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to the pressing needs of this community.
We do not claim that every software 

project ought to meet all of these usability 
criteria, nor that our own projects do. 
Time and funding are not available in 
most academic groups to meet these 
software engineering ‘best practices’, 
and those writing code for bioimaging 
software are rarely software engineers. 
As well, we recognize that exploratory 
computational projects and development 
of new algorithms would suffer if held 
to a high standard of usability from the 
outset, before their use or application is 
even determined. Still, although there is 
absolutely a place for exploratory research, 
especially for training purposes in computer 
science, it alone is insufficient. Producing 
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Bioimaging software developed in a research setting often is not widely used by the scientific community. 
We suggest that, to maximize both the public’s and researchers’ investments, usability should be a more 
highly valued goal. We describe specific characteristics of usability toward which bioimaging software 
projects should aim.

Imaging in biology has recently seen a 
revolution in scope and scale, necessitat-
ing developments in image informatics on 
several fronts. New, sophisticated bioimag-
ing techniques yield large, heterogeneous, 
multidimensional data sets that need to 
be viewed, analyzed, annotated, queried 
and shared. Conversion to digital-based 
imaging modalities raised the bar in terms 
of the quantification that biologists need 
and expect for their images. The explod-
ing volume of images collected in modern 
experiments necessitates automated analy-
sis. Microscopy techniques of increasing 
complexity and functionality have become 
widespread and often require new modes 
of analysis. Image-derived data are even 
beginning to be used as a research and 
clinical biomarker, where subtle changes 
are detectable by computational means but 
cannot be confirmed by eye.

These developments have presented 
unique challenges, leading to the rapid 
and continuing creation of algorithms 
and software packages for bioimaging1. 
Unfortunately, serious usability problems 
with academic bioimaging software limit 
its impact on the community. Often, 
publicly funded software is only useful 
within the research group that created it, 
leading to redundant effort and wasted 
research funding. By contrast, bioimaging 

software is ‘usable’ when both biologists 
and developers can accomplish their 
research goals without inordinate effort 
or expert knowledge. Usable software 
often results from very close collaboration 
between users and programmers, such that 
the tools do not suffer from lack of software 
engineering expertise or lack of real-world 
applicability.

Here we advocate that researchers 
intending to create software that is usable, 
high-impact and helpful to a broad 
bioimaging community aim for excellence 
according to several key criteria (Fig. 1). 
These criteria are good practice for any 
software and have been the subject of much 
recent research and discussion2,3; we focus 
on bioimaging in this Commentary owing 
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Figure 1 | Software for bioimaging should aim to meet specific usability criteria.
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Bioimaging 
software

usability criteria

• Help and documentation
• Binaries for multiple platforms
• Intuitive for users
• Supports reproducible research
• Automatically checks for updates
• Feedback mechanisms
• Breadth of suitable applications

• Available
• Functional
• Produces expected results
• Unit-tested
• Automated build system
• Release notes
• Version compatibility mechanisms
• Comparison to existing tools
• Tested for suitablity for particular 
   biological applications

• Solve a specic problem
• Dened interfaces
• Appropriate scale
• Clearly dened hierarchy
• Extensible
• Varied modes of deployment

• Open-source
• Mechanisms of communication
• Well-documented and accessible 

source code
• Organized, sensible software design

Validated

Modular

Developer-friendly

Interoperable

• Standardized communication path
• Well-dened API
• Unambiguous and constrained 

format for exchanged data
• Accessible across languages and 

development environments
• Operates robustly in a full range of 

deployment environments 
• Scalable
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come together to work on interoperability 
among some of the more popular packag-
es. Recent examples include a US National 
Institutes of Health (NIH) American 
Recovery and Reinvestment Act–funded 
effort to link ImageJ11 with CellProfiler12, 
the Bio-Formats project13 and ImgLib14.

Interoperability offers many benefits. 
It reduces tedious and error-prone effort, 
avoids manual manipulation of data 
between processing steps by individual 
researchers and avoids the creation of cus-
tom bridges with limited applicability to 
others. Interoperability yields tremendous 
flexibility, such that biologists can choose 
the individual software packages, imaging 
instrumentation and computing hardware 
best suited to their project. Aside from 
reducing redundant effort, it encourages 
creative approaches and rapid adaptation 
to new application areas by allowing indi-
vidual research groups to focus on develop-
ing software for a piece of the bioimaging 
pipeline while relying on interoperability 
with established software for other portions 
of the pipeline. Creating useful bridges 
exposes the users of each software package 
to the other software package, increasing the 
user base of each. This yields higher-quality, 
more robust software because features are 
tested more frequently, and developers from 
both projects can add features and fix bugs.

But interoperability also presents chal-
lenges to developers. It often requires major 
time commitment and effort as well as 
coordination between groups focused on 
their own core area. Securing resources to 
establish connections between software to 
increase scientists’ efficiency rather than 
adding major new functionality is a major 
challenge. Although the use of multiple 
programming languages complicates con-
nections between software, programming 
tools for cross-language communication 
are becoming more common.

Interoperability can be implemented in 
several degrees. At one end of the spec-
trum, one software package can be made 
to export images or data in a format that 
another software package can read as input. 
For example, CellProfiler can export image-
derived data in a format readable by several 
other software packages for downstream 
data analysis. Creating a more seamless 
interface, where the user has direct access 
within one software package to the func-
tionality of the second, requires much more 
effort. An example is CellProfiler’s abil-
ity to run an ImageJ macro12 or an Ilastik 

an algorithm, a methods paper and/or code 
is of limited utility to most biologists, so 
researchers claiming that the output of their 
computational work will serve the broader 
community must meet a higher standard.

Thus, we advocate that every software 
project claiming broad impact should con-
sider these criteria and that reviewers and 
funding agencies should reward researchers 
who strive toward them. We suggest that 
funding agencies request that these criteria 
be addressed (though not necessarily met) 
in a ‘plans for software sharing and usabil-
ity’ section of proposals’ resource-sharing 
plans. We recognize that implementing and 
maintaining high usability in software can 
be challenging, that resources are limited, 
and that choices must be made among many 
priorities for software projects. However, we 
strongly advocate that researchers, institu-
tions and funding agencies place a higher 
value on usability in bioimaging software.

user-friendly
Although modern training in biology 
increasingly involves exposure to software, 
advanced computational skills are certainly 
not universal. Further, bioimaging involves 
a breadth of computational knowledge that 
is difficult for a single researcher to master. 
Therefore, except for toolkits or libraries 
solely for other developers’ use, it is critical 
that bioimaging software be usable by non-
experts. 

At a minimum, the software should be 
packaged with some form of help and doc-
umentation, such as installation and use 
instructions and written or video tutorials. 
Software projects should consider having 
mailing lists or online forums for support 
and to gather user feedback. The software 
should be available as binaries for multiple 
platforms. Requiring researchers to build 
the software from source code is time- 
consuming even for computer experts and is 
impossible for many in the target audience. 
The software design itself should be intui-
tive for users. Aside from common sense, 
substantial research in ‘usability engineer-
ing’ is available to guide software develop-
ers to create software that can be quickly 
learned and efficiently used4,5.

The software should support reproduc-
ible research, with mechanisms allowing 
an analysis to be reproduced with mini-
mal effort and thus shared with colleagues 
or published with a paper (http://www.
reproducibleresearch.net/)6–9. A key com-
ponent of reproducibility is provenance. 

The software output should indicate the 
configuration, settings and version of the 
software that created the results, and prior 
versions should be available for download 
and confirmation. Users also benefit when 
software automatically checks for updates 
and has feedback mechanisms to inform 
developers of problems and user needs. To 
prevent users’ wasted effort, the breadth of 
suitable applications of the software should 
be described—that is, the extent to which 
the software is expected to work outside the 
narrowly constrained application for which 
it was developed.

developer-friendly
Many features of user-friendly software 
also make the software developer-friendly, 
reducing the amount of time develop-
ers spend assisting users with routine 
issues such as installation and basic use. 
Developers also have distinct needs that 
should be considered for software projects 
intended to serve as the basis for others’ 
work. Although exceptions exist, it is usu-
ally desirable but also practical for publicly 
funded projects to be provided with an 
open-source licensing option (http://www.
opensource.org/), given that most projects 
will not be moneymakers and an open-
source license is not necessarily incompat-
ible with commercial use and licensing. 
Having the latest version of the code base 
available is valuable in a scientific setting, 
allowing other researchers to understand 
its function and to improve the code10. 
There should be transparent mechanisms 
of communication among developers, such 
as forums for discussions of future plans 
for development. Well-documented source 
code and organized, sensible software 
design can ease other developers’ work and 
preserve the value of the project if the origi-
nal developers cease working on the project.

Interoperable
Although a single software package that 
solves all bioimaging problems may 
sound appealing, the community benefits 
from individual research groups work-
ing in different areas, from acquisition to 
storage to analysis and visualization1. To 
serve the biological community, however, 
these individual software packages must 
effectively interact with each other, allow-
ing researchers to create workflows using 
complementary components that best 
serve their needs. The bioimaging soft-
ware community has recently begun to 
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to users. Most importantly, software must 
be made available. Even if requesters must 
register their identity or agree to specific 
license terms before downloading, host-
ing the software online enables faster, more 
reliable access compared to when software is 
‘available upon request’, which unfortunate-
ly some institutions require. Providing reli-
able long-term availability is now straight-
forward through online repositories such 
as Github, SourceForge and Google Code. 
This prevents ignored requests and defunct 
web addresses17,18. The software should be 
maintained in functional form for current 
operating systems. If this is not possible, 
availability of the source code becomes 
even more important, as future develop-
ers can use it to build binaries. It is fairly 
common that published software cannot 
be installed and started, perhaps because of 
changes in operating systems or hardware, 
or because necessary components of the 
software are missing. Debugging such issues 
is often beyond the capabilities of the typi-
cal biologist end-user. Hosting an instance 
of a software application in the cloud or as 
a virtual machine avoids many installation 
problems and allows users to run the soft-
ware remotely.

Beyond these bare minimum criteria to 
reliably obtain, start up and use software, 
validation also encompasses testing for 
accuracy. The software should produce 
expected results and should be provided 
with an example test analysis and necessary 
images or data that can be loaded to verify 
that the software is functioning correctly for 
the user. Such examples can also serve as a 
helpful starting template for the biologist to 
adapt for their analysis. 

At a more fundamental level, software 
should be unit-tested, where each unit of 
code or algorithm in a program has a corre-
sponding test suite that compares the code’s 
actual output against expected values using 
inputs that cover all conditions and branch-
es19. Unit tests should not be considered a 
luxury for large projects only; they usually 
save developers’ and users’ time in the long 
run by aiding in debugging. Tests are espe-
cially helpful in combination with an auto-
mated build system, where the software is 
compiled periodically (for example, nightly 
or upon every change to the source code). 
Every time an automated build occurs, the 
unit tests can be run and the resulting out-
put can be compared to what is expected to 
ensure that units of the software continue to 
yield reproducible, correct results. Because 

machine-learning algorithm15 from within 
a CellProfiler pipeline.

The key to interoperability is for software 
to have a standardized communication path 
and a well-defined application-program-
ming interface (API). Ideally, the software 
should have a communication path acces-
sible across languages and development 
environments, and the mechanism used to 
connect should be self-documenting and 
discoverable. Traditionally, C header files 
and APIs have been used to accomplish 
this, but increasingly, web interfaces and 
protocols are used to connect applications. 
Individual applications can also implement 
their own API autodiscovery mechanisms. 
For instance, ImageJ 2.0 plug-in develop-
ers can now publish the parameters of their 
plug-ins, and those plug-ins can then be 
integrated with any application that under-
stands the protocol. 

Interoperability is also facilitated by the 
software using an unambiguous and con-
strained format for exchanged data so that 
the receiver can validate their implemen-
tation against test inputs. An example of 
this is the Open Microscopy Environment 
(OME) Data Model16, which uses an Exten-
sible Markup Language (XML) schema to 
represent microscopy data. Interoperable 
software operates robustly in a full range of 
deployment environments and scenarios. 
The code should be thread-safe and ide-
ally stateless so that it can be run in paral-
lel, and the software should be scalable for 
large experiment sizes, with mechanisms to 
leverage a computer cluster.

modular
A major theme of modern software devel-
opment is software modularity. Modules 
generally contain an algorithm that solves 
a specific problem, often targeted to a par-
ticular domain, and are written to conform 
to defined interfaces. As opposed to mono-
lithic software, modular software provides 
users and developers several benefits. Mod-
ules of appropriate scale—large enough to 
have a coherent purpose but small enough 
to mix and match in new ways—offer 
flexible adaptation to new applications as 
opposed to a software package built to solve 
a particular, narrowly defined problem. 

There is a balance to be struck here: a risk 
of modularity is that the library of options 
might become overwhelming to the user, 
especially if divided into units whose indi-
vidual functions are too fine-grained for a 
non-expert to understand their purposes. 

This can be mitigated by providing example 
pipelines or macros, in which small-scale 
modules are configured and combined 
properly to accomplish a particular goal. A 
key aspect of modularity is to have a clearly 
defined hierarchy, where the foundation is 
the algorithm, and successive layers can com-
bine algorithms to support users in a narrow-
er domain or with less technical expertise.

Because a single component of modular 
software can be improved or adapted to new 
applications by others, modular software is 
by nature extensible, allowing it to serve as 
the basis of future work in the field. Modu-
lar software reduces redundant developer 
effort by allowing new functionality to be 
added without creating entirely new sys-
tems. This is not just a time-saver; the scien-
tific community benefits from having mul-
tiple options available in an already stable, 
sustainable infrastructure, for rapid testing 
and accurate comparison. Although often 
researchers prefer to create a new piece of 
software from scratch for ownership and 
visibility purposes, adding functionality to 
an existing tool increases the dissemination, 
and thus validation of the work, and builds 
on biologists’ existing knowledge. 

Modular software enables widespread 
and varied modes of deployment because 
the same modules can be accessed in many 
ways (web, client, server, cluster, graphical 
user interface or command line) and even 
from different software packages, support-
ing interoperability. Modularity also sup-
ports effective software design because it 
encourages organized code, unit tests and 
categorizing functionalities.

The benefits of modularity are illustrated 
by the OME Consortium’s Bio-Formats, 
a modular library for loading and saving 
image data and metadata (http://www.
loci.wisc.edu/software/bio-formats/)13. 
Bio- Formats has a standardized and well-
defined programming interface that devel-
opers can easily access from their own 
software. Not only does the widespread use 
of Bio-Formats by software developers (in 
over 20 applications) and biologists (more 
than 20,000 laboratories) result in great 
resource savings, the Bio-Formats library 
itself is a better-performing library because 
of this widespread modular use, which has 
yielded improvements in performance and 
file-format support.

Validated
By validated, we mean that software should 
be tested in several ways that are relevant 
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enterprise. Direct support for open-source  
software development has increased in 
recent years, helping to counteract the trend 
for reviewers and funding agencies to prize 
novelty of features or innovation over more 
practical concerns of usability. 

Both the US National Science Foun-
dation (NSF) and the NIH have specific 
grant programs that support the creation 
and maintenance of software, in addition 
to their long-standing commitments to 
biology-oriented computational research 
in general. The NIH created a program in 
2002 entitled “Continued Development 
and Maintenance of Software” (PAR-11-
028, http://grants.nih.gov/grants/guide/
pa-files/PAR-11-028.html). This exem-
plary program has funded ~200 software 
projects, including some widely used in 
bioimaging (Table 1). The NSF, for its 
part, recently announced the Software 
Infrastructure for Sustained Innovation 
(SI2) program, which supports develop-
ing modular software with an emphasis 
on good software engineering practices 
and usability principles. Although the SI2 
program supports all fields of science and 
is too new to evaluate, it indicates NSF’s 
commitment to usability and may indicate 
future increased expectations for all NSF-
funded software projects. In addition to 
these programs, we advocate for comple-
mentary new small grant programs simply 
for the basic maintenance of popular bio-
informatics tools.

Calculating the return on investment for 
funding federal software is challenging, 
but consider the NIH Image (now called 
ImageJ) project11. The project was created 
and maintained over 15 years by essentially 
one software developer supported by the 
NIH, yet its impact has been tremendous, 
having nucleated thousands of volunteer 
programmers to develop plug-ins and 
yielding 7,000 visitors to its website every 
day and more than 210,000 citations as 
of 7 June 2012 in Google Scholar. Much 
of the use is by NIH-funded researchers 
whose research is made more efficient 
and accurate through use of the software, 
saving the NIH many-fold the cost of its 
development.

In addition to supporting projects to 
improve software’s usability, funding agen-
cies should refrain from funding research-
ers with poorly thought-out plans or a 
poor track record in this area. We recom-
mend that funding agencies require that 
any proposal involving algorithm or code  

new versions of software often have altered 
functionality or produce different results 
because of improvements in the underlying 
algorithms, software should be provided 
with release notes to document changes 
and version compatibility mechanisms to 
inform the user of which version of the soft-
ware was used to create particular results 
and also to load old analyses and data into 
new versions of the software.

Validation encompasses the suitability 
of software for particular goals. Most 
researchers consider a paper describing an 
algorithm or software methodology to be 
incomplete unless there is a conscientious 
comparison to existing tools in terms of 
features and performance. ‘Conscientious’ is 
of course subjective. As an example, an ideal 
comparison of image-analysis algorithms 
should compare a proposed new algorithm 
using a publicly available test image set 
upon which others have already tested 
their algorithm to the best of their ability. 
If an appropriate image set is not available, 
algorithm developers should at least 
provide the image set and ground truth so 
others can test their algorithm on the same 
images20. Repositories are emerging for this 
purpose—for example, the Broad Bioimage 
Benchmark Collection (http://www.
broadinstitute.org/bbbc )21. The literature is 
rife with algorithms that are presented with 
purely subjective, qualitative comparison 
to alternate algorithms or with comparison 
to existing algorithms that have not been 
applied properly, sometimes without even 
complete description of the configuration 
of the alternate algorithm. 

Lastly, users benefit when software is 
tested for suitability for particular biological 
applications. It can save substantial time 
if the software documentation indicates 
whether it is suited to handle particular 

image file formats, imaging modalities, 
cell types and so on. In particular, it can be 
helpful for users to know whether software 
has been tested only on a few image sets 
from the creator’s laboratory or on a variety 
of images representing heterogeneous use 
cases and environments.

conclusions
Creating software that meets the usability 
criteria we outlined here requires substan-
tial time and effort; contributing a mod-
ule to an existing infrastructure is usually 
more efficient. Still, there are cases where 
more substantial software development 
is needed, and this is difficult to fund 
through standard research grants focused 
on answering particular biological ques-
tions. Tenure committees and other asses-
sors at academic institutions also often do 
not value usable software as worthwhile 
research output. Reviewers with a biologi-
cal background are typically interested in 
research that tests a particular biological 
hypothesis; many of the usability-specific 
criteria above are difficult to justify in such 
a context. Conversely, reviewers from a 
computer science background tend to focus 
on algorithmic novelty rather than practical 
utility and again, find it difficult to justify 
an emphasis on usability. Regrettably, this 
yields hundreds of publicly funded proof-
of-principle papers describing algorithms 
that do not make their way out of the litera-
ture and into the biology laboratory.

Supporting the new development and 
ongoing maintenance of software thus 
requires that funding agencies and grant 
proposal reviewers support substantial 
funding dedicated to software develop-
ment per se. Fortunately, funding agencies 
have increasingly recognized the value of 
usable software to the biomedical research 

table 1 | Bioimaging software: NIH’s Continued Development and Maintenance of Software program

software Bioimaging area First year of program funding
ScanImage Laser scanning acquisition 2003

IMOD Electron tomography analysis 2005

BioImage Suite Medical imaging analysis 2006

EMAN Electron microscopy analysis 2006

BRAINS Brain image analysis 2007

Cell Centered Database Image database 2007

Neuroimaging in Python Neuroimaging analysis 2007

MicroManager Light microscopy acquisition 2008

HAMMER Image warping and registration 2009

CellProfiler High-throughput image analysis 2010

SPIDER Electron microscopy analysis 2010

ITK-SNAP Image segmentation 2011
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development includes in its ‘Resource 
Sharing Plan’ a plan for software sharing 
and usability. This section would describe 
the project’s plans related to usabil-
ity criteria, such as those we outlined in  
Figure 1. As in the ‘Resource Sharing Plan’ 
section that is currently required for all 
NIH proposals, and the ‘Data Management 
and Sharing’ section required for NSF pro-
posals, requiring a plan for software shar-
ing and usability does not mean that all 
criteria must be met and certainly not that 
they be met in a particular way. It simply 
clarifies what the researchers are propos-
ing and holds them accountable to their 
commitments. This will assist reviewers in 
assessing the likely impact of the proposal 
and provides a venue for the research team 
to describe their track record in producing 
usable software.

It might initially be thought that pub-
licly funded open-source projects would 
infringe upon commercial entities’ interests 
or threaten the health of the commercial 
software marketplace, but this has typically 
not been the case. On the contrary, inter-
actions between open-source projects and 
commercial entities in bioimaging have 
largely been mutually beneficial. In fact, 
most open-source bioimaging software is 
not developed to create an inexpensive or 
free alternative to similar commercially 
available software; instead, the goal is to 
develop solutions for emerging needs that 
are beyond the current scope of market 
demand. Many companies benefit from 
the freely available advancements that stem 
from academia’s ability to rapidly respond to 
changing fields, especially new instrumen-

tation and techniques, in a way that is closely  
connected to the biological problems at 
hand. Owing to the complexity of methods, 
the wide array of data types and the need for 
rapid development and improvement, these 
imaging methods often require an open 
sharing of analysis approaches well suited to 
the nonprofit research environment, at least 
in their early stages. Many of the commer-
cially available software tools that are now 
often used for image acquisition, analysis 
and visualization had their developmental 
start in the academic laboratory. Many com-
mercial software products interface with 
open-source software; improvements to the 
usability of publicly funded software proj-
ects benefit both. Other types of relation-
ships exist as well. For example, the OME 
project creates open-source software and 
a companion company, Glencoe Software, 
works closely with companies wishing to 
use the code in their own programs, often 
contributing code improvements back to 
the open-source project.

Widespread support for usability there-
fore requires cultural shifts: researchers, 
reviewers, institutions and funding agencies 
must appreciate that devoting resources to 
usability has a major impact on the scien-
tific community rather than valuing solely 
hypothesis-driven research or algorithm 
novelty. The scientific payoff in doing 
so could be tremendous: devoting more 
attention and resources to usability prom-
ises to yield enormous benefit to biological 
research worldwide.
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