray error bands showing the 95% confidence interval. F A subset of the data
from (E) is presented, with several genes highlighted individually to demonstrate
the variation from gene to gene. mAP p-values were estimated using a one-sided
permutation test and adjusted for multiple comparisons by Benjamini–Hochberg
procedure. Percent retrieved indicates the percentage of scores with p-value below
0.05. Source data are provided as a Source Data file.
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and consistent perturbations, mAP helps in prioritizing biologically
relevant perturbations for deeper mechanistic studies, refining the
search space for downstream analyzes such as differential feature
identification. Finally, by using metadata-based blocking, mAP
assessments can shed light on the effect of technical variation in data
(e.g., plate layout effects), suitability of experimental design (e.g., cell
type or fluorescent channel selection), and data processing methods
(e.g., feature extraction) on phenotypic activity and consistency of
profiling data. This adaptability makes mAP a valuable tool for
comparing different profiling methods and enhancing the inter-
pretation of high-throughput experiments. Our implementation of
the mAP framework in the copairs package is highly efficient and
scaleswell to the large-scale datasets, including at the single-cell level
(Supplementary Table 2).

At its core, the mAP framework is based on grouping profiles
according to the prespecified block design and calculating a well-
established evaluationmetric on the rank list of nearest neighbors to a
given profile. Unlike most existing alternatives16, this procedure is
robust to outliers, fully agnostic to the nature of data, and does not
make distributional, linearity, or sample size assumptions.With its top-
heavy bias, average precision emphasizes early discovery in ranking
assessment similarly to other recently proposedmetrics55–57, but those
metrics require careful parameter tuning that can be tricky. Unlike the
AP31, thosemetrics cannot be interpreted in termsof probability even if
they are bounded by [0, 1]56. If only k top ranked perturbations are of
interest, requiring the rank list to be thresholded (for example, when
the goal is to see how often the correct profile would be in the top k
results), AP can be easily replaced by Precision@k.

Fig. 5 | ThemAP framework applied to single-cellmRNAand imagingdata.AAP
scores are calculated to assess the single-cell mRNA profile-based phenotypic
activity of amismatched CRISPRi guide from a Perturb-seq experiment (y-axis) and
correlate it with the guide’s activity relative to a perfectly matching guide for that
gene (x-axis). B A subset of the data from (A) is presented, with several genes
highlighted individually to demonstrate the variation from gene to gene. C AP
scores are calculated to evaluate thepower ofCellProfiler andDeepProfiler features
to classifymultiple phenotypic classes in Mitocheckmorphological data. AP scores

capture the ability to retrieve single cells annotated with the same morphological
class against negative controls.DMitocheck data, correlation betweenmAP scores
for retrieving single cells annotatedwith the samemorphological class versus gene,
for DeepProfiler features. MC: morphological class. mAP p-values were estimated
using a one-sided permutation test and adjusted for multiple comparisons by
Benjamini–Hochberg procedure. Percent retrieved indicates the percentage of
scores with p-value below 0.05. Source data are provided as a Source Data file.
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Still, the mAP framework has limitations. The effectiveness of the
mAP framework, like other methods based on nearest neighbors, is
contingent upon choosing an appropriate measure of profile dissim-
ilarity (a distance metric). A less-suitable distancemetric would impair
mAP’s performance, but this is a trade-off for the framework’s flex-
ibility. Conversely, this opens an opportunity for using a dataset-
specific custom similarity measure to suit particular data types and
analyses. As a rank-based metric, mAP is robust to deviations from
typical assumptions for parametric methods, but it cannot reflect
differences in effect size beyond perfect separability between two
groups that are being compared. To overcome this limitation, future
studies could explore extending mAP to accommodate graded rank
lists32, moving beyond binary classifications. Finally, the permutation
testing approach used for significance assessment has limitations
when dealing with datasets that have a small number of replicates or
controls. This is an inherent statistical constraint that highlights the
importance of having adequate experimental replicates and controls
for robust statistical analysis.

In conclusion, the mAP framework presents a powerful strategy
for evaluating data quality and biological relationships among samples
in high-throughput profiling. It adjusts to various data types and per-
turbations and is robust to the complexities of real-world biological
data. It can be effectively used to improve methods and prioritize
perturbations for further studies with the potential to streamline the
discovery of mechanisms and therapeutic targets in complex biologi-
cal systems.

Methods
mAP calculation
In general, the mAP framework can be used to compare any two
groups of high-dimensional profiles by retrieving profiles from one
group (“query group”) against another group (“reference group”).
Groups are defined by providing a list of metadata columns in which
profiles that belong to the samegroup have to have eithermatching or
mismatching values.

Prior to calculating mAP, appropriate preprocessing of profiling
data is essential to ensure meaningful similarity comparisons14,15. This
includes robust standardization to mitigate differences in scale across
features, feature selection to reduce noise and focus on informative
dimensions, and batch correction to address technical variation across
experimental batches. Based on the comparative evaluations across
multiple modalities and tasks17–19, we suggest applying Harmony58 or
Seurat v359 before using mAP, as they strike a good balance in pre-
serving meaningful biological structure while mitigating technical
variation, making them reliable first choices for general-purpose batch
correction.

Given a group of N reference profiles and a group of M query
profiles, we calculate non-interpolated AP29 for each query profile as
following:
1. out of M query profiles, select one profile i;
2. measure distances from the query profile i to all other (M-1)+N

profiles in both groups;
3. rank-order (M-1)+N profiles by increasing distance to the query

profile i (decreasing similarity);
4. for each rank kgoing top-down the list, if k contains another query

profile (true positive we term a “correct match”, i.e., not a
reference), calculate precision for this rank k;

5. when done, average calculated precisions to obtain the AP value.

More formally, average precision for profile i is calculated as:

APi =
1

ðM � 1Þ+N
XðM�1Þ+N

k = 1

gkPk ð1Þ

where gk equals 1 if rank k contains a correctmatch (True Positive) and
0 if otherwise, Pk =

TPk
k is precision at rank k (precision@k), TPk is the

number of all query profiles (all Positives) retrieved up to rank k.
More conveniently, AP can be expressed via relative change in

recall:

APi =
XðM�1Þ+N

k = 1

ðRk�1 � RkÞPk ð2Þ

where Pk is the same as above and Rk =
TPk
M�1 ð4Þ is recall at rank k

(recall@k), R0 =0, which replaces both gk and dividing by M−1.
Then,meanAP (mAP) for thewholequery group canbe calculated

through averaging of individual query profile APs:

mAP =
1
M

XM

i= 1

APi ð3Þ

whereM is the number of profiles in the query group.

Assigning significance to mAP scores
Weestimate the statistical significanceof amAP scorewith respect to a
random baseline using a permutation testing approach, a non-para-
metric, assumption-free method for testing the null hypothesis,
which assumes that profiles in both query and reference groups were
drawn from the same distribution. Since the total number of points is
fixed and the rank list is binary, the mAP distribution under the null
hypothesis distribution covering all possible ranking outcomes only
depends on two parameters: the number of positives without the
queryM−1 and the total number of points without the query N + (M−1).
Therefore, the null has the exact size equal to the binomial coefficient
N + ðM�1Þ

M�1 . In practice, we approximate the null by repeatedly reshuffling
the rank list and calculatingmAP, which is equivalent to reshuffling the
profile labels. The p-value is then calculated as the fraction of the
approximate null that is greater than or equal to the mAP score. This
approach aligns with the interpretation of significance values in para-
metric statistical analyzes, where a nominal significance cutoff of 0.05
is typically used. When we compare mAP scores of multiple query
groups, we correct corresponding p-values for multiple comparisons
using the Benjamini–Hochberg procedure40. We refer to the percen-
tage of calculated mAP scores with a corrected p-value below 0.05 as
the percent retrieved.

mAP for phenotypic activity and consistency assessment
We applied the mAP framework to assess phenotypic activity and
consistency.

We assess phenotypic activity of a single perturbation by calcu-
latingmAP for replicate retrievability, i.e., the ability to retrieve a group
of perturbation’s replicates (query group) against a group of control
profiles (reference group). At this stage, a replicate profile typically
means an aggregation of single-cell profiles (e.g., across all cells in a
single well). By imposing additional conditions, we defined various
groups of replicates for a given perturbation. For example, we used
phenotypic activity to evaluate the presence of plate effects by com-
paringmAP score for retrieving replicates from the sameplate vs from
different plates. After calculating mAP scores for all perturbations,
they canbe compared and ranked in termsof their phenotypic activity.

We also usemAP to assess the phenotypic consistency ofmultiple
perturbations annotated with common biological mechanisms or
modes of action (query group) against perturbations with different
annotations (reference). When computing phenotypic consistency,
each perturbation’s replicate profiles are first aggregated into a con-
sensus profile by taking the median of each feature to reduce profile
noise and improve computational efficiency.
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Let’s consider a dataset containing perturbations annotated with
mechanisms of action. For example, a group of P compounds is
annotated with MoA1, and the rest Q compounds are annotated with
various other MoA labels.

Then the mAP for the MoA1 group of P perturbations can be
computed as following:
1. select one perturbation profile from this group, e.g., Pi;
2. measure distances from Pi to all other (P−1)+Q profiles in both

groups;
3. rank-order (P-1)+Q profiles by decreasing similarity w.r.t to Pi
4. going top-down the list, if the rank k contains a perturbation

profile fromthe samegroupP, calculateprecision@k for this rank k
5. when done, average calculated precisions by summing them up

and dividing by P-1
6. repeat the process for all i = 1…P and average obtained APs to

calculate mAPP

The resulting value mAPP will indicate how internally consistent
(has high mAP for retrieving perturbations from itself) this group of
perturbations annotated with MoA1 is compared to other perturba-
tions. This example can be easily extended to an arbitrary number of
perturbation groups (e.g., compound MoAs). The same process can
also be repeated using each set of perturbations as a query group. This
will result in obtaining mAP scores for all groups of perturbations in
thedataset and canbe used to rank thembyphenotypic consistencyor
estimate the consistency of the whole dataset by aggregating them
(e.g., by averaging).

Additionally, we can also define phenotypic distinctiveness,
although it is not used in this paper. While phenotypic activity mea-
sures how distinguishable a perturbation is from negative controls,
phenotypic distinctiveness measures how distinguishable a perturba-
tion is from all other perturbations in the experiment. It can be
assessed by calculating mAP for retrieving the replicates of a pertur-
bation against all other perturbations. This concept is essentially the
same as the “mAP-nonrep” score used in ref. 19.

Extension to multiple labels
When considering groups of perturbations, a single perturbation can
belong to multiple groups simultaneously. For example, a compound
can have multiple annotations, such as genes whose products are
targeted by the compound, or mechanisms of action of this com-
pound. Then AP can be calculated by considering a single annotation
group at a time. In the example below, we assume having per-
perturbation aggregated consensus profiles.

Let’s consider a dataset containing consensus profiles of P per-
turbations, with each perturbation annotated with “labels” from 1…T,
where T is the number of all possible labels in the dataset.

Then for a label and one of the perturbations annotatedwith it, AP
can be calculated as:
1. select one label t from T possible options
2. select one perturbation profile pt out of Pt perturbations anno-

tated with this label (query)
3. rank-order the rest of profiles (P-1) + 1 by similarity w.r.t to pt
4. going top-down the list, if the rank k contains a perturbation

profile that is also annotated with the label t, calculate
precision@k for this rank k

5. when done, average calculated precisions by summing them up
and dividing by Pt, i.e., the number of all perturbations annotated
with this label

6. the result will be AP for the specific t-pt label-perturbation pair
7. repeat steps 2-6 for all perturbation profiles Pt to obtain APs for all

perturbations annotated with this label t
8. repeat steps 1-7 for all labels T to obtain APs for all label-

perturbation pairs

The result will be a sparse P ×T matrix of APs, where the element
corresponding to a perturbation p and target t is equal to APt-p if p is
annotated with t and 0 otherwise. This matrix can be aggregated on a
per-perturbation or per-label basis (for example, by taking the mean
across rows or columns, correspondingly) depending on the down-
stream task. Per-label mAP will assess biological consistency of per-
turbations annotated with a specific label compared with
perturbations annotated with other labels. Practically, this makes it
possible to compare consistency of different label groupings for a
given perturbation.

Simulated data generation protocol
Simulations of the mAP performance were conducted by repeatedly
generating control and treatment replicates by sampling features from
a number of different normal distributions. Each treatment was
simulated in 2,3 or 4 replicates, and 8, 16, or 32 replicates were simu-
lated for each control. Between 100 and 5000 featureswere simulated.
All features were simulated in the control by sampling from the stan-
dard normal distribution. Varying numbers of features were simulated
in treatment replicates by sampling from a shifted normal distribution
(μ = 1, σ = 1). Any remaining features in treatment replicates were
sampled from the standard normal distribution. Each perturbationwas
considered correctly retrieved if its p-value was below 0.05.

Alternative metrics
The multidimensional perturbation value (mp-value)22 is a statistical
metric designed to assess differences between treatments in various
types of multidimensional screening data. It involves using principal
component analysis (PCA) to transform the data, followed by calcu-
lating theMahalanobis distance between treatment groups in this PCA-
adjusted space. The significance of the mp-value is determined
through permutation tests, a non-parametric approach that reshuffles
replicate labels to assess the likelihood of observed differences
occurring by chance.

The Maximum Mean Discrepancy (MMD)25 test is a multivariate
nonparametric statistical test used to determine if two distributions
are significantly different. Itmeasures the largest possible difference in
expectations across a function space, typically within a reproducing
kernel Hilbert space (RKHS). We use MMD with the radial basis func-
tion kernel (RBF) and set the kernel bandwidth at the median distance
between points in the aggregate sample, a common heuristic25.

The k-means algorithm clusters data byminimizing within-cluster
variance, effectively grouping samples based on their similarity.We set
the number of groups k to 2 for separating perturbation and control
replicates. Cluster centroids are initialized randomly, and the algo-
rithm is repeated 10 times, with the best result selected based on the
lowest overall inertia (the sumof squared distances of samples to their
closest cluster center), as implemented in scikit-learn60.

Cell Health dataset description and preprocessing
We used our previously published “Cell Health” dataset42 of Cell
Painting27 images of CRISPR-Cas9 knockout perturbations of 59 genes,
targeted by 119 guides in three different cell lines (A549, ES2, and
HCC44). Morphological profiles were previously extracted from ima-
ges using CellProfiler52 and median-aggregated on the well level42. We
used a subset of 100 guides that had exactly six replicates (two repli-
cates in three different plates) in each cell line. We performed two
types of profile preprocessing followed by feature selection using
pycytominer39. The first preprocessing method included data stan-
dardization by subtracting means from feature values and dividing
them by variance using the whole dataset. Alternatively, we used a
robust version of standardization, which replaces mean and variance
with median and median absolute deviation, correspondingly, and is
applied on a per-plate basis (“MAD robustize”). Feature selection
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included variance thresholding to remove features with minimal var-
iation across the dataset, removing highly correlated features,
removing features with missing values or outliers, and removing
blocklisted features—all using pycytominer39 default parameters.

cpg0004 dataset description and preprocessing
We used our previously published dataset “cpg0004-lincs” (abbre-
viated to cpg0004 here) that contains Cell Painting27 images of 1,327
small-molecule perturbations of A549 human cells11. The wells on each
plate were perturbed with 56 different compounds in six different
doses. Every compound was replicated 4 times per dose, with each
replicated on a different plate. In this study, only the highest dose
point of 10μM was used. Morphological profiles were previously
extracted from images using CellProfiler52. Profile preprocessing, fea-
ture selection, and batch correction were performed using
pycytominer39. First, profiles were re-scaled against DMSO controls by
subtracting medians from DMSO feature values and dividing them by
median absolute deviation (“MAD robustize”). Feature selection
included variance thresholding to remove features with minimal var-
iation across the dataset, removing highly correlated features, and
removing featureswithmissing values or outliers. Finally, profiles were
corrected for batch effects by the sphering transformation19 (com-
putes a whitening transformation matrix based on negative controls
and applies this transformation to the entire dataset).

cpg0016[orf] dataset description and preprocessing
We used the JUMP Consortium’s13 “cpg0016-jump[orf]” dataset46

(abbreviated to “cpg0016[orf]” here), which contains Cell Painting27

images of U2OS cells treated with 15,136 overexpression reagents
(ORFs) encompassing 12,602 unique genes. Morphological profiles
were previously extracted from images using CellProfiler52, mean-
aggregated on the well level, and then corrected for plate layout
effects by subtractingmeans from feature values perwell location. Cell
counts were regressed out from each feature with more than 100
unique values. After that, profiles were preprocessed per plate by
subtractingmedians from feature values and dividing them bymedian
absolute deviation (“MAD robustize”). Feature selection was per-
formed using pycytominer39 and profiles were corrected for batch
effects by a combination19 of the sphering transformation and
Harmony58 (an iterative algorithm based on expectation-maximization
that alternates between finding clusters with high diversity of batches,
and computing mixture-based corrections within such clusters).

nELISA dataset description and preprocessing
We used the dataset containing proteomic profiles from a 191-plex
nELISA12, a high-throughput, high-plex assay designed for quantitative
profiling of the secretome, which was performed in A549 cells across
306 well-characterized compound perturbations from the Broad
Institute’s drug repurposing library49. This dataset also included
matching CellProfiler52 morphological profiles from Cell Painting27

images of the same physical sampleswhose supernatants were nELISA-
profiled. Profiles were preprocessed per-plate by subtracting medians
from feature values and dividing them by median absolute deviation
(“MADrobustize”). Feature selection included variance thresholding to
remove features with minimal variation across the dataset, removing
highly correlated features, and removing features with missing values
or outliers.

Perturb-seq dataset description and preprocessing
We used the public Perturb-seq7–10 mRNA profiling dataset of single
cells treated with CRISPRi containing 10X single-cell gene expression
reads, barcode identities, and activity readouts (Gene Expression
Omnibus accession GSE132080)61. The experiment assessed how
single-guide RNAs (sgRNAs) containing mismatches to their target

sites attenuate expression levels of target genes50. Specifically, 25
genes involved in a diverse range of essential cell biological processes
were targeted with 5–6 mismatched sgRNAs, covering the range
from full to low activity, and 10 nontargeting controls. Each
mismatched guide was characterized by its activity levels relative to
the perfectly matched sgRNA targeting the same gene50. The dis-
tributions of sgRNAs were largely unimodal, although broader than
those with the perfectly matched sgRNA or the control sgRNA50. We
performed single-cell profile normalization and feature selection using
Seurat59.

Mitocheck data description and preprocessing
We used the previously published Mitocheck dataset51 containing
images of GFP-tagged nuclei of HeLa cells perturbed with small inter-
fering RNA (siRNAs) to silence approximately 21,000 protein-coding
genes. Within the dataset, approximately 3000 cell images were
manually labeled into one of 15 morphological phenotype classes.
Recently, these images were re-analyzed54 with amore comprehensive
image analysis pipeline, which included illumination correction using
PyBasic62, segmentation using CellPose63, and single-cell feature
extraction using CellProfiler52 and DeepProfiler53. Extracted profiles
were standardized by removing the mean and scaling to the unit var-
iance of negative control cells. We performed feature selection for
both CellProfiler- and DeepProfiler-derived profiles by variance
thresholding to remove features with minimal variation across the
dataset, removing highly correlated features, removing features with
missing values or outliers, and removing blocklisted features—all using
pycytominer39 default parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Profiles extracted from the Cell Health dataset42 are available at
https://github.com/broadinstitute/cell-health/tree/30ea5de393eb9c
fc10b575582aa9f0f857b44c59/1.generate-profiles. Profiles extracted
from the cpg000411 dataset are available at https://github.com/
broadinstitute/lincs-cell-painting/tree/061870127481dcd73c29df85e
bcfddeac2ed0828/profiles. Profiles extracted from the
cpg0016[orf]46 dataset are available from theCell PaintingGallery13 at
https://github.com/broadinstitute/cellpainting-gallery/blob/87e046
96564e8c61d060c2a8e3a99dbd00fd9b31/README.md. The Perturb-
seq dataset is available at Gene Expression Omnibus, accession code
GSE13208061 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE132080]. Profiles extracted from the matching nELISA-Cell Paint-
ing dataset12 are available at https://github.com/carpenter-singh-lab/
2024_Kalinin_mAP/tree/e9a5414726119dca7ed0d79efde887c1e259
c288/experiments/5_nelisa/inputs. Profiles extracted from the Mito-
check dataset51 are available at https://github.com/WayScience/
mitocheck_data/blob/613acbb20d2134ad1d725c7605a61c5a9e823c1a/
README.md. Source data are provided with this paper.

Code availability
The mAP framework is implemented as an open-source Python pack-
age copairs, available at https://github.com/cytomining/copairs under
the BSD 3-Clause license. The implementation relies on numpy64,
scipy65, pandas66, tqdm67, duckdb68, and statsmodels69 open-source
Python packages. The code for downloading data, performing ana-
lyzes, and generating results in this study is publicly available and has
been deposited in Gihub at https://github.com/carpenter-singh-lab/
2025_Kalinin_mAP under the BSD 3-Clause license. The specific version
of the code associated with this publication is archived in Zenodo and
is accessible via https://doi.org/10.5281/zenodo.1515126770.
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