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Introduction

The advent of high-content screening (HCS) has had a tre-
mendous impact on drug discovery and genome analysis. 
Sophisticated algorithms are integral to HCS, easing the 
process of automatically scoring images for phenotypes 
without visual inspection. The use of automated micros-
copy and image analysis has increased screening speed, 
objectivity, and statistical power by multiplexing the 
extraction of complex quantitative information from each 
cell.

However, these advances have also generated the need 
for robust metrics and workflows for quality control (QC) 
of HCS images, typically to reduce the number of images 
that are spuriously scored as screening hits. Anomalies in 
image quality can pollute high-content microscopy data and 
in some cases even preclude certain types of experiments. 
Analysis of these data sets requires the researcher to explore 
and visualize gigabytes of image and extracted feature 
information; simple spreadsheet programs (e.g., Microsoft 
Excel) are inadequate for the task. Commercial automated 
systems do not package QC metrics and visualizations as a 
cohesive toolset readily accessible to users; researchers 
may resort to custom software solutions1 or to visual explo-
ration of hits to exclude obvious artifacts. Solutions are 

needed that package together data metrics and visualiza-
tions in a user-friendly software tool compatible with any 
automated microscope, to enable automatic detection of 
image aberrations that would otherwise corrupt the data and 
diminish the experimental results.

In this article, we characterize several QC metrics for 
common artifacts that confound high-content imaging 
experiments. Our approach to HCS QC has developed over 
many years of image-based screens for complex pheno-
types and is implemented in open-source software.

Methods and Materials
HCS microscopy images were acquired using an 
ImageXpress Micro automated cellular imaging system 
(Molecular Devices, Sunnyvale, CA). The 384-well plates 
containing U2OS cells stained with Hoechst 33342 and 
Alexa Fluor 594 phalloidin markers were imaged with an 
exposure of 15 and 1000 ms for Hoechst and phalloidin, 
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respectively, at 20× magnification and 2× binning. For each 
site, the optimal focus was found using laser autofocusing 
on the Hoechst channel. The automated microscope was 
then programmed to collect a z-stack of 32 images (z = 0 at 
the optimal focal plane, 16 images above the focal plane, 16 
below) with 2 µm between slices. For additional validation, 
we used images from a large phenotypic screen obtained 
with the protocol above, along with the addition of a 
MitoTracker (Invitrogen, Carlsbad, CA) mitochondrial 
stain and the acquisition of four sites per well. Even though 
focusing was performed automatically, two plates con-
tained extensive focus artifacts and were discarded from the 
screen; for these plates, each image was manually anno-
tated as in- or out-of-focus.

Synthetic HCS cellular images (25 per test condition) 
were created using SIMCEP simulation software2 run in 
MATLAB (Mathworks, Inc., Natick, MA). The cells were 
simulated for a given cell count with a clustering probabil-
ity of 25% and a charge-coupled device (CCD) noise vari-
ance of 0.0001. The synthetic image dimensions were the 
same as those of the microscopy images, and the simulated 
nuclei and cell areas were matched to the corresponding 
average areas obtained from an HCS plate. Increasing focus 
blur was simulated by applying Gaussian filters of increas-
ing size to the images.

Metrics directed toward two types of artifacts were 
examined: focal blurring and image saturation. The various 
focus metrics were evaluated using the multiwell micros-
copy image z-stacks and the artificially blurred synthetic 
images with the following approach:

 • Computing QC thresholds on a training image set: 
An expert (one of the coauthors, MAB) defined 
ground truth by selecting the z-offset correspond-
ing to the boundary between acceptable in-focus 
images and unacceptable out-of-focus images, as 
determined visually. A training set of images span-
ning all z-offsets was created from a random selec-
tion of wells, and the optimal threshold for each 
focus metric was chosen based on this training 
set. True positives (TPs) and false positives (FPs) 
were defined as images correctly or incorrectly 
detected as in-focus according to ground truth, 
respectively; a false negative (FN) is an image 
incorrectly detected as out-of-focus. For each met-
ric, the per-image F-score was calculated for each 
bin, defined as

 F-score = 2pr/(p + r), (1)

where precision (p) and recall (r) are defined as

 p = TP/(TP + FP), (2)

 r = TP/(TP + FN).  (3)

Because the F-score is a measure of detection accuracy,  
we define the QC threshold for a metric as the optimal 
boundary between in- and out-of-focus images; it is com-
puted as the value corresponding to the maximum F-score.

 • Evaluating metric performance on a test image 
set: The F-scores were calculated for each metric 
from the remaining wells using the QC thresholds 
established above.

A similar approach was taken with the saturation artifact 
metrics, with the exception that ground truth comprised a 
set of artifact-laden images manually selected from five 
plates from another HCS microscopy experiment. Training 
and test sets were created from a random selection of 
images from the ground truth set and from the remaining 
images, respectively.

Most QC metric computation and cellular analysis was 
performed using a pipeline (a serial set of image analysis 
algorithms) constructed using version 2.0 of CellProfiler, 
a cell image analysis software package.3 A MetaXpress 
(Molecular Devices) journal/macro was used to retrieve 
and export the instrument-acquired per-image signal/
noise ratio. Exploration of image data was performed 
with CellProfiler Analyst. The open-source software 
packages CellProfiler and CellProfiler Analyst are main-
tained by the Imaging Platform at the Broad Institute; 
both packages are freely downloadable from http://www 
.cellprofiler.org.

Results And Discussion
Characterization of QC metrics
Common artifacts that confound image analysis algorithms 
include out-of-focus images, debris, image overexposure, 
fluorophore saturation, and uneven field illumination, 
among others. Because these anomalies affect intensity, 
morphological, and textural measurements in a variety of 
ways, we have found that a single QC metric that captures 
all types of artifacts is not feasible. Therefore, multiple 
metrics were developed and applied tailored to the specific 
artifact. Here, we characterize metrics commonly used by 
our group.

QC metrics for out-of-focus images
The most common and problematic HCS artifacts are out-
of-focus images acquired despite automated microscope 
autofocusing. Relative focus metrics have been studied 
extensively for optimal focal plane selection,4 in which 
the goal is to select the best focal plane among many 
images of the same field of view. However, these methods 
are not directly applicable in the context of HCS QC, in 
which an absolute focus metric is needed to identify the 
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focus quality of single images from thousands of fields of 
view.

Because image focus, signal/noise, and cell density com-
monly fluctuate across an HCS experiment, it is useful to 
test the candidate QC metric against similarly varying 
images to ensure reliability across a broad range of experi-
ments.5 In addition to informal testing in dozens of HCS 
experiments, we validated and characterized several candi-
date focus metrics using two sets of benchmark images 
(Fig. 1A):

 • We created a set of synthetic HCS images of cell 
populations with ground truth segmentation. We 
then blurred the images artificially and quanti-
fied the performance of metrics with respect to the 
amount of blur and the cell count per image. As 
expected, we observed that a typical quantitative 
measure such as cell count degrades with increas-
ing focus blur, F (Fig. 1B, left).

 • Because synthetic cell images are unlikely to 
fully represent the actual experimental variation 
typical of an experiment, we also tested micros-
copy images of cell samples from a 384-well 
HCS plate. We imaged multiple fields of view 
per well and multiple focal planes per field above 
and below the optimal focal plane. Applying 
larger blurring filters in the synthetic images is 
considered equivalent to increasing the distance 
from the optimal focal plane in the microscopy 
images, and both will be referred to in terms 
of F. Again, quantitative measures such as cell 
count (Fig. 1B, right) and DNA content distri-
bution (Fig. 1C) of the cell population degrade 
with increasing focal blur.

We assessed the performance of four previously proposed 
metrics with respect to variations in focal blur F and cell 
count C. Our criteria for an optimal QC metric are (a) insen-
sitivity to cell count C since C typically varies widely in 
HCS and (b) detection accuracy in the presence of focal 
blur F. The metrics are as follows:

 • The mean/STD is the ratio of the average image 
intensity to the standard deviation of the image 
intensity (or inverse coefficient of variation). It 
is provided as a QC measure in the commercial 
MetaXpress system (defined as the signal-to-
noise ratio). The mean/STD value decreases as C 
decreases or F increases (Fig. 2A).

 • The focus score is a normalized measure of the 
intensity variance within an image6 and has been 
recommended as the optimal method for autofo-
cusing purposes.4 Its value also decreases as C 
decreases or F increases (Fig. 2B).

 • The image correlation is a measure of the image 
spatial intensity distribution computed across sub-
regions of an image,7 and its value increases as F 
increases (Fig. 2C). For a given spatial scale, the 
image correlation is insensitive to C.

 • The power log-log slope (PLLS) evaluates the 
slope of the power spectrum density of the pixel 
intensities on a log-log scale.8 The PLLS is rela-
tively insensitive to C and decreases as F increases 
because high-frequency image components are 
lost as an image is blurred (Fig. 2D).

Using F-score as a measure of ability to accurately distin-
guish in-focus from out-of-focus images for the two stains 
in both synthetic and microscopy images (Fig. 2E,F), the 
highest performing metric is the PLLS, despite some sensi-
tivity at very low C. The image correlation metric performs 
well in terms of moderate F-score and insensitivity to C. 
However, selecting an appropriate spatial scale is important 
for the metric’s performance because differences in the 
spatial scale capture various features: Moderate scales cap-
ture the blurring of intracellular features better than small 
scales, and larger scales are more likely to reflect intercel-
lular confluence than focal blur. The mean/STD and focus 
score metrics both have a dependence on C, and their large 
variance for a given amount of focal blur makes them  
unreliable for HCS QC focus assessment.

QC metrics for saturation artifacts
Another screening irregularity often encountered relates to 
saturation artifacts: inappropriately bright regions of images 
that can be caused by debris contamination, reagents aggre-
gates, or inappropriate exposure/gain settings (Fig. 3A). 
Saturated regions preclude accurate intensity measure-
ments and can confuse cell identification even in unaffected 
image regions in extreme cases.

To assess saturation artifacts, we typically use the per-
cent maximal (PM) metric to compute the percentage of 
pixels at the maximum image intensity value; high PM val-
ues can identify saturated images as candidates for exclu-
sion.9 Other statistical measures related to image intensity 
have also been used for detecting saturation artifacts in 
microarray image data.10

Because saturation artifacts do not fall into well-defined 
archetypes and vary greatly in appearance, we relied on our 
informal experience in dozens of HCS experiments as well 
as a data set of artifacts (40 images) that occurred by chance 
in five HCS plates. We quantified the artifact detection 
accuracy using the F-score to compare eight metrics: PM, 
the total, mean, median, standard deviation, maximum and 
median absolute deviation (MAD) of the image intensity, 
and the Otsu image threshold. Three forms of Otsu thresh-
olding were evaluated: the standard two-class method and 
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Figure 1. Analysis of focus metrics using synthetic and microscopy high-content screening (HCS) image data. (A) Representative images 
as a function of focus blur amount F and cell count C. (B) Cell count accuracy deteriorates with increasing focal blur. (C) DNA content 
accuracy decreases with increasing focal blur for Hoechst microscopy images.
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Figure 2. (A–D) Metric performance for synthetic nuclei and microscopy Hoechst images. For the synthetic data, plots show specific 
cell counts, whereas quartiles of the cell count distribution are plotted for the microscopy data. Image correlation values are shown 
for three spatial scales as indicated, where the number specifies the spatial scale in pixels for the synthetic images and in microns for 
the microscopy images. Error bars indicate standard deviation. PLLS; power log-log slope. (E, F) Table of candidate quality control (QC) 
metrics for (E) synthetic and (F) microscopy images, rank-ordered by F-score.
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the three-class method, with the middle class assigned to 
either the foreground or background. Our analysis indicates 
that PM detects saturation artifacts more robustly than the 
other candidate metrics (Fig. 3B).

Design of the QC workflow
Optimal software tailored to QC for image-based experi-
ments requires linking numerical data back to the raw 
image data, flexible statistical analyses, and the ability to 
operate within the hierarchical data structure inherent in 
image-based data (i.e., an experiment is composed of sam-
ples, a sample is tested in replicate wells, the wells contain 
a number of images, and each image contains hundreds of 
cells, each with hundreds of features measured).

A QC workflow should perform, at minimum, the fol-
lowing tasks:

 • Calculation of a suite of metrics that represent the 
variety of the artifact types that screeners are likely 
to encounter during an experiment

 • Provision of tools for analysis and exploration of 
calculated metrics, to assist researchers unfamiliar 
with a particular data analysis task

 • Interaction with the QC metric data using interac-
tive visualization tools promoting the direct cou-
pling of the metrics to the image data, allowing the 
researcher to examine images and identify accept-
able QC thresholds (i.e., boundaries between 
acceptable and unacceptable images)

 • Gating of an image subset based on the selected 
QC thresholds, such that images within the gate 
are deemed acceptable for further analysis

 • Application of the gates to the images to obtain a 
list of acceptable images for export as input to a 
downstream preprocessing or analysis workflow

 • Saving the applicable plots and gates representing 
user decisions during a QC session for later use, 
either across multiple sessions for a single experi-
ment or across multiple experiments

In the course of work with a wide variety of image-based 
assays, we have gradually developed a workflow to accom-
plish these tasks.

Calculation of QC metrics in CellProfiler
We implemented the metrics described above in CellProfiler, 
allowing analysis modules to be assembled into an auto-
mated pipeline. The Measure Image Quality module 
includes the PLLS, focus score, and PM; the Measure 
Texture module measures the image correlation at multiple 
spatial scales; and the Measure Image Intensity module 
evaluates the mean, median, standard deviation, and mini-
mum and maximum image intensities. As described above, 
we recommend PLLS to detect blur and PM to detect satu-
ration artifacts. For a small number of images, the measure-
ments extracted by the QC pipeline may be viewed in Excel 
or a similar spreadsheet program. However, for the large 
number of images typically generated by an HCS experi-
ment, measurements are best deposited into a database 
using the Export to Database module. In either case, the 
QC pipeline with the selected metrics can be saved for 
reuse in a later experiment. We have provided an example 
QC pipeline as supplementary material, for use with a set 
of HCS images available for download at http://www.cell 
profiler.org/published_pipelines.shtml.

In most cases, we run a CellProfiler QC pipeline to pro-
cess all channels of all images in an experiment, followed by 
an illumination correction pipeline and finally an analysis 
pipeline to quantify the phenotype of interest. If artifacts are 
absent or negligible, the first two pipelines can be run simul-
taneously. If this is not the case, the results from the QC 
pipeline are used to assess which images should be omitted 
from the illumination correction and analysis pipelines.

Evaluation of QC metrics in CellProfiler 
Analyst
We use CellProfiler Analyst for the interactive exploration 
and analysis of the resulting multidimensional data.11 In the 
following example, we describe an image quality workflow 
using CellProfiler Analyst where selected QC metrics are 
visualized and inspected and QC thresholds are applied to 
a subset of plates from an HCS phenotypic screen in which 
the image data contained extensive focusing artifacts.

Figure 3. (A) Examples of saturation artifacts. (B) Listing of 
candidate quality control (QC) metrics for the microscopy 
Hoechst data, rank-ordered by F-score. STD, standard deviation; 
MAD, median absolute deviation.
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When the screen involves less than a few dozen plates or 
the user wants to obtain a qualitative estimation of the imag-
ing quality, the screener can select these plates for review 
using the Plate Viewer tool (Fig. 4A,B). This tool requires 
that the database of measurements contains plate, row, and 
column identifiers, which can be extracted automatically in 
CellProfiler. The Plate Viewer may be used to visualize any 
of the computed metrics in a familiar plate layout, with each 
well color-coded to represent an aggregate per-well mea-
surement. For example, examining the image PM reveals a 
well with a high mean per-well value (well N17; Fig. 4A). 
The Plate Viewer can also display image thumbnails (Fig. 
4B); viewing these thumbnails may be useful for directly 
visualizing obvious image artifacts. In addition, the images 
acquired for a selected well can be displayed as a montage; 
in this case, viewing the four images from well N17 shows 
that an image containing saturated debris is responsible for 
the aberrant QC measurement value.

For screens involving a large number of plates, visual 
inspection for QC assessment is not recommended, and a 
more quantitative approach is required. We typically begin 
our assessment using the Histogram or ScatterPlot tool for 
visualization of image-level measurements, proceeding to 
individual images for manual review as needed. The 
approach is to plot the metric appropriate to the specific QC 
problem and then identify QC thresholds that exclude unac-
ceptable images. Figure 4C shows a histogram of Hoechst 
PLLS values, revealing a bimodal distribution, in contrast 
to the expected unimodal distribution if all images were  
in-focus. An example image from each peak is shown in 
Figure 4D, revealing marked differences in focus.

In some instances, an image may contain an unforeseen 
artifact not captured by the metrics described here, or the 
recommended QC metrics may be confounded by the phe-
notype of interest. In both cases, it is not straightforward to 
select a single QC threshold for a given metric. Machine 
learning provides a powerful means to allow the computer 
to identify unusable images based on a few examples.12 
CellProfiler Analyst contains a machine learning tool that 
has been validated for phenotypic scoring at the per-cell 
level.13 This same framework can be extended for per-
image machine learning–based QC scoring by referring 
CellProfiler Analyst to a table of image measurements.

Applying QC thresholds to exclude images
The final workflow task is to apply the desired QC metrics 
and thresholds to exclude unacceptable images from further 
analysis. For example, in Figure 4C, a screener using the 
Histogram tool would notice a distinct clustering between 
in- and out-of-focus images and would like to remove the 
out-of-focus images from further analysis. This can be 
accomplished in CellProfiler Analyst by manually delineat-
ing a horizontal subsection of the plot containing the sub-

population of acceptable images (a procedure known as 
“gating”). Because the more positive PLLS values corre-
spond to in-focus images, we manually select a threshold 
that falls at the trough between the two peaks (Fig. 4C). 
CellProfiler Analyst allows for the creation of multiple 
gates, which is useful if a combination of metrics is needed 
to produce the final QC result. The screener may label a 
new gate with a descriptive name (e.g., “InFocus”) for 
future reference. The same can be done using the ScatterPlot 
and Density Plot visualization tools. Once a gate is defined, 
it may be used to filter any of the measurements visualized 
by the tools in CellProfiler Analyst. Using the automatic 
assessment of blurriness, we found that the chosen PLLS 
threshold of –2.27 resulted in the exclusion of 910 (29.7%) 
of 3064 images as blurry, whereas 2154 images (70.3%) 
were deemed in-focus. Comparing this result to the manual 
annotations of this same image set, 81 (8.9%) of the 910 
“blurry” images were false positives and in fact in-focus, 
and 28 (1.3%) of the 2154 “in-focus” images were false 
negatives and in fact were manually annotated as blurry. 
This yielded an F-score of 0.975. By excluding blurry 
images based on the automated QC analysis, we can see 
improvement in a quantitative measure heavily affected by 
blurring such as DNA content (Fig. 4F,G).

It is often sufficient to mark acceptable images with a 
new “flag” column in the experiment’s database to assist 
in downstream data analysis. For illumination correction 
calculations, however, aberrant images must be excluded 
and the illumination correction pipeline must be rerun 
because illumination correction is not robust against poor 
image quality.14 Typically, it is also desirable to exclude 
the images from the phenotypic analysis pipeline. To assist 
in these goals, one can produce a list of images filtered by 
any or all of the gates in CellProfiler Analyst; this list con-
sists of the file and path names of the accepted images 
along with links to the original images for inspection (Fig. 
4E). This list can then be exported as a file of comma-
separated values (CSV) for use in a CellProfiler (re-)anal-
ysis pipeline; this pipeline would contain the Load Data 
module, which loads the contents of the CSV file. 
Alternately, the full list of images can be exported but with 
binary QC flags for each image. In this case, the analysis 
pipeline should contain a Flag Image module to filter 
images based on the flags.

Saving QC gates and workspaces
The choice of suitable QC metrics and their appropriate 
thresholds is typically determined empirically, depending 
on the context of the assay and taking into account the 
expected variation between experiments. Once a set of 
measures and thresholds has been found to be reliable, the 
user may save the gates as part of a configuration file that 
can later be loaded by CellProfiler Analyst and/or as a 
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Figure 4. Screenshots of the Plate Viewer and Histogram tools in CellProfiler Analyst. (A) Plate Viewer displays the plate layout for a 
single 384-well high-content screening (HCS) plate; per-well averages of the percent maximal (PM) quality control (QC) measures for the 
Hoechst channel are shown in color. Numerical data are shown by hovering the pointer over the well. (B) Plate layout showing image 
thumbnails. Clicking on a well brings up an image montage of all images available for the well, allowing visual confirmation of an artifact 
detected by the PM metric. (C) Histogram of power log-log slope (PLLS) from the Hoechst channel, showing gating (dotted line) and 
menu options. (D) Representative images from the numbered clusters in C. Panels were cropped from the original images for visibility. 
(E) The list of images corresponding to the in-focus images gated in C. (F) HCS screening example in which focus artifacts strongly affect 
quantitative measurement of DNA content. Two peaks are expected, as seen in the in-focus (blue) data: the left peak is 2N DNA content, 
and the right peak is 4N DNA content. In the out-of-focus images (green), DNA content is not accurately quantified. (G) Using a well-
chosen QC threshold improves the overall result. Note that the red line almost completely covers the green line, showing that the QC 
results are virtually indistinguishable to that of manual annotation of the in-focus images.
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workflow file to apply the same tools, metrics, and gates to 
a new experiment. The workflow file saves the information 
necessary to re-create all the display tools and settings that 
were open during a prior QC review session. In this way, a 
user can easily reproduce and display a set of consistently 
used measurements for each new screen. We have provided 
an example configuration (or “properties”) file and a work-
flow file as supplementary material; these files will load 
and display some of the more commonly used metrics from 
a database of measurements and the image set mentioned 
above, available from http://www.cellprofiler.org/pub 
lished_pipelines.shtml.

Conclusions
We characterized several QC metrics to exclude low-qual-
ity images in an HCS experiment. Our goal in this work 
was to provide a suite of recommended HCS QC metrics to 
remove aberrant images from consideration, all in the con-
text of an open-source workflow.

All candidate QC measures are computed as part of a 
QC pipeline in CellProfiler. Once the QC measures have 
been made, CellProfiler Analyst is used to interact with 
the data using a variety of visualization tools. Gating is 
used to create custom thresholds for each QC metric of 
interest, and the gates are combined to yield the final list 
of acceptable images for downstream processing. All 
pipelines, workflows, and gates can be saved for use in 
later experiments. By integrating these data metrics and 
visualizations in a user-friendly software tool, biologists 
can automatically detect image aberrations that would oth-
erwise corrupt the data and diminish the quality of their 
experimental results.
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