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INTRODUCTION

One of the most powerful methods 
in biology is the visual analysis of 
a sample. While nothing can fully 
replace the expertise of a trained 
biologist, observing many samples 
by eye is time-consuming, subjective, 
and nonquantitative. Certain repetitive 
tasks in visual analysis are suitable 
for automation by collecting digital 
images and processing them with 
image analysis software. This liberates 
biologists for more interesting work 
and has several advantages over 
visual observations including speed, 
quantitative and reproducible results, 
and simultaneous measurement of 
many features in the image. Efforts 
to automate visual analysis in biology 
began several decades ago, but many 
aspects still need improvement (1).

While numerous commercial and 
free software packages exist for image 
analysis, many of these packages are 
designed for a very specific purpose, 
such as cell counting (2). Other 
packages are sold with accompa-
nying hardware for image acquisition 
(e.g., yeast colony counters), but 

these are expensive and do not allow 
measurement of features beyond 
those that are already built-in. Most 
commercial software is proprietary, 
meaning that the underlying methods 
of analysis are hidden from the 
researcher. At the other end of the 
continuum, some software packages 
are very flexible, especially for inter-
active analysis of individual images 
[e.g., Image-Pro Plus, MetaMorph®, 
and the open-source ImageJ/National 
Institutes of Health (NIH) Image (3)]. 
While users can program custom 
algorithms or record macros, these 
customized routines are challenging to 
adapt without knowing a programming 
language or interacting directly with 
the macro code.

The CellProfiler™ project was 
developed to address these software 
challenges by providing the scientific 
community with an easy-to-use open-
source platform for automated image 
analysis. The compiled software is 
freely available for Macintosh®, PC, 
and Unix platforms at www.cellprofiler.
org. It can accommodate adaptation to 
many biological objects and assays 
without requiring programming, due 

to its modular design and graphical 
user interface. There are many existing 
software packages available for specific 
applications in biology, but CellProfiler 
accomplishes many of the same goals 
in one open-source program. We 
recently described CellProfiler’s use for 
cell identification, cell size, intensity 
and texture of fluorescent stains, cell 
cycle distributions, and other features 
of individual cells in images (4). Here 
we describe its use for a variety of 
other applications such as yeast colony 
counting, grid analysis, wound healing, 
and other visually quantifiable assays.

MATERIALS AND METHODS

All of the image analysis in this paper 
used the freely available CellProfiler cell 
image analysis software. The pipelines 
and images for these examples, as well 
as others, are available for download 
(www.cellprofiler.org/examples.htm). 
The image of yeast colonies (Figure 1) 
is a plate of Hi90-strain cells plated on 
synthetic defined medium with 128 μg/
mL fluconazole as previously described 
(5). Images of Drosophila Kc167 cells 
on cell microarrays (Figure 2, A–C) 
were prepared as described previously 
(4,6). Briefly, spots of double-stranded 
RNA (dsRNA) were printed onto 
plain slides, and cells were grown on 
these slides for 3 days before being 
fixed, stained with Hoechst 33342, and 
imaged. Images of yeast patches (Figure 
2, D–G) were prepared by manually 
spotting cells (with a 96-well pinning 
device) onto agar plates containing 
galactose to induce the expression of 
α-synuclein and a gene of interest. The 
cells were grown for 2 days at 30°C 
prior to imaging (7). Images of green 
fluorescent protein (GFP)-labeled 
mouse tumors (Figure 3, A–C) are faces 
of a mouse lung lobe, dissected out at 
8 weeks post-tail vein injection of an 
established metastatic human cancer cell 
line overexpressing a gene of interest as 
described (Kimberly Hartwell, unpub-
lished data). Images of wound healing 
(Figure 3, E–G) were prepared using 
MDA-MB-435 cells and imaged at the 
time points indicated (Lynne Waldman, 
personal communication). A Drosophila 
wing imaginal disc from a third larval 
instar (Figure 3, H–J) was stained with 
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rhodamine-phalloidin to label F-actin, 
which is concentrated at points of cell-
cell contact at the level of the adherens 
junction lattice (8).

RESULTS AND DISCUSSION

CellProfiler’s main window allows 
the user to point and click to do most 
tasks, including the design of a new 
assay. The software uses the concept of 
a pipeline, which is a series of modules. 
Each module performs a specific task 
on the image or on identified objects 
(Figure 1A). A typical pipeline consists 
of loading the images, correcting for 
uneven illumination, identifying the 
objects, and then taking measurements 
on those objects. These modules can 
easily be added, removed, or rearranged 
within a pipeline. The resulting 
measurements can be viewed by (i) 
using CellProfiler’s built-in viewing 
and plotting data tools; (ii) exporting 
in a tab-delimited spreadsheet format 
that can be opened in programs like 
Microsoft® Excel® and OpenOffice.
org Calc; (iii) exporting in a format 
that can be imported into a database 
like Oracle® or MySQL® (MySQL, 
Cupertino, CA, USA); or (iv) opening 
in MATLAB® (Mathworks, Natick, 
MA, USA). An analysis can be done on 
one specific image, a group of images, 
or thousands of images by using a 
computing cluster.

CellProfiler bridges the gap between 
powerful computational methods 
and their practical application in 

the biological laboratory. Computer 
scientists can prototype new compu-
tational methods and contribute them 
to the project, and then biologists can 
easily use these new additions in their 
work. Further, the functionality of 
existing modules can be enhanced by 
researchers with some programming 
experience, because the code is open-
source, well-documented, and in a 
language that is relatively easy to 
understand. While most users will 
download the completely free, compiled 
version of CellProfiler, the CellProfiler 
Developer’s version requires the 
software package MATLAB and its 
image processing toolbox.

As described in the manual, 
available at www.cellprofiler.org/
linked_files/CellProfilerManual.pdf, 
CellProfiler already contains advanced 
object identification algorithms from 
the literature (4,9–16) and is open to 
adding new algorithms as described 
above. In object identification modules, 
users can rapidly select the best solution 
for their application using a Test Mode 
to see the results of various methods. In 
the following examples, we show the 
identification of objects by CellProfiler 
and select measurements for each. Note 
that the full spectrum of measurements, 
including many not often measured by 
biologists (17–19), can be recorded 
for each identified object, including 
location within the image, size, shape, 
color intensity, texture (smoothness), 
correlation between colors, and 
number of neighbors. Moreover, each 
broad category contains many different 

specific measurements. For example, 
size includes area, perimeter, and 
major/minor axis length, and shape 
includes eccentricity (elongation), 
solidity, form factor, and 32 other 
shape-related measures.

Yeast Colonies

Counting colonies on agar plates 
and classifying them by size, color, or 
shape is tedious, time-consuming, and 
subjective. While complete systems 
for automated colony counting exist, 
they are more expensive and less 
flexible than using a digital camera or 
off-the-shelf flatbed scanner to acquire 
images for analysis by CellProfiler. The 
cost of this solution can be less than 
$100. Furthermore, the algorithms in 
CellProfiler are accurate and adaptable, 
and unusual features of colonies, 
which commercial software and even 
the human eye cannot detect, can be 
measured (e.g., certain measures of 
texture and shape). After the initial 
analysis strategy has been established, 
plates can be analyzed automatically in 
large batches.

Here we show an example of yeast 
colonies (Saccharomyces cerevisiae) 
that were analyzed by CellProfiler 
(Figure 1B). In this analysis, the plates 
are automatically cropped to remove 
the edges, and individual colonies 
are identified, even when clumped 
(Figure 1C). Measurement modules 
then calculate measurements of interest 
for each individual colony. Any of 
the available measurements can then 

Figure 1. Yeast colonies growing on plates can be identified, measured, and classified. Scale bars, 2 cm (top) and 1 cm (bottom). (A) The pipeline of mod-
ules used for this analysis. (B) Original image of yeast colonies growing on an agar plate. (C) Image after automatic cropping of the plate and colony identifica-
tion by CellProfiler, with individual colonies outlined in black. (D) Image with the identified colonies classified by size (see legend for color-coding). (E) Same 
as panel D, but classified by red intensity rather than size. (F) The red intensity (vertical axis) and size (horizontal axis) of each colony on the plate is plotted, 
revealing the relationship between these measurements.
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be used to classify the colonies, for 
example, by size (Figure 1D), by color 
(Figure 1E), or by a combination of 
measurements, such as size and color. 
In this example, the apparent corre-
lation between size-classified (Figure 
1D) and color-classified (Figure 1E) 
yeast colonies is verified by a scatter 
plot of these two measurements 
(Figure 1F). Each class of colonies 
can be analyzed separately to allow 
the researcher to focus on classes of 
interest. This allows for addressing 
questions like “Are the red colonies 
larger than white colonies?” or “Do the 
larger colonies have more irregularly-
shaped borders?” In this example, the 
colonies all display a smooth round 
phenotype, but the colony shape and 
texture of yeast strains with unusual 
morphology could be quantified using 
these methods.

Grid Analysis

Many experiments are designed 
in a grid format, such as cell micro-
arrays, agar plates of yeast patches, and 
multiwell plates. In experiments with 
large or numerous grids, it is difficult 
to identify which reagent corresponds 
to a spot on this grid. CellProfiler can 
manually or automatically place a grid 
on an image and associate each grid 
location with an annotation such as 
a sample number or gene name. Each 
grid location can also be identified as 
an object, and all available measure-
ments can be made on those objects.

For example, on a cell microarray, 
more than 5000 individual clusters of 
cells are grown on a single microscope 
slide (4,6,20–22). Each cluster has been 
treated with a perturbant, which could 
be a small molecule, an overexpression 
plasmid, or an RNA interference 
reagent. The goal is to determine which 
perturbants alter cells. When attempting 
to quantify even a simple phenotype 
such as the extent of cell death in a 
spot, it is difficult to determine which 
spot correlates to which reagent. In this 
example, CellProfiler places a grid on 
top of an image (Figure 2B) in a position 
defined by the user, who specifies the 
location of known control spots on the 
array and the number and size of rows 
and columns. The LoadText module 
allows the user to load a text file with 
corresponding sample information for 
each of the spots on the grid, and the 
DisplayGridInfo module allows this 
imported data to be assigned to each 
of the grid locations (Figure 2C). This 
quickly allows the user to associate a 
location in the grid with its reagent. For 
example, knockdown of the cytokinesis-
related gene CG10522 (sticky) shows an 
unusual large, bright-nuclei phenotype 
that is visible at low resolution (Figure 
2C).

Plates of yeast patches also make 
use of grids (Figure 2E). Although 
large screens of yeast patches have 
been analyzed by eye (23), the 
number of these screens in progress is 
rapidly increasing, and visual analysis 
cannot keep up with the rapid pace at 

which samples are being generated. 
Furthermore, quantitative analysis 
is much preferred, because subtle 
changes in growth can be identified and 
the screen can be analyzed statistically. 
Some software for this application 
has been developed, but none to our 
knowledge is fully automated, open-
source, and flexible to new assays/
unusual measurements.

Because thousands of plates are 
typically analyzed, the entire process of 
finding the grid and making measure-
ments is performed automatically by 
CellProfiler. In the pipeline for this 
analysis, the images are cropped to 
remove the plate edges, and any yeast 
patches that are present are identified. 
Unlike the cell microarray example, 
a grid is then defined automatically 
based on the yeast patches that are 
identified. This allows for nonuni-
formity in the precise placement of the 
grid on the plate, to allow for experi-
mental variation. For this function to 
work correctly, none of the outside 
rows or columns can be completely 
blank. This condition can be satisfied if 
most patches tend to grow well in the 
experiment or if control patches exist 
in two or more opposite corners. These 
yeast patches can be analyzed in their 
naturally identified shapes if the patch 
size or shape is of interest (Figure 2F). 
Alternately, a circle can be forced into 
the location of the identified objects 
to measure, for example, the intensity 
of each patch, which is a measure of 
growth (Figure 2G). Once the grid 

Figure 2. Grids of samples can be annotated and analyzed. (A) The pipeline of modules used for the analysis shown in panels B and C. (B) A living cell 
RNA interference microarray with 40 rows and 28 columns of spots, stained for DNA. Each spot contains a double-stranded RNA (dsRNA) that knocks down 
a particular gene. The grid placed on the image by CellProfiler is shown as red lines. Scale bar, 4.5 mm. (C) Enlarged portion of panel B, with the annotations 
placed by CellProfiler shown in yellow. noRNA is the control. Scale bar, 450 μm. (D) The pipeline of modules used for the analysis shown in panels E–G. (E) 
Original image of yeast patches growing in a grid with 8 rows and 12 columns. Box indicates the region shown enlarged below. (F) Image showing the patches’ 
natural outlines determined by CellProfiler, including wiggly protrusions (arrow). The measured area of each patch is shown numerically on top of each patch, 
in pixels. (G) Image showing outlines of patches that were forced into a standard circular shape to measure the amount of growth in each patch, using intensity 
units. Scale bars for panel E–G: top, 20 mm; bottom, 5 mm.
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and objects are identified, all available 
measurements can be calculated for 
each patch, including measures of 
growth (Figure 2, F–G, bottom).

Tumor Counting

When tumorigenic cells are labeled 
with GFP and injected into mice, the 
resulting tumors in the lungs are readily 
visible by fluorescence microscopy of 
the dissected lungs. Accurate, objective 
quantification of the number and size 
of the resulting tumors is necessary to 
understand the process of tumor metas-
tasis (Kimberly Hartwell, unpublished 
data). The GFP signal from each tumor 
can be identified by CellProfiler (Figure 
3, A–C). CellProfiler counts of identified 
tumors were comparable to counting by 
eye (Figure 3D). If the GFP brightness 
or the shape or texture/smoothness of 
the tumors is of interest, these measure-
ments can also be recorded.

Wound Healing

The wound healing assay is a 
standard technique to determine the 

migration of different cell types in 
different conditions. In this assay, 
a confluent monolayer of cells is 
wounded by scratching it with a pipet 
tip (24). The monolayer is then imaged 
at time points to record the size of the 
wound. In this example, the area of the 
images covered by cells is calculated 
by CellProfiler (Figure 3, E–G). While 
this is not a particularly challenging 
application, the structure of CellProfiler 
makes it simple to carry out this 
quantitative analysis for hundreds of 
thousands of images, enabling high-
throughput screens. In addition, the 
shape characteristics of the wound 
border can be measured; for example, 
to distinguish between samples where 
all cells have steadily grown toward 
the middle versus samples where a few 
individual cells extend into the wound 
space.

Tissue Topology

In a developing tissue or at other 
sites of cell-cell contact (e.g., tumors 
and surrounding stromal cells), it 
is useful to determine the number 

of neighbors each cell has to better 
understand the processes underlying 
the topology (25). CellProfiler can 
identify cells in tissues (Figure 3, H–J). 
In addition to typical measurements, 
the MeasureObjectNeighbors module 
can determine the number of cells 
neighboring each cell and record this 
measurement. The cells can then be 
color-coded by how many neighbors 
it has (Figure 3J), or the data can be 
exported to further analyze the topology 
of the tissue.

Summary

CellProfiler is a flexible platform 
that can automate the analysis of images 
to address a wide variety of biological 
questions. For many assays, described 
here and previously (4), it eliminates 
the tedium of repetitive visual analysis 
and produces rapid, quantitative, and 
accurate results. The modular design of 
the software provides an infrastructure 
for image analysis that is applicable 
to diverse assays. Its open-source 
code allows programmers to design 
and contribute new algorithms to the 

Figure 3. Identification and measurement of green fluorescent protein (GFP)-labeled tumors in mouse lungs, the wound healing assay, and Drosophila 
tissue topology. (A) The pipeline of modules used for the analysis shown in panels B–D. (B) Original image. (C) Image with tumors outlined by CellProfiler. 
(D) Tumors in a set of 20 images were counted by CellProfiler and by two researchers. The manual tumor count for each image (vertical axis) is plotted versus 
the CellProfiler count (horizontal axis), revealing strong concordance (R2 value is shown). (E) The pipeline of modules used for the analysis shown in panels 
F and G. (F) At time point zero, the wound visible in the original image (top) is large and the cells present at the edges of the image cover a small percentage 
of the area of the image, as quantified by CellProfiler (bottom). (G) After 24 h, the wound has recovered due to cells migrating from the edges (top) and now is 
much smaller in measured size (bottom). (H) The pipeline of modules used for the analysis shown in panels I and J. (I) Original image of Drosophila epithelial 
cells growing in a sheet. Box indicates the region shown enlarged below. (J) Image showing cells identified and color-coded by CellProfiler based on how many 
neighbors they have. Box indicates the region shown enlarged below. Color scale indicates the number of neighbors.
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project. It is our hope that CellProfiler 
will become a widely used platform, 
through which advanced algorithms 
are made conveniently available for 
automatic biological image analysis.

ACKNOWLEDGMENTS

We gratefully acknowledge con-
tributions of images from researchers 
at the Harvard Medical School: Matt 
Gibson (Figure 3, H–J) and at the 
Whitehead Institute for Biomedical 
Research and Massachusetts Institute 
of Technology: Leah Cowen (Figure 
1), Douglas B. Wheeler (Figure 2, 
A–C), Aaron Gitler (Figure 2, D–G), 
Kimberly A. Hartwell (Figure 3, A–D), 
and Lynne K. Waldman (Figure 3, E–
G). We also thank the other members of 
the CellProfiler project software team 
for software development and lab mem-
bers for helpful comments: Robert A. 
Lindquist, Shomit Sengupta, and David 
A. Guertin. This work was supported by 
a Merck/CSBi postdoctoral fellowship 
(A.E.C.), a Novartis fellowship from 
the Life Sciences Research Foundation 
(A.E.C.), a Society for Biomolecular 
Screening Academic grant (A.E.C.), 
Department of Defense (DOD) 
Tuberous Sclerosis Complex (TSC) re-
search program grant no. W81XWH-
05-1-0318-DS (D.M.S.), NIH grant no. 
R01 GM072555-01 (D.M.S.), and the 
Keck Foundation (D.M.S.).

COMPETING INTERESTS 
STATEMENT

The authors declare no competing 
interests.

REFERENCES

 1. Murphy, R.F., E. Meijering, and G. 
Danuser. 2005. Special issue on molecular 
and cellular bioimaging. IEEE Trans. Image 
Process. 14:1233-1236.

 2. Selinummi, J., J. Seppala, O. Yli-Harja, 
and J.A. Puhakka. 2005. Software for 
quantification of labeled bacteria from digi-
tal microscope images by automated image 
analysis. BioTechniques 39:859-863.

 3. Abramoff, M.D., P.J. Magalhaes, and S.J. 
Ram. 2004. Image processing with ImageJ. 
Biophotonics Int. 11:36-42.

 4. Carpenter, A.E., T.R. Jones, M.R. 
Lamprecht, C. Clarke, I.H. Kang, O. 

Friman, D.A. Guertin, J.H. Chang, et al. 
CellProfiler: image analysis software for 
identifying and quantifying cell phenotypes. 
Genome Biol. (In press).

 5. Cowen, L.E. and S. Lindquist. 2005. Hsp90 
potentiates the rapid evolution of new traits: 
drug resistance in diverse fungi. Science 
309:2185-2189.

 6. Wheeler, D.B., S.N. Bailey, D.A. Guertin, 
A.E. Carpenter, C.O. Higgins, and D.M. 
Sabatini. 2004. RNAi living-cell microarrays 
for loss-of-function screens in Drosophila 
melanogaster cells. Nat. Methods 1:127-132.

 7. Cooper, AA., A.D. Gitler, A. Cashikar, 
C.M. Haynes, K.J. Hill, B. Bhullar, K. Liu, 
K. Xu, et al. 2006. α-Synuclein blocks ER-
golgi traffic and Rab1 rescues neuron loss in 
Parkinson’s models. Science 313:324-328.

 8. Gibson, M.C., A.B. Patel, R. Nagpal, and N. 
Perrimon. The emergence of geometric order 
in proliferating metazoan epithelia. Nature 
2006 Aug 9; [Epub ahead of print].

 9. Jones, T.R., A.E. Carpenter, and P. 
Golland. 2005. Voronoi-based segmentation 
of cells on image manifolds. ICCV Workshop 
on Computer Vision for Biomedical Image 
Applications, p. 535-543.

 10. Jones, T.R., A.E. Carpenter, P. Golland, and 
D.M. Sabatini. Methods for high-content, 
high-throughput image-based cell screening. 
MIAAB 2006 Workshop Proceedings (In 
press).

 11. Malpica, N., C.O. de Solorzano, J.J. 
Vaquero, A. Santos, I. Vallcorba, J.M. 
Garcia-Sagredo, and F. del Pozo. 1997. 
Applying watershed algorithms to the seg-
mentation of clustered nuclei. Cytometry 
28:289-297.

 12. Meyer, F. and S. Beucher. 1990. 
Morphological segmentation. J. Vis. 
Commun. Image Rep. 1:21-46.

 13. Ortiz de Solorzano, C., E.G. Rodriguez, A. 
Jones, D. Pinkel, J.W. Gray, D. Sudar, and 
S.J. Lockett. 1999. Segmentation of confo-
cal microscope images of cell nuclei in thick 
tissue sections. J. Microsc. (Oxford) 193:212-
226.

 14. Wahlby, C. 2003. Algorithms for applied 
digital image cytometry, p. 75. In Center 
for Image Analysis. Uppsala University, 
Uppsala.

 15. Wahlby, C., I.M. Sintorn, F. Erlandsson, 
G. Borgefors, and E. Bengtsson. 2004. 
Combining intensity, edge and shape infor-
mation for 2D and 3D segmentation of cell 
nuclei in tissue sections. J. Microsc. 215:67-
76.

 16. Vincent, L. and P. Soille. 1991. Watersheds 
in digital spaces—an efficient algorithm 
based on immersion simulations. IEEE Trans. 
Pattern Anal. Mach. Intell. 13:583-598.

 17. Boland, M.V., M.K. Markey, and R.F. 
Murphy. 1998. Automated recognition of pat-
terns characteristic of subcellular structures in 
fluorescence microscopy images. Cytometry 
33:366-375.

 18. Gabor, D. 1946. Theory of communication. J. 
Instit. Electr. Engineer. 93:429-441.

 19. Haralick, R.M., K. Shanmuga, and I. 
Dinstein. 1973. Textural features for im-

age classification. IEEE Trans. Syst. Man. 
Cybern. SMC3:610-621.

 20. Bailey, S.N., D.M. Sabatini, and B.R. 
Stockwell. 2004. Microarrays of small mol-
ecules embedded in biodegradable polymers 
for use in mammalian cell-based screens. 
Proc. Natl. Acad. Sci. USA 101:16144-
16149.

 21. Wheeler, D.B., A.E. Carpenter, and D.M. 
Sabatini. 2005. Cell microarrays and RNA 
interference chip away at gene function. Nat. 
Genet. 37(Suppl):S25-S30.

 22. Bailey, S.N., S.M. Ali, A.E. Carpenter, 
C.O. Higgins, and D.M. Sabatini. 2006. 
Microarrays of lentiviruses for gene function 
screens in immortalized and primary cells. 
Nat. Methods 3:117-122.

 23. Measday, V., K. Baetz, J. Guzzo, K. Yuen, 
T. Kwok, B. Sheikh, H. Ding, R. Ueta, et al. 
2005. Systematic yeast synthetic lethal and 
synthetic dosage lethal screens identify genes 
required for chromosome segregation. Proc. 
Natl. Acad. Sci. USA 102:13956-13961.

 24. Yu, A.C., Y.L. Lee, and L.F. Eng. 1993. 
Astrogliosis in culture: I. The model and the 
effect of antisense oligonucleotides on glial 
fibrillary acidic protein synthesis. J. Neurosci. 
Res. 34:295-303.

 25. Classen, A.K., K.I. Anderson, E. Marois, 
and S. Eaton. 2005. Hexagonal packing of 
Drosophila wing epithelial cells by the planar 
cell polarity pathway. Dev. Cell 9:805-817.

Received 15 May 2006; accepted  
7 July 2006.

Address correspondence to Anne E. 
Carpenter, Whitehead Institute for 
Biomedical Research, Nine Cambridge 
Center, Cambridge, MA 02142, USA. 
e-mail: carpenter@wi.mit.edu

To purchase reprints of this article, contact:
Reprints@BioTechniques.com


