
666 | VOL.9 NO.7 | JULY 2012 | nature methods

commentary � FOCUS ON BIOIMAGE INFORMATICS

to the pressing needs of this community.
We do not claim that every software

project ought to meet all of these usability
criteria, nor that our own projects do.
Time and funding are not available in
most academic groups to meet these
software engineering ‘best practices’,
and those writing code for bioimaging
software are rarely software engineers.
As well, we recognize that exploratory
computational projects and development
of new algorithms would suffer if held
to a high standard of usability from the
outset, before their use or application is
even determined. Still, although there is
absolutely a place for exploratory research,
especially for training purposes in computer
science, it alone is insufficient. Producing

A call for bioimaging software usability
Anne E Carpenter, Lee Kamentsky & Kevin W Eliceiri

Bioimaging software developed in a research setting often is not widely used by the scientific community.
We suggest that, to maximize both the public’s and researchers’ investments, usability should be a more
highly valued goal. We describe specific characteristics of usability toward which bioimaging software
projects should aim.

Imaging in biology has recently seen a
revolution in scope and scale, necessitat-
ing developments in image informatics on
several fronts. New, sophisticated bioimag-
ing techniques yield large, heterogeneous,
multidimensional data sets that need to
be viewed, analyzed, annotated, queried
and shared. Conversion to digital-based
imaging modalities raised the bar in terms
of the quantification that biologists need
and expect for their images. The explod-
ing volume of images collected in modern
experiments necessitates automated analy-
sis. Microscopy techniques of increasing
complexity and functionality have become
widespread and often require new modes
of analysis. Image-derived data are even
beginning to be used as a research and
clinical biomarker, where subtle changes
are detectable by computational means but
cannot be confirmed by eye.

These developments have presented
unique challenges, leading to the rapid
and continuing creation of algorithms
and software packages for bioimaging1.
Unfortunately, serious usability problems
with academic bioimaging software limit
its impact on the community. Often,
publicly funded software is only useful
within the research group that created it,
leading to redundant effort and wasted
research funding. By contrast, bioimaging

software is ‘usable’ when both biologists
and developers can accomplish their
research goals without inordinate effort
or expert knowledge. Usable software
often results from very close collaboration
between users and programmers, such that
the tools do not suffer from lack of software
engineering expertise or lack of real-world
applicability.

Here we advocate that researchers
intending to create software that is usable,
high-impact and helpful to a broad
bioimaging community aim for excellence
according to several key criteria (Fig. 1).
These criteria are good practice for any
software and have been the subject of much
recent research and discussion2,3; we focus
on bioimaging in this Commentary owing

Anne E. Carpenter and Lee Kamentsky are at the
Imaging Platform, Broad Institute of Massachusetts
Institute of Technology and Harvard, Cambridge,
Massachusetts, USA. Kevin W. Eliceiri is at the
Laboratory for Optical and Computational
Instrumentation, University of Wisconsin at
Madison, Madison, Wisconsin, USA.
e-mail: anne@broadinstitute.org or eliceiri@wisc.edu

Figure 1 | Software for bioimaging should aim to meet specific usability criteria.

User-friendly

Bioimaging
software

usability criteria

• Help and documentation
• Binaries for multiple platforms
• Intuitive for users
• Supports reproducible research
• Automatically checks for updates
• Feedback mechanisms
• Breadth of suitable applications

• Available
• Functional
• Produces expected results
• Unit-tested
• Automated build system
• Release notes
• Version compatibility mechanisms
• Comparison to existing tools
• Tested for suitablity for particular
 biological applications

• Solve a speci­c problem
• De­ned interfaces
• Appropriate scale
• Clearly de­ned hierarchy
• Extensible
• Varied modes of deployment

• Open-source
• Mechanisms of communication
• Well-documented and accessible

source code
• Organized, sensible software design

Validated

Modular

Developer-friendly

Interoperable

• Standardized communication path
• Well-de­ned API
• Unambiguous and constrained

format for exchanged data
• Accessible across languages and

development environments
• Operates robustly in a full range of

deployment environments
• Scalable

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

mailto:anne%40broadinstitute.org?subject=
mailto:eliceiri%40wisc.edu?subject=

nature methods | VOL.9 NO.7 | JULY 2012 | 667

FOCUS ON BIOIMAGE INFORMATICS� commentary

come together to work on interoperability
among some of the more popular packag-
es. Recent examples include a US National
Institutes of Health (NIH) American
Recovery and Reinvestment Act–funded
effort to link ImageJ11 with CellProfiler12,
the Bio-Formats project13 and ImgLib14.

Interoperability offers many benefits.
It reduces tedious and error-prone effort,
avoids manual manipulation of data
between processing steps by individual
researchers and avoids the creation of cus-
tom bridges with limited applicability to
others. Interoperability yields tremendous
flexibility, such that biologists can choose
the individual software packages, imaging
instrumentation and computing hardware
best suited to their project. Aside from
reducing redundant effort, it encourages
creative approaches and rapid adaptation
to new application areas by allowing indi-
vidual research groups to focus on develop-
ing software for a piece of the bioimaging
pipeline while relying on interoperability
with established software for other portions
of the pipeline. Creating useful bridges
exposes the users of each software package
to the other software package, increasing the
user base of each. This yields higher-quality,
more robust software because features are
tested more frequently, and developers from
both projects can add features and fix bugs.

But interoperability also presents chal-
lenges to developers. It often requires major
time commitment and effort as well as
coordination between groups focused on
their own core area. Securing resources to
establish connections between software to
increase scientists’ efficiency rather than
adding major new functionality is a major
challenge. Although the use of multiple
programming languages complicates con-
nections between software, programming
tools for cross-language communication
are becoming more common.

Interoperability can be implemented in
several degrees. At one end of the spec-
trum, one software package can be made
to export images or data in a format that
another software package can read as input.
For example, CellProfiler can export image-
derived data in a format readable by several
other software packages for downstream
data analysis. Creating a more seamless
interface, where the user has direct access
within one software package to the func-
tionality of the second, requires much more
effort. An example is CellProfiler’s abil-
ity to run an ImageJ macro12 or an Ilastik

an algorithm, a methods paper and/or code
is of limited utility to most biologists, so
researchers claiming that the output of their
computational work will serve the broader
community must meet a higher standard.

Thus, we advocate that every software
project claiming broad impact should con-
sider these criteria and that reviewers and
funding agencies should reward researchers
who strive toward them. We suggest that
funding agencies request that these criteria
be addressed (though not necessarily met)
in a ‘plans for software sharing and usabil-
ity’ section of proposals’ resource-sharing
plans. We recognize that implementing and
maintaining high usability in software can
be challenging, that resources are limited,
and that choices must be made among many
priorities for software projects. However, we
strongly advocate that researchers, institu-
tions and funding agencies place a higher
value on usability in bioimaging software.

User-friendly
Although modern training in biology
increasingly involves exposure to software,
advanced computational skills are certainly
not universal. Further, bioimaging involves
a breadth of computational knowledge that
is difficult for a single researcher to master.
Therefore, except for toolkits or libraries
solely for other developers’ use, it is critical
that bioimaging software be usable by non-
experts.

At a minimum, the software should be
packaged with some form of help and doc-
umentation, such as installation and use
instructions and written or video tutorials.
Software projects should consider having
mailing lists or online forums for support
and to gather user feedback. The software
should be available as binaries for multiple
platforms. Requiring researchers to build
the software from source code is time-
consuming even for computer experts and is
impossible for many in the target audience.
The software design itself should be intui-
tive for users. Aside from common sense,
substantial research in ‘usability engineer-
ing’ is available to guide software develop-
ers to create software that can be quickly
learned and efficiently used4,5.

The software should support reproduc-
ible research, with mechanisms allowing
an analysis to be reproduced with mini-
mal effort and thus shared with colleagues
or published with a paper (http://www.
reproducibleresearch.net/)6–9. A key com-
ponent of reproducibility is provenance.

The software output should indicate the
configuration, settings and version of the
software that created the results, and prior
versions should be available for download
and confirmation. Users also benefit when
software automatically checks for updates
and has feedback mechanisms to inform
developers of problems and user needs. To
prevent users’ wasted effort, the breadth of
suitable applications of the software should
be described—that is, the extent to which
the software is expected to work outside the
narrowly constrained application for which
it was developed.

Developer-friendly
Many features of user-friendly software
also make the software developer-friendly,
reducing the amount of time develop-
ers spend assisting users with routine
issues such as installation and basic use.
Developers also have distinct needs that
should be considered for software projects
intended to serve as the basis for others’
work. Although exceptions exist, it is usu-
ally desirable but also practical for publicly
funded projects to be provided with an
open-source licensing option (http://www.
opensource.org/), given that most projects
will not be moneymakers and an open-
source license is not necessarily incompat-
ible with commercial use and licensing.
Having the latest version of the code base
available is valuable in a scientific setting,
allowing other researchers to understand
its function and to improve the code10.
There should be transparent mechanisms
of communication among developers, such
as forums for discussions of future plans
for development. Well-documented source
code and organized, sensible software
design can ease other developers’ work and
preserve the value of the project if the origi-
nal developers cease working on the project.

Interoperable
Although a single software package that
solves all bioimaging problems may
sound appealing, the community benefits
from individual research groups work-
ing in different areas, from acquisition to
storage to analysis and visualization1. To
serve the biological community, however,
these individual software packages must
effectively interact with each other, allow-
ing researchers to create workflows using
complementary components that best
serve their needs. The bioimaging soft-
ware community has recently begun to

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.reproducibleresearch.net/
http://www.reproducibleresearch.net/
http://www.opensource.org/
http://www.opensource.org/

668 | VOL.9 NO.7 | JULY 2012 | nature methods

commentary� FOCUS ON BIOIMAGE INFORMATICS

to users. Most importantly, software must
be made available. Even if requesters must
register their identity or agree to specific
license terms before downloading, host-
ing the software online enables faster, more
reliable access compared to when software is
‘available upon request’, which unfortunate-
ly some institutions require. Providing reli-
able long-term availability is now straight-
forward through online repositories such
as Github, SourceForge and Google Code.
This prevents ignored requests and defunct
web addresses17,18. The software should be
maintained in functional form for current
operating systems. If this is not possible,
availability of the source code becomes
even more important, as future develop-
ers can use it to build binaries. It is fairly
common that published software cannot
be installed and started, perhaps because of
changes in operating systems or hardware,
or because necessary components of the
software are missing. Debugging such issues
is often beyond the capabilities of the typi-
cal biologist end-user. Hosting an instance
of a software application in the cloud or as
a virtual machine avoids many installation
problems and allows users to run the soft-
ware remotely.

Beyond these bare minimum criteria to
reliably obtain, start up and use software,
validation also encompasses testing for
accuracy. The software should produce
expected results and should be provided
with an example test analysis and necessary
images or data that can be loaded to verify
that the software is functioning correctly for
the user. Such examples can also serve as a
helpful starting template for the biologist to
adapt for their analysis.

At a more fundamental level, software
should be unit-tested, where each unit of
code or algorithm in a program has a corre-
sponding test suite that compares the code’s
actual output against expected values using
inputs that cover all conditions and branch-
es19. Unit tests should not be considered a
luxury for large projects only; they usually
save developers’ and users’ time in the long
run by aiding in debugging. Tests are espe-
cially helpful in combination with an auto-
mated build system, where the software is
compiled periodically (for example, nightly
or upon every change to the source code).
Every time an automated build occurs, the
unit tests can be run and the resulting out-
put can be compared to what is expected to
ensure that units of the software continue to
yield reproducible, correct results. Because

machine-learning algorithm15 from within
a CellProfiler pipeline.

The key to interoperability is for software
to have a standardized communication path
and a well-defined application-program-
ming interface (API). Ideally, the software
should have a communication path acces-
sible across languages and development
environments, and the mechanism used to
connect should be self-documenting and
discoverable. Traditionally, C header files
and APIs have been used to accomplish
this, but increasingly, web interfaces and
protocols are used to connect applications.
Individual applications can also implement
their own API autodiscovery mechanisms.
For instance, ImageJ 2.0 plug-in develop-
ers can now publish the parameters of their
plug-ins, and those plug-ins can then be
integrated with any application that under-
stands the protocol.

Interoperability is also facilitated by the
software using an unambiguous and con-
strained format for exchanged data so that
the receiver can validate their implemen-
tation against test inputs. An example of
this is the Open Microscopy Environment
(OME) Data Model16, which uses an Exten-
sible Markup Language (XML) schema to
represent microscopy data. Interoperable
software operates robustly in a full range of
deployment environments and scenarios.
The code should be thread-safe and ide-
ally stateless so that it can be run in paral-
lel, and the software should be scalable for
large experiment sizes, with mechanisms to
leverage a computer cluster.

Modular
A major theme of modern software devel-
opment is software modularity. Modules
generally contain an algorithm that solves
a specific problem, often targeted to a par-
ticular domain, and are written to conform
to defined interfaces. As opposed to mono-
lithic software, modular software provides
users and developers several benefits. Mod-
ules of appropriate scale—large enough to
have a coherent purpose but small enough
to mix and match in new ways—offer
flexible adaptation to new applications as
opposed to a software package built to solve
a particular, narrowly defined problem.

There is a balance to be struck here: a risk
of modularity is that the library of options
might become overwhelming to the user,
especially if divided into units whose indi-
vidual functions are too fine-grained for a
non-expert to understand their purposes.

This can be mitigated by providing example
pipelines or macros, in which small-scale
modules are configured and combined
properly to accomplish a particular goal. A
key aspect of modularity is to have a clearly
defined hierarchy, where the foundation is
the algorithm, and successive layers can com-
bine algorithms to support users in a narrow-
er domain or with less technical expertise.

Because a single component of modular
software can be improved or adapted to new
applications by others, modular software is
by nature extensible, allowing it to serve as
the basis of future work in the field. Modu-
lar software reduces redundant developer
effort by allowing new functionality to be
added without creating entirely new sys-
tems. This is not just a time-saver; the scien-
tific community benefits from having mul-
tiple options available in an already stable,
sustainable infrastructure, for rapid testing
and accurate comparison. Although often
researchers prefer to create a new piece of
software from scratch for ownership and
visibility purposes, adding functionality to
an existing tool increases the dissemination,
and thus validation of the work, and builds
on biologists’ existing knowledge.

Modular software enables widespread
and varied modes of deployment because
the same modules can be accessed in many
ways (web, client, server, cluster, graphical
user interface or command line) and even
from different software packages, support-
ing interoperability. Modularity also sup-
ports effective software design because it
encourages organized code, unit tests and
categorizing functionalities.

The benefits of modularity are illustrated
by the OME Consortium’s Bio-Formats,
a modular library for loading and saving
image data and metadata (http://www.
loci.wisc.edu/software/bio-formats/)13.
Bio-Formats has a standardized and well-
defined programming interface that devel-
opers can easily access from their own
software. Not only does the widespread use
of Bio-Formats by software developers (in
over 20 applications) and biologists (more
than 20,000 laboratories) result in great
resource savings, the Bio-Formats library
itself is a better-performing library because
of this widespread modular use, which has
yielded improvements in performance and
file-format support.

Validated
By validated, we mean that software should
be tested in several ways that are relevant

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.loci.wisc.edu/software/bio-formats/
http://www.loci.wisc.edu/software/bio-formats/

nature methods | VOL.9 NO.7 | JULY 2012 | 669

FOCUS ON BIOIMAGE INFORMATICS� commentary

enterprise. Direct support for open-source
software development has increased in
recent years, helping to counteract the trend
for reviewers and funding agencies to prize
novelty of features or innovation over more
practical concerns of usability.

Both the US National Science Foun-
dation (NSF) and the NIH have specific
grant programs that support the creation
and maintenance of software, in addition
to their long-standing commitments to
biology-oriented computational research
in general. The NIH created a program in
2002 entitled “Continued Development
and Maintenance of Software” (PAR-11-
028, http://grants.nih.gov/grants/guide/
pa-files/PAR-11-028.html). This exem-
plary program has funded ~200 software
projects, including some widely used in
bioimaging (Table 1). The NSF, for its
part, recently announced the Software
Infrastructure for Sustained Innovation
(SI2) program, which supports develop-
ing modular software with an emphasis
on good software engineering practices
and usability principles. Although the SI2
program supports all fields of science and
is too new to evaluate, it indicates NSF’s
commitment to usability and may indicate
future increased expectations for all NSF-
funded software projects. In addition to
these programs, we advocate for comple-
mentary new small grant programs simply
for the basic maintenance of popular bio-
informatics tools.

Calculating the return on investment for
funding federal software is challenging,
but consider the NIH Image (now called
ImageJ) project11. The project was created
and maintained over 15 years by essentially
one software developer supported by the
NIH, yet its impact has been tremendous,
having nucleated thousands of volunteer
programmers to develop plug-ins and
yielding 7,000 visitors to its website every
day and more than 210,000 citations as
of 7 June 2012 in Google Scholar. Much
of the use is by NIH-funded researchers
whose research is made more efficient
and accurate through use of the software,
saving the NIH many-fold the cost of its
development.

In addition to supporting projects to
improve software’s usability, funding agen-
cies should refrain from funding research-
ers with poorly thought-out plans or a
poor track record in this area. We recom-
mend that funding agencies require that
any proposal involving algorithm or code

new versions of software often have altered
functionality or produce different results
because of improvements in the underlying
algorithms, software should be provided
with release notes to document changes
and version compatibility mechanisms to
inform the user of which version of the soft-
ware was used to create particular results
and also to load old analyses and data into
new versions of the software.

Validation encompasses the suitability
of software for particular goals. Most
researchers consider a paper describing an
algorithm or software methodology to be
incomplete unless there is a conscientious
comparison to existing tools in terms of
features and performance. ‘Conscientious’ is
of course subjective. As an example, an ideal
comparison of image-analysis algorithms
should compare a proposed new algorithm
using a publicly available test image set
upon which others have already tested
their algorithm to the best of their ability.
If an appropriate image set is not available,
algorithm developers should at least
provide the image set and ground truth so
others can test their algorithm on the same
images20. Repositories are emerging for this
purpose—for example, the Broad Bioimage
Benchmark Collection (http://www.
broadinstitute.org/bbbc)21. The literature is
rife with algorithms that are presented with
purely subjective, qualitative comparison
to alternate algorithms or with comparison
to existing algorithms that have not been
applied properly, sometimes without even
complete description of the configuration
of the alternate algorithm.

Lastly, users benefit when software is
tested for suitability for particular biological
applications. It can save substantial time
if the software documentation indicates
whether it is suited to handle particular

image file formats, imaging modalities,
cell types and so on. In particular, it can be
helpful for users to know whether software
has been tested only on a few image sets
from the creator’s laboratory or on a variety
of images representing heterogeneous use
cases and environments.

Conclusions
Creating software that meets the usability
criteria we outlined here requires substan-
tial time and effort; contributing a mod-
ule to an existing infrastructure is usually
more efficient. Still, there are cases where
more substantial software development
is needed, and this is difficult to fund
through standard research grants focused
on answering particular biological ques-
tions. Tenure committees and other asses-
sors at academic institutions also often do
not value usable software as worthwhile
research output. Reviewers with a biologi-
cal background are typically interested in
research that tests a particular biological
hypothesis; many of the usability-specific
criteria above are difficult to justify in such
a context. Conversely, reviewers from a
computer science background tend to focus
on algorithmic novelty rather than practical
utility and again, find it difficult to justify
an emphasis on usability. Regrettably, this
yields hundreds of publicly funded proof-
of-principle papers describing algorithms
that do not make their way out of the litera-
ture and into the biology laboratory.

Supporting the new development and
ongoing maintenance of software thus
requires that funding agencies and grant
proposal reviewers support substantial
funding dedicated to software develop-
ment per se. Fortunately, funding agencies
have increasingly recognized the value of
usable software to the biomedical research

Table 1 | Bioimaging software: NIH’s Continued Development and Maintenance of Software program

Software Bioimaging area First year of program funding
ScanImage Laser scanning acquisition 2003

IMOD Electron tomography analysis 2005

BioImage Suite Medical imaging analysis 2006

EMAN Electron microscopy analysis 2006

BRAINS Brain image analysis 2007

Cell Centered Database Image database 2007

Neuroimaging in Python Neuroimaging analysis 2007

MicroManager Light microscopy acquisition 2008

HAMMER Image warping and registration 2009

CellProfiler High-throughput image analysis 2010

SPIDER Electron microscopy analysis 2010

ITK-SNAP Image segmentation 2011

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html
http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html
http://www.broadinstitute.org/BBBC
http://www.broadinstitute.org/BBBC

670 | VOL.9 NO.7 | JULY 2012 | nature methods

commentary� FOCUS ON BIOIMAGE INFORMATICS

manuscript, in particular CellProfiler cofounder
T.R. Jones. This work was supported in part by US
National Institutes of Health grants R01 GM089652
(to A.E.C.) and RC2 GM092519 (to K.W.E.), but the
opinions expressed are solely those of the authors.

Competing financial interests
The authors declare no competing financial interests.

1. 	 Eliceiri, K.W. et al. Nat. Methods 9, 697–710
(2012)

2.	 Baxter, S.M., Day, S.W., Fetrow, J.S. & Reisinger,
S.J. PLoS Comput. Biol. 2, e87 (2006).

3.	 Fogel, K. Producing Open Source Software
(O’Reilly Media, Inc., 2005).

4.	 Bolchini, D., Finkelstein, A., Perrone, V. &
Nagl, S. Bioinformatics 25, 406–412 (2009).

5.	 Rimmer, J. J. Audiov. Media Med. 27, 6–10
(2004).

6.	 Vandewalle, P., Kovacevic, J. & Vetterli, M.
Signal Processing Magazine, IEEE 26, 37–47
(2009).

7.	 Mesirov, J.P. Science 327, 415–406 (2010).
8.	 Peng, R.D. Science 334, 1226–1227 (2011).
9.	 Ioannidis, J.P.A. & Khoury, M.J. Science 334,

1230–1232 (2011).
10.	 Ince, D.C., Hatton, L. & Graham-Cumming, J.

Nature 482, 485–488 (2012).
11. 	Schneider, C.A., Rasband, W.S. & Eliceiri, K.W.

Nat. Methods 9, 671–675 (2012).
12.	 Kamentsky, L. et al. Bioinformatics 27, 1179–

1180 (2011).
13.	 Linkert, M. et al. J. Cell Biol. 189, 777–782

(2010).
14.	 Preibisch, S., Tomancak, P. & Saalfeld, S. ImageJ

User and Developer Conference 1, 72 (2010).
15.	 Sommer, C. et al. Proc. IEEE Int. Symp. Biomed.

Imaging 230 (2011).
16.	 Goldberg, I.G. et al. Genome Biol. 6, R47

(2005).
17.	 Schultheiss, S.J., Münch, M.C., Andreeva, G.D. &

Rätsch, G. PLoS ONE 6, e24914 (2011).
18.	 Veretnik, S., Fink, J.L. & Bourne, P.E. PLoS

Comput. Biol. 4, e1000136 (2008).
19.	 Zhu, H., Hall, P.A.V. & May, J.H.R. ACM Comput.

Surv. 29, 366–427 (1997).
20.	 Ruusuvuori, P. et al. BMC Bioinformatics 11, 248

(2010).
21. 	Ljosa, V., Sokolnicki, K. & Carpenter, A.E. Nat.

Methods 9, 637–638 (2012).

development includes in its ‘Resource
Sharing Plan’ a plan for software sharing
and usability. This section would describe
the project’s plans related to usabil-
ity criteria, such as those we outlined in
Figure 1. As in the ‘Resource Sharing Plan’
section that is currently required for all
NIH proposals, and the ‘Data Management
and Sharing’ section required for NSF pro-
posals, requiring a plan for software shar-
ing and usability does not mean that all
criteria must be met and certainly not that
they be met in a particular way. It simply
clarifies what the researchers are propos-
ing and holds them accountable to their
commitments. This will assist reviewers in
assessing the likely impact of the proposal
and provides a venue for the research team
to describe their track record in producing
usable software.

It might initially be thought that pub-
licly funded open-source projects would
infringe upon commercial entities’ interests
or threaten the health of the commercial
software marketplace, but this has typically
not been the case. On the contrary, inter-
actions between open-source projects and
commercial entities in bioimaging have
largely been mutually beneficial. In fact,
most open-source bioimaging software is
not developed to create an inexpensive or
free alternative to similar commercially
available software; instead, the goal is to
develop solutions for emerging needs that
are beyond the current scope of market
demand. Many companies benefit from
the freely available advancements that stem
from academia’s ability to rapidly respond to
changing fields, especially new instrumen-

tation and techniques, in a way that is closely
connected to the biological problems at
hand. Owing to the complexity of methods,
the wide array of data types and the need for
rapid development and improvement, these
imaging methods often require an open
sharing of analysis approaches well suited to
the nonprofit research environment, at least
in their early stages. Many of the commer-
cially available software tools that are now
often used for image acquisition, analysis
and visualization had their developmental
start in the academic laboratory. Many com-
mercial software products interface with
open-source software; improvements to the
usability of publicly funded software proj-
ects benefit both. Other types of relation-
ships exist as well. For example, the OME
project creates open-source software and
a companion company, Glencoe Software,
works closely with companies wishing to
use the code in their own programs, often
contributing code improvements back to
the open-source project.

Widespread support for usability there-
fore requires cultural shifts: researchers,
reviewers, institutions and funding agencies
must appreciate that devoting resources to
usability has a major impact on the scien-
tific community rather than valuing solely
hypothesis-driven research or algorithm
novelty. The scientific payoff in doing
so could be tremendous: devoting more
attention and resources to usability prom-
ises to yield enormous benefit to biological
research worldwide.

ACKNOWLEDGMENTS
We thank members of our research groups and
our software projects for helpful feedback on the

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

	A call for bioimaging software usability
	User-friendly
	Developer-friendly
	Interoperable
	Modular
	Validated
	Conclusions
	ACKNOWLEDGMENTS
	Competing financial interests
	References
	Figure 1 | Software for bioimaging should aim to meet specific usability criteria.
	Table 1 | Bioimaging software: NIH’s Continued Development and Maintenance of Software program

