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ABSTRACT

Motivation: Multimillion-probe microarrays allow detection of gains
and losses of chromosomal material at unprecedented resolution.
However, the data generated by these arrays are several-fold larger
than data from earlier platforms, creating a need for efficient analysis
tools that scale robustly with data size.
Results: We developed a new aberration caller, Ultrasome, that
delineates genomic changes-of-interest with dramatically improved
efficiency. Ultrasome shows near-linear computational complexity
and processes latest generation copy number arrays about 10 000
times faster than standard methods with preserved analytic accuracy.
Availability: www.broad.mit.edu/ultrasome.
Contact: bnilsson@broad.mit.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Microarray-based DNA copy number profiling has transformed
the identification and characterization of gains and losses of
chromosomal material. The technology is evolving rapidly in terms
of genomic resolution. The most recent generation of microarrays,
including Affymetrix SNP6.0 (McCarroll et al., 2008), measure
copy number at millions of chromosomal locations, an increase of
up to 10-fold compared with earlier platforms. Even denser arrays
are underway, and copy number profiling based on next-generation
sequencing is rapidly gaining traction.

Alongside probe-level copy number estimation, the central step in
copy number data analysis is to partition the genome into contiguous
regions that share the same copy number on average. With increasing
resolution, this has become challenging as current standard methods,
originally developed for lower resolution microarrays, are associated
with computational requirements that grow steeply with the number
of probes (Lai et al., 2005). This leads to long wait times, increases
the need for extraordinary computing resources, and complicates
analysis.

To address this issue, we developed a new aberration caller,
Ultrasome, based on an efficient computational strategy that exploits
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the structure of the delineation problem to process copy number
data in near-linear time. As illustrated here, Ultrasome is capable
of processing latest generation copy number arrays, including
Affymetrix SNP6.0, about 10 000 times faster than standard
approaches while retaining comparable analytic accuracy.

2 RESULTS
The mathematical details are described in Supplementary Material.
In short, partitioning a chromosome amounts to fitting a piece-wise
constant function to the data, in our case by minimizing

M∑

i=1

∑

j∈Ii

(fj −µi)
2 +λM, (1)

where f1,...,fN are DNA copy numbers indexed by chromosomal
position, I1,...,IM a set of ordered subintervals (segments) covering
the interval [1,N], µ1,...,µM the corresponding segmental copy
numbers and M the number of segments (true value unknown a
priori). The first term imposes consistency with the original data;
the second term imposes regularity by penalizing the number of
breakpoints. By adjusting the parameter λ, the balance between
consistency and regularity can be set and the method optimized for
the detection of small or large aberrations (details and guidelines in
Supplementary Material).

To minimize (1), we exploit that, for any partitioning, the optimal
segmental copy numbers are the averages of the point-wise copy
numbers over the subintervals, allowing the solution space to be
re-parameterized as an N-dimensional binary space where each
coordinate indicates whether a point is a breakpoint (a starting
point of a segment) or a non-breakpoint (an interior point). In this
space, we aim to find a sequence of increasingly better partitionings
that leads towards the minimum. By requiring that successive
partitionings in the sequence be related by toggling the breakpoint
status of exactly one point, we can proceed by repeatedly identifying
the site on the chromosome whose change in state from breakpoint
to non-breakpoint (or vice versa) reduces the value of Equation (1)
maximally, toggling the state of that point, and repeating until no
improvement can be found. By use of a special data structure, a heap-
sorted queue with backpointers, our approach can be accelerated to
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Glioblastoma HCC1143

23.004.0emosartlU
CBS (Venkatraman and Olshen, 2007) (fast version) 8511 9315
CGHclassify (Engler et al 0186205563)6002,.
GLAD (Hupé et al 2674375475)4002,.
CGHseg (Picard et al a/n)5002,. † n/a
SW-ARRAY (Price et al a/n)5002,. † n/a
CLAC (Wang et al a/n)5002,. † n/a
ACE (Lingjaerde et al a/n)5002,. † n/a
BioHMM (Marioni et al a/n)6002,. †

†
†
†
†
†n/a

Computation time (seconds per Affymetrix SNP6.0 array, 2.5 GHz CPU, 3 GB RAM). File access not included.
†Failed for large data or was terminated after several days wait for one array.
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Fig. 1. (a) Computation time by number of probes per chromosome (average across 1000 random locations in the HCC1143 data). As a reference, Affymetrix
SNP6.0 measures 1.43×105 copy numbers on chromosome 1. (b) Computation times for glioblastoma and HCC1143 data (Affymetrix SNP6.0; 1.85×106

pointwise copy number estimates). Some reference methods failed when applied to large data (n/a), potentially for algorithmic reasons or because of suboptimal
implementation. Either way, our results reflect the expected performance of the tools that are directly available to users. (c) Despite the increased efficiency,
Ultrasome shows receiver operating characteristics as strong as those of current standard methods. The figure also exemplifies the effect of changing the
breakpoint penalty λ to optimize the detection of small aberrations (low λ, solid blue) or large unbroken aberrations (high λ, dashed blue).

O(logN) per-iteration complexity and near-linear empirical overall
complexity (Fig. 1a).

We tested Ultrasome on Affymetrix SNP6.0 profiles (1.85×106

probes) of the breast cancer cell line HCC1143 (from our lab)
and glioblastoma multiforme (TCGA Network, 2008). Remarkably,
the computation time was <1 s per array, orders of magnitudes
faster than current standard methods (Fig. 1b). For a study with
hundreds of samples, this translates to a reduction in wait time from
days to minutes. Such increased efficiency is not only a matter of
convenience, but also facilitates the tuning of technical parameters to
the needs of particular studies (Supplementary Material). To verify
that known aberrations are detected, we constructed a set of artificial
‘chromosomes’ with spiked-in aberrations of varying widths and
noise levels and computed receiver operating characteristics for
each case (Supplementary Material). In this test, an established
benchmark (Lai et al., 2005), Ultrasome performed on par with
current methods (Fig. 1c).

In conclusion, Ultrasome is a high-performance tool designed to
facilitate the detection of chromosomal aberrations in copy number
data of multimillion-probe or higher resolution. The program is
available in a command-line version (Windows and Linux) and
a graphical user interface version (Windows), accepts data in
standard formats, and interfaces with Integrative Genomics Viewer
(www.broad.mit.edu/igv) to allow data visualization.
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