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ABSTRACT 
 
Major challenges remain in the extraction of rich informa-
tion from high-throughput microscopy experiments. In this 
paper, I describe some of these challenges, particularly those 
that are the subject of ongoing research in my laboratory. 
The challenges include segmenting neurons, co-cultures of 
different cell types, and whole organisms; segmenting and 
tracking cells in time-lapse images; quantifying complex 
phenotypic changes; and discovering biologically relevant 
subpopulations of cells.* 
 
 

Index Terms— high-throughput, screening, fluores-
cence microscopy, co-cultures, C. elegans 
 
 
 

1. INTRODUCTION 
 
Due to advancements in robotic systems, biologists in phar-
maceutical companies and academic screening centers are 
now able to efficiently create hundreds of thousands of bio-
logical samples in parallel. Each sample tests the effects of a 
particular gene or potential drug on a disease-relevant bio-
logical system, such as cells or small organisms.  The goal is 
to “screen” the samples to identify those with desired 
effects. When each sample is imaged by microscopy, ex-
tracting the relevant, quantitative information from each 
image in an automated fashion becomes the main challenge. 

Image processing algorithms and machine learning tools 
have been successfully employed to score increasingly com-
plex phenotypes over the past decade. Here, some major 
challenges in this field are reviewed as part of an ISBI spe-
cial session drawing attention to this growing area in bio-
medical imaging. I highlight ongoing research areas of my 
group, the Imaging Platform of the Broad Institute of Har-
vard and MIT, where we focus on quantifying and mining 
the rich information present in high-throughput images 
(100,000–1,000,000 images per experiment) probing a vari-
ety of biological processes and diseases of interest. 
                                                             
* This is an invited paper in the special session on "Current 
challenges in image analysis for high-throughput micros-
copy." 

 
2. NEURONAL CELL TYPES  

 
Scoring samples for a specific phenotypic change has be-
come fairly routine in most mammalian cell types as well as 
similar-looking non-mammalian cells. This is true even for 
complex phenotypes, where machine learning has become 
indispensable [1-3]. One major exception is neuronal cell 
types (Figure 1A). Because the thin neurites that protrude 
from the cell bodies are often very weakly stained, auto-
mated algorithms often fail to accurately trace each neurite 
unless sample preparation and imaging conditions are opti-
mal. The state of the art is often to fall back on interactive 
guidance from the user, but this is infeasible for high-
throughput experiments. Foreground–background segmenta-
tion alone can be challenging, and tracing individual neu-
rites that cross or are entangled is even more difficult. Fur-
thermore, important information about neuron connectivity 
can only be gained by three-dimensional imaging, making 
experiments involving neurons a computational challenge in 
many respects.  Neuronal cell types are one of the “final 
frontiers” of two-dimensional mammalian cell image analy-
sis [4]. 

 
3. MIXTURES OF CELL TYPES 

 
High-throughput experiments are inherently artificial in that 
they usually involve cells grown out of their native envi-
ronment, typically in plastic multi-well plates. Biologists 
studying many different biological processes and diseases 
are increasingly making the extra effort to preserve natural 
cell–cell interactions by growing mixtures of physiologi-
cally relevant cell types together. This type of co-culturing 
is also required for proliferation of some cell types.  

Developing computational approaches to analyze the 
complex images resulting from mixtures of two visually 
distinctive cell types is challenging but worthwhile.  For 
example, human hepatocytes proliferate and maintain their 
native liver-specific functions much better when grown in 
the presence of fibroblasts. If the fibroblasts are derived 
from mouse cells, the nuclei of the two cell types are dis-
tinctive enough to be distinguished by supervised machine 
learning. This enables large-scale experiments to identify 
chemicals that promote liver regeneration. The system 
should also be useful to assess a potential drug’s human 
liver toxicity in order to prevent clinical trial failures. It is 



also increasingly common to co-culture adult hematopoietic 
or leukemic stem cells with stroma. Such experiments can 
identify chemicals that promote the proliferation of hema-
topoietic cells or transition leukemic cells to a harmless dif-
ferentiated state. 

 
4. WHOLE ORGANISMS 

 
Some model organisms are small enough to fit in multi-well 
plates, yet complex enough to model many aspects of hu-
man physiological function. These organisms enable the 
study of biological processes and diseases that involve organ 
systems and multicellular interactions. Major challenges in 
high-throughput whole-organism image analysis include 
distinguishing between organisms and artifacts such as de-
bris, distinguishing between organisms that clump or cross 
over each other in the population in each sample, and quan-
tifying complex phenotypes in each individual in a popula-
tion of organisms. 

We have begun to address these challenges for Caenor-
habditis elegans worms imaged in high throughput [5-7]. 
Here, separating touching and overlapping worms, as seen 
in Figure 1B, is one of the major challenges before 
measurements can be made on individual animals. To iden-
tify much-needed novel classes of antibiotics and anti-
infectives, we have developed algorithms that can identify 
individual worms and detect whether a potential drug has 
cured the worms from pathogen infection. We are also test-
ing these algorithms to quantify fat storage in individual 
worms, allowing regulators of metabolism to be studied in 
the context of a whole, living organism. 

5. TIME-LAPSE IMAGES 
 

Many biological questions can only be answered by collect-
ing time-lapse movies [8, 9]. In such images, one challenge 
is accurately identifying cells and their compartments given 
the low signal-to-noise that is common in time-lapse images 
where cells must be exposed to as little light as possible in 
order to prevent phototoxicity and photobleaching. It is also 
challenging to track cells accurately from one frame of the 
movie to the next because the frame rate is usually mini-
mized to reduce the cells’ exposure to light. Many methods 
in the extensive tracking literature are unsuited for high-
throughput images, and often require manual intervention. 

We have been working to accurately extract information 
from time-lapse movies to identify, for example, novel cell 
cycle landmarks and motor protein regulators. We are also 
integrating time-lapse data with flow cytometry data to 
quantify unusual cell cycle outcomes. Ongoing experiments 
that track the motion and behavior of swimming zebrafish 
over time combine the challenges of whole-organism image 
analysis and time-lapse imaging. 
 

6. DISCOVERING MORPHOLOGICAL 
SIGNATURES 

 
High-throughput imaging studies have been mostly limited 
to identifying samples that exhibit one or more specific, 
known phenotypic changes. However, a few labs have be-
gun to explore the prospect of profiling samples using a 
more comprehensive set of automatically-discovered pheno-
types, thereby revealing similarities and differences between 

Figure 1. (A) Projection of a 3D image of a fluorescently stained neuron (kindly provided by collaborator Mehmet 
Fatih Yanik). Thin structures and low signal to noise make image segmentation and neuron tracing difficult, par-
ticularly when cells are more crowded than in this simplified example. (B) C. elegans worms cultured in 384-well 
plates imaged by bright field microscopy (kindly provided by collaborator Frederick M. Ausubel). Touching and 
overlapping worms complicate feature extraction from individual animals. 



samples that may be unexpected or even undetectable to the 
human eye [2, 10-12]. This is beginning to bring micros-
copy experiments into the realm of systems biology, such 
that image-based phenotypes may soon be routinely interro-
gated side by side with gene-expression and proteomic data.   

High-throughput imaging experiments generate ex-
tremely large, high-dimensional data sets with quantifiable 
phenotypic information for every individual cell. Shifts in 
the distribution of phenotypes within a heterogeneous popu-
lation are often difficult to detect by eye, but may be highly 
relevant from a biological perspective. We are using this 
rich, latent information to identify patterns in chemical or 
genetic perturbations in order to distinguish genes and 
chemicals with related cellular effects and to discover 
chemical targets and side effects. 

 
7. BRIDGING THE GAP BETWEEN BIOLOGISTS 

AND ADVANCED COMPUTATIONAL TOOLS 
 
Solving a particular image-processing challenge is only the 
first step towards extracting useful information from bio-
logical images. A published description of an algorithm is 
very different from a working implementation.  Even if an 
algorithm was successfully applied to a real problem and the 
implementation made available, it may not be useful for 
others because making the implementation work on a differ-
ent experiment and integrating it with other necessary proc-
essing steps requires much time and image-
processing/software-development expertise as well as inti-
mate knowledge of the new experiment. Ideally, algorithms 
are packaged in a user-friendly form with sufficient docu-
mentation so that the biologist, who is most familiar with 
the scientific questions at hand, can configure the algorithm 
and integrate it with other analysis steps. 

Algorithms developed in our group are made available to 
the scientific community as modules for CellProfiler 
(http://www.cellprofiler.org), our open-source software 
package for quantifying a variety of phenotypes in biologi-
cal images [13, 14]. Since we first released it in 2005, it has 
become widely used, with more than 10,000 downloads and 
over 250 citations so far. The software evolves within an 
active research environment involving dozens of diverse 
image-based assays, resulting in rich functionality as we 
continue to improve its capabilities, interface, and support.  

Recognizing the real challenge in exploring high-
dimensional data from hundreds of thousands of images, we 
are also developing tools and workflows for data analysis, 
exploration, and quality control. These are released under 
the name CellProfiler Analyst. 

Several open-source software projects are beginning to 
be interfaced in ways that allow researchers to conveniently 
use the most suitable tool for each step in an experiment.  
CellProfiler has recently been interfaced with the pixel-
based classification tool Ilastik (http://www.ilastik.org/) and 
the popular image-analysis tool ImageJ (aka. NIH Image, 
http://rsbweb.nih.gov/ij/). CellProfiler uses the NumPy and 

SciPy scientific-computing libraries [15]. For reading and 
writing various image file types, it uses the BioFormats li-
brary (http://www.loci.wisc.edu/software/bio-formats), de-
veloped as part of the Open Microscopy Environment pro-
ject (http://www.openmicroscopy.org). 

Finally, we are building up a collection of freely down-
loadable microscopy image sets through the Broad Bioi-
mage Benchmark Collection 
(http://www.broadinstitute.org/bbbc/). In addition to the 
images themselves, each set includes a description of the 
biological application and some type of "ground truth" (ex-
pected results). Researchers are encouraged to use these 
image sets as reference points when developing, testing, and 
publishing new image analysis algorithms for the life sci-
ences. We hope that the BBBC will lead to a better under-
standing of which methods are best for various biological 
image analysis applications. 

 
8. CONCLUSION 

 
Microscopy is one of the most powerful and informative 
ways to analyze experiments designed to uncover pheno-
typic variations in response to chemical, genetic, and other 
perturbations, but extracting biomedically important infor-
mation from large, automated image experiments is chal-
lenging. High-throughput data requires segmentation algo-
rithms that are robust to experimental variations, and com-
plex as well as subtle phenotypes require advanced feature 
extraction and data mining. The challenges briefly summa-
rized here are relevant for a wide range of biomedical re-
search areas. With this review of our current challenges we 
hope to encourage not only additions to the wealth of pow-
erful image analysis algorithms already available, but more 
specifically encourage development and dissemination of 
algorithms that solve biomedically relevant problems. 
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