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Introduction

Image-based screens for particular cellular phenotypes are a 
proven technology contributing to the emergence of high-
content screening as an effective drug- and target-discovery 
strategy.1 Phenotypic screening has also been proposed as a 
strategy to assess the efficacy and safety of drug candidates 
in complex biological systems2; when applied at early 
stages in the drug-discovery process to relevant biological 
models, quantitative microscopy may help reduce the high 
levels of late-stage project attrition associated with target-
directed drug-discovery strategies. Retrospective analysis 
of all drugs approved by the Food and Drug Administration 
(FDA) between 1999 and 2008 reveal that significantly 
more were discovered by phenotype-based screening 
approaches than by the more broadly adopted target-based 
screening model.3 Screens for phenotypes that can be iden-
tified in a microscopy assay by a single measurement, such 
as cell size, DNA content, cytoplasm-nucleus translocation, 
or the intensity of a reporter stain, are widely used in phar-
maceutical and academic labs, especially in standard cell 
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Abstract
Quantitative microscopy has proven a versatile and powerful phenotypic screening technique. Recently, image-based profiling 
has shown promise as a means for broadly characterizing molecules’ effects on cells in several drug-discovery applications, 
including target-agnostic screening and predicting a compound’s mechanism of action (MOA). Several profiling methods have 
been proposed, but little is known about their comparative performance, impeding the wider adoption and further development 
of image-based profiling. We compared these methods by applying them to a widely applicable assay of cultured cells and 
measuring the ability of each method to predict the MOA of a compendium of drugs. A very simple method that is based on 
population means performed as well as methods designed to take advantage of the measurements of individual cells. This is 
surprising because many treatments induced a heterogeneous phenotypic response across the cell population in each sample. 
Another simple method, which performs factor analysis on the cellular measurements before averaging them, provided substantial 
improvement and was able to predict MOA correctly for 94% of the treatments in our ground-truth set. To facilitate the ready 
application and future development of image-based phenotypic profiling methods, we provide our complete ground-truth and 
test data sets, as well as open-source implementations of the various methods in a common software framework.
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lines and engineered reporter systems.4 Even complex phe-
notypes, which require that machine learning be used to 
combine the measurements of many cellular properties, are 
now scored routinely in some laboratories.5,6 Evidently, 
quantitative microscopy is a versatile and powerful readout 
for many cell states.

Profiling cell-based phenotypes is the next challenge for 
quantitative microscopy.7 The principle of phenotypic profil-
ing is to summarize multiparametric, feature-based analysis of 
cellular phenotypes of each sample so that similarities between 
profiles reflect similarities between samples.8 Profiling is well 
established for biological readouts such as transcript expres-
sion and proteomics.7,9 Comparatively, image-based profiling 
comes at a much lower cost, can be scaled to medium and high 
throughput with relative ease, and provides single-cell resolu-
tion. Although image-based screens aim to score samples with 
respect to one or a few known phenotypes, profiling experi-
ments aim to capture phenotypes not known in advance, using 
label sets that can detect a variety of subtle cellular responses 
without focusing on particular pathways. Such unbiased, phe-
notypic profiling approaches provide an opportunity for more 
opportunistic, evidence-led drug discovery strategies that are 
agnostic to drug target or preconceived assumptions of mecha-
nism of action (MOA). The potential applications of profiling 
are extensive:

•• Predict the MOA of a new, unannotated compound 
by finding well-characterized compounds that have 
similar profiles

•• Identify concentrations of compounds that have off-
target effects

•• Start with a large number of hit compounds yielding 
the same specific phenotype in a screen and select a 
subset for follow-up that represent their diversity in 
terms of overall cellular effects

•• Identify compounds with a novel MOA, suggesting 
new targets

•• Group a large collection of unannotated compounds 
into clusters that have the same MOA

•• Discover synergistic effects of combinations of 
compounds

•• Discover pathway targets possessing synergistic, 
additive, synthetically lethal, or chemosensitizing 
properties from combined genetic perturbation and 
small-molecule perturbation

•• Provide iterative guidance to rational polypharma-
cology strategies

•• Predict the protein target of a compound by finding 
the RNAi reagent that produces the most similar 
profile

•• Identify compounds with cell line–specific effects by 
comparing the compounds’ profiles across many cell 
lines, then relate to mutation status to further define 
MOA and develop patient-stratification hypotheses

Most image-based profiling experiments thus far have 
been performed at the proof-of-principle scale, with a focus 
on developing computational methods for generating and 
comparing profiles. This article describes and compares 
five methods that have been proposed for profiling and 
shown to be effective in a particular experiment. The meth-
ods range from simple and fast to complicated and compu-
tationally intensive, and they differ greatly in how explicitly 
they take advantage of the individual-cell measurements to 
describe heterogeneous populations. Little is known about 
how the methods compare because each method was pro-
posed as part of a more extensive methodology, often with 
different goals and with different types of data available 
(multiple concentrations, cell lines, or marker sets). We 
extracted the core profiling methods—namely, the algo-
rithms for constructing per-sample profiles from per-cell 
measurements—from the larger methodologies, applied 
them to a typical experiment, and compared their ability to 
classify compounds into MOA. Our test experiment uses a 
physiologically relevant p53–wild-type breast cancer model 
system (MCF-7) and a mechanistically distinct set of tar-
geted and cancer-relevant cytotoxic compounds that induces 
a broad range of gross and subtle phenotypes.10 We provide 
our ground-truth and test data sets and open-source imple-
mentations of the methods to allow others to readily apply 
the methods and to extend the comparative analysis to addi-
tional methods and data sets.

Materials and Methods

Sample Preparation and Image Analysis

MCF-7 breast cancer cells were previously plated in 96-well 
plates; treated for 24 h with 113 compounds at eight con-
centrations in triplicate; labeled with fluorescent markers 
for DNA, actin filaments, and β-tubulin; and imaged as 
described.10 Version 1.0.9405 of the image analysis soft-
ware CellProfiler11,12 measured 453 features (Suppl. Table S1) 
of each of the 2.2 million cells, using the pipelines provided 
(Suppl. Data S1).

Profiling

Before applying any of the profiling methods, the cell mea-
surements were scaled linearly to remove interplate varia-
tion. For each feature, the first percentile of DMSO-treated 
cells was set to 0 and the 99th percentile was set to 1 for 
each plate separately. The same transformation functions 
were then applied to all compounds on the same plate, the 
assumption being that the DMSO distributions should be 
similar on each plate.

Per-sample profiles were computed from per-cell measure-
ments by one of the profiling methods (see below). The treat-
ment profile was constructed by taking the element-wise 
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median of the profiles of the three replicate samples. Using the 
cosine distance between the profiles as a measure of distance, 
each sample was predicted to have the MOA of the closest pro-
file from a different compound (“nearest-neighbor classifica-
tion”). The cosine distance is defined as

1  cos  1  − = −θ AB A B/ ( • ).

A cosine distance of 0 indicates that two vectors have 
identical directions, and a cosine distance of 2 indicates that 
two vectors have opposite directions. Two vectors are 
orthogonal if the cosine distance is equal to 1.

We chose simple, transparent methods for combining 
replicates, computing distances, and classifying profiles 
because our goal was to compare the core profiling methods 
rather than devise an optimal end-to-end analysis pipeline. 
In a real profiling application, other choices may be advan-
tageous; for instance, the problem of classifying compounds 
into mechanisms is likely amenable to supervised classifi-
cation approaches.

Profiling Methods

Means.  The average is taken over all scaled features for 
each sample. Adams et al.13 use this method but extend their 
profiles with means for different cell-cycle phases, some 
intensity proportions, and some standard deviations.

KS Statistic .  The i-th element of the profile for a sample 
is the Kolmogorov-Smirnov (KS) statistic between the 
distribution of the i-th measurement of the cells in the 
sample with reference to mock-treated cells on the same 
microtiter plate. The KS statistic is calculated by taking 
the maximum distance between the empirical cumulative 
distribution functions (cdfs). Following Perlman et al.,14 
we used a nonstandard “signed” KS statistic that indi-
cates whether the maximum distance is positive or 
negative.

Perlman et al.14 describe this method in the context of a 
more extensive methodology that compares compounds 
over a range of concentrations, trying different alignments 
of the compounds’ concentration ranges in order to produce 
a “titration-invariant similarity score.” This procedure is 
independent of the underlying core profiling method and 
could therefore be used with any of the five methods tested 
here. We did not use it because the cosine distance was a 
stable measure of profile similarity in our experiment, even 
across concentrations (data not shown).

Normal Vector to Support-Vector Machine Hyperplanes.  Sup-
port-vector machines (SVMs) were trained to distinguish 
the cells in each sample from mock-treated cells on the 
same microtiter plate.

SVM recursive feature elimination (SVM-RFE) starts by 
training an SVM model to distinguish a treatment from 
DMSO. The prediction accuracy is estimated using cross-
validation. The n measurements with the lowest weight are 
then removed, and a new model is trained using the remain-
ing measurements. This continues iteratively until one fea-
ture remains. Finally, the SVM model with the best 
prediction accuracy is selected. The best feature selection 
accuracy is theoretically obtained by removing one feature 
at a time (SVM-RFE1); however, this is computationally 
expensive. Therefore, following Loo et al.,15 we used SVM-
RFE2, which removes the 10% of the measurements with 
the lowest weight at each iteration. To eliminate more mea-
surements, Loo et al.15 eliminated measurements until the 
prediction accuracy fell below 0.9 × ((Cmax – Cmin) + Cmin), 
where Cmax is the maximum prediction accuracy and Cmin 
the minimal prediction accuracy over the full range of a 
selected number of measurements.

Gaussian Mixture Modeling.  To build Gaussian mixture 
(GM) profiles, 10% of the data were subsampled uniformly 
across all samples. This selection was mean-centered, after 
which the data were transformed using principal-compo-
nent analysis (PCA), retaining enough principal compo-
nents to explain 80% of the variance (~54 for our data set). 
Next, a GM model was fit to the data using the expectation-
maximization (EM) algorithm. The algorithm was initial-
ized with unit covariance and the centroid positions obtained 
using the k-means algorithm. The starting positions of the 
centroids in the k-means algorithm were initialized ran-
domly, meaning the algorithm is nondeterministic. The 
Gaussians resulting from the EM algorithm were used as a 
model for the remaining 90% of the data. The rest of the 
data were centered using the mean of the data that was used 
to build GM models and projected into the same loading 
space. For each cell, the posterior probability of belonging 
to each of the Gaussians was computed. Profiles were con-
structed by averaging these posterior probabilities for each 
compound concentration. The number of values in a profile 
is thus equal to the number of Gaussians used to model the 
data. The best number of Gaussians was chosen 
empirically.

Factor Analysis.  This method attempts to describe the covari-
ance relationships between the image measurements x in 
terms of a few latent random variables y called factors. The 
factors are drawn from an isotropic Gaussian distribution. 
The observed image measurements x are modeled as an 
affine transformation Ay + µ of the factors and a measure-
ment-specific noise term ν:

x Ay= + +µµ νν
.

(2)

(1)
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The observed measurements are assumed to be condi-
tionally independent given the factors; in other words, ν ~ 
N(0, Σ), where Σ = diag(σ1, …, σd). We estimate A, µ, and 
Σ by an EM algorithm16 implemented in the MDP toolkit 
(http://mdp-toolkit.sourceforge.net/). Then, we can com-
pute the profile of a sample as the maximum a posteriori 
estimate of y:

E   T T 1
y x A AA x| n n[ ] = +( ) ( )−

ΣΣ µµ−

where xn is the vector of per-cell measurements in sample n 
averaged over the cells in the sample.

Available Data

To facilitate the development and evaluation of additional 
profiling methods, we provide our ground-truth annotations 
(Suppl. Table S2) and the measurements of each of the 
~450,000 cells whose treatments are annotated. The data 
are supplied as comma-delimited files together with scripts 
for loading them into a MySQL database (Suppl. Data S2). 
The data schemas are described (Suppl. Text S1).

The images and metadata have been deposited with the 
Broad Bioimage Benchmark Collection (http://www.
broadinstitute.org/bbbc/),17 accession number BBBC021.

Software Implementations

The profiling methods are implemented as part of the open-
source image data-analysis software CellProfiler Analyst 
(http://cellprofiler.org/). The implementations do not make 
assumptions that are particular to our experiment and can be 
readily applied to measurement data from the widely used 
image-analysis software CellProfiler11,12 or data from other 
sources that can be imported into CellProfiler Analyst or 
otherwise converted to CellProfiler’s database schema. The 
implementations contain support for parallel processing on 
a cluster of computers. The profiling methods can be exe-
cuted as scripts from the Unix command line or used in 
Python programs as a module (Suppl. Text S2).

Reproducibility

We provide complete source code to readily reproduce most 
figures, tables, and other results that involve computation 
(Suppl. Text S3; Suppl. Data S3). Supplemental Table S6 
was constructed manually/interactively and is not 
reproducible.

Results

We implemented five proposed methods13–15,18,19 for con-
structing per-sample profiles from per-cell measurements in 

a common computational framework. We benchmarked the 
five methods on images we had previously collected of 
MCF-7 breast cancer cells treated for 24 h with a collection 
of 113 small molecules at eight concentrations (Suppl. 
Table S3). The cells were fixed; labeled for DNA, F-actin, 
and β-tubulin; and imaged by fluorescent microscopy. For 
this study, we measured 453 standard cytometric measure-
ments (Suppl. Table S1) of each cell using CellProfiler11,12 
and applied each of the five profiling methods. To be able to 
evaluate the performance of the profiling methods, we lim-
ited our attention to a subset of the data (our “ground-truth” 
data set) for which we were confident that the primary 
MOA of compounds was achieved at the concentration 
tested during the course of the experiment. (The term mech-
anism of action is used rather loosely here and refers to a 
sharing of similar phenotypic outcomes among different 
compound treatments, rather than referring strictly to mod-
ulation of a particular target or target class.) The mechanis-
tic classes were selected so as to represent a wide cross 
section of cellular morphological phenotypes. The differ-
ences between phenotypes were in some cases very subtle: 
We were able to identify only 6 of the 12 mechanisms visu-
ally; the remainder were defined based on the literature. 
This carefully collected ground-truth data set consisted of 
38 compounds at active concentrations. Some compounds 
were active at only one concentration and some at up to 
seven concentrations, for a total of 103 treatments (active 
compound concentrations) spanning 12 mechanistic classes 
(Suppl. Table S2; Suppl. Fig. S1). The mock treatment 
DMSO was included as a negative control. Using the cosine 
distance as a measure of profile dissimilarity, we classified 
the 103 treatments into MOAs by assigning to each profile 
the MOA of the most similar profile (Fig. 1, top). When 
classifying a treatment, all concentrations of the same com-
pound were held out from the training set in order to prevent 
overtraining. The samples were prepared and imaged in  
10 batches, but classes and replicates were distributed 
across batches and plates, respectively, so as to avoid bias-
ing the classification (Suppl. Text S4).20 Using this experi-
mental data set, we tested five profiling methods  
(Fig. 1A–E), as detailed below.

Means

We first constructed profiles in the simplest way we could 
envision: average each measurement over the cells in the 
sample (Fig. 1A). A profile thus consists of a single value for 
each of the 453 features. This was the main approach used by 
Tanaka et al.21 to discover an inhibitor of carbonyl reductase 
1, although their profiles also included some statistics other 
than the mean.13 With this profiling method, 83% of the com-
pound-concentration profiles could be classified correctly 
(Table 1). The cosine distance remained effective despite the 
high dimensionality of the measurements, so there is no 

(3)
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significant compression of distances, a common problem in 
high-dimensional data analysis in which the distance to the 
nearest point approaches the distance to the farthest point 
(Suppl. Fig S2). This indicates that most of the measure-
ments contribute information about MOA and are not simply 
redundant measurements that add noise.22

That small-molecule effects could be characterized so 
well by the shift in means was unexpected because many 
treatments induce a heterogeneous phenotypic response 
across the cell population in each sample. For instance, 
treatment with microtubule destabilizers produced a mix-
ture of ~44% mitotic cells, ~27% cells with fragmented 
nuclei, ~16% cells with diffuse and faint tubulin staining, 
and ~12% cells with an appearance similar to mock-treated 

cells. Even though the “means” method made no attempt to 
model the subpopulations of cells, it was mostly able to dis-
tinguish microtubule destabilizers from microtubule stabi-
lizers, which also block in M-phase and therefore also 
caused a high proportion of mitotic cells (Suppl. Table S4). 
There was room for improvement, however; in particular, 
many microtubule stabilizers and actin disruptors were mis-
classified as other MOAs. DNA damage agents and DNA 
replication inhibitors were consistently confused.

Although the image features that are most influential in 
distinguishing each mechanism of action from the rest 
(Suppl. Table S5) are largely expected (e.g., the texture of 
actin staining in the cytoplasm is important for distinguish-
ing actin disruptors), it is notable that the profiles generally 
obtain their discriminatory power from a combination of 
image features.

Some other population statistics (medians, modes, and 
means combined with standard deviations) gave similar 
results. Medians combined with median absolute deviations 
achieved higher accuracy (88%), mainly by being better 
able to distinguish DNA damage agents and DNA replica-
tion inhibitors (Suppl. Fig. S3).

KS Statistic

Perlman et al.14 used the KS statistic as part of their titra-
tion-invariant similarity score profiling method. The KS 

Figure 1.  Overview of approach. (Top) Experimental design. Cultured cells in microtiter plates were compound treated, labeled, 
fixed, and imaged. The image analysis software CellProfiler measured 453 properties of each cell. One of the profiling methods under 
investigation condensed these measurements into a profile (vector of numbers) that describes each sample. A sample with unknown 
mechanism of action (MOA) was predicted to have the same MOA as the sample whose profile is most similar to that of the unknown 
sample, using the cosine of the angle between the profiles as measure of similarity. (Bottom) Illustrations of the five profiling methods 
tested. (A) Means of raw per-cell features. (B) Kolmogorov-Smirnov (KS) statistic relative to negative control. (C) Normal vector 
of decision plane of linear support-vector machine (SVM) versus negative control. (D) Proportion of cells in each component of a 
Gaussian mixture (GM). (E) Latent feature extraction using factor analysis.

Table 1.  Accuracies for classifying compound treatments into 
mechanisms of action.

Method Accuracy, %

Means 83
KS statistic 83
Normal vector to support-vector  

machine hyperplane
81

  With recursive feature elimination 64
Distribution over Gaussian  

mixture components
83

Factor analysis + means 94
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statistic is calculated separately for each treatment and mea-
surement. It is the maximal difference between the cumula-
tive distribution function (cdf) of the measurements of the 
treated cells and the corresponding cdf of mock-treated 
cells (Fig. 1B). This method is more computationally 
expensive than simply computing the mean but can be more 
sensitive: For example, a hypothetical treatment that causes 
some of the cells to shrink and the rest to grow could leave 
the mean cell size unchanged but would increase the KS 
statistic.

The method based on the KS statistic reaches a predic-
tion accuracy of 83% (Table 1). As with the means method, 
DNA damage agents and DNA replication inhibitors were 
confused (Suppl. Fig. S4B). Many DNA damage agents 
were additionally misclassified as Aurora kinase inhibitors, 
and there was some confusion between microtubule desta-
bilizers and Eg5 kinesin inhibitors.

Normal Vectors to SVM Hyperplanes

Loo et al.15 describe a multivariate method that trains a lin-
ear SVM23 to distinguish compound-treated cells from 
mock-treated cells. The SVM constructs the maximal-mar-
gin hyperplane that separates the compound-treated and 
mock-treated cells in the feature space. The normal vector 
of this hyperplane is adopted as a profile of the sample  
(Fig. 1C). The method classified 81% of the treatments cor-
rectly (Table 1).

The methodology of Loo et al.15 additionally uses SVM-
RFE to remove redundant and noninformative measurements 
from profiles and replace them with zeros in order to increase 
the sensitivity of analysis and make profiles more interpreta-
ble. This feature elimination is done independently for each 
treatment. Adding this step reduced the classification accuracy 
to 64% (Table 1). Inspecting the lists of features chosen gives 
a clue to why: The SVM is being trained to distinguish a com-
pound from DMSO, so the features most useful for this pur-
pose are selected. These features are not generally the same 
features that are useful for distinguishing compounds with dif-
ferent MOA. Indeed, features preferentially retained by the 
feature-elimination step are often correlated with reduced cell 
count, as almost every active compound has some cytotoxic 
effects: Three of the five most frequently selected features are 
clearly influenced by cell count, having to do with number of 
neighbors and number of cells touching (Suppl. Table S6). 
This behavior is not a flaw in SVM-RFE: It simply magnifies 
the tendency of the normal-vector method to emphasize the 
features that most clearly separate the treated cells from mock-
treated cells.

Distribution over GM Components

To better characterize heterogeneous cell populations, Slack  
et al.18 proposed modeling the data as a mixture of a small 

number of Gaussian distributions and profiling each sample by 
the mean probabilities of its cells belonging to each of the 
Gaussians. This GM method assumes that compound treat-
ment causes cells to shift between a limited number of general 
states. It is indeed generally true that cellular phenotypes 
induced by perturbations can usually be found, albeit at low 
levels, in wild-type cell populations.5 GM models have been 
used in other phenotype-detection applications as well.24

We fitted different mixtures of Gaussians to a subsample of 
~45,000 cells (10% of the cells), with the number of compo-
nents ranging from 2 to 30. A nondeterministic EM algorithm 
was used to fit Gaussians to the data; therefore, the model con-
struction and cross-validation was performed 20 times to 
assess model variability. Twenty-five Gaussians resulted in a 
prediction accuracy of ~83% (Table 1) but with large variation 
depending on the initial conditions (Suppl. Fig. S5). Increasing 
the number of Gaussians beyond 25 does not improve the 
accuracy (Suppl. Fig. S5). Some classification mistakes 
occurred in only some models, whereas others were consistent 
across models (Suppl. Fig. S4E).

The GM method performs equally well whether created 
from control cells or treated cells (Fig. S6), so the mixture 
components may be mainly modeling cellular phenotypes 
that are widely represented rather than phenotypes induced 
by only particular treatments.

Factor Analysis

Although we measured 453 morphological features of each 
cell, it is the underlying biological effects that are of inter-
est. Young et al.19 used factor analysis to discover such 
underlying effects under the assumption that an underlying 
process (factor) affects several measurements and that vari-
ations restricted to a single measurement are noise.

We trained a factor model on a random subsample of 
~45,000 control cells (15% of the control cells in the experi-
ment). We computed the maximum a posteriori estimate of 
the factors given each cell and averaged these values over 
all cells treated with the same compound and concentration 
to obtain a profile of the treatment. Varying the number of 
factors, we found that the performance was similar to the 
other methods when using ~25 factors but that performance 
increased gradually with the number of factors, reaching a 
plateau at ~50 factors (Fig. 2). Although the procedure is 
nondeterministic, the accuracy generally does not change 
more than 3 percentage points in either direction with a 
given number of factors. With 50 factors, the prediction 
accuracy was 94%, which is substantially better than any of 
the other methods that were tested (Table 1). There was still 
some confusion between DNA damage agents and DNA 
replication inhibitors (Fig. 3).

The improvement in accuracy was not simply due to  
the method’s implicit dimensionality reduction: Reducing 
the dimensionality to 50 by PCA did not lead to 
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an improvement over the means method, and selecting the 
feature most heavily loaded on each of the 50 factors 
decreased the accuracy to 63% (Suppl. Table S7).

The factor-analysis method can be viewed as the means 
method with a preprocessing step that transforms the mea-
surements of each cell into the latent factor space. Although 
factor analysis greatly improves the means method, it does 
not improve the KS statistic method as much. Using it as a 
preprocessing step before any of the other profiling meth-
ods is not helpful (Suppl. Fig. S7).

Most of the factors cannot be readily interpreted by their 
feature loadings (Suppl. Table S8). This is an Occam 
dilemma25: When the number of factors is high enough to 
yield good predictive accuracy, the factors are difficult to 
interpret because they combine numerous features in order 
to pick up on subtle phenotypic differences. Although we 
cannot use direct interpretation to verify that the factors are 
biologically relevant, careful cross-validation and experi-
mental design can guard against bias by batch effects and 
other artifacts20 (Suppl. Text S4).

The factor model performs equally well whether created 
from control cells or treated cells (Suppl. Fig. S9). Because 
the wild-type variation is sufficient to elucidate the relation-
ships between image features and latent factors, the factors 
may be capturing stable, fundamental modes of variation 
for the cell line (viewed through a particular assay and fea-
ture set) and not the extreme changes induced by particular 
treatments.

Discussion

We compared five methods13–15,18,19 for generating per-sam-
ple profiles from image-based cell data in the context of 
classifying small molecules into 12 MOAs based on cellu-
lar morphology. All methods had previously been demon-
strated in distinct experiments, mostly proof-of-principle 
studies, with some yielding biological discovery. However, 
these methods had never before been directly compared on 
a common data set. Each method was previously proposed 
as part of a larger methodology, sometimes including strate-
gies for particular contexts, such as making use of informa-
tion from multiple cell lines or multiple concentrations. 
These strategies can be applied independently of the core 
profiling method; here, we compared only the computa-
tional cores of the profiling methods. We did not evaluate 
the underlying statistical methods (KS, SVM, GM, factor 
analysis), which have solid theoretical foundations and an 
excellent record of solving analysis problems of many 
kinds.

On our data set, the simplest method, which profiles 
compounds by the population means of the measurements 
of the treated cells, performed better than expected, achiev-
ing 83% accuracy in predicting MOA. Because many of the 
measurements are non-Gaussian, we expected nonparamet-
ric KS statistics to be superior, but that was not the case. 
Describing a compound by the decision boundary of a lin-
ear SVM trained to distinguish compound-treated cells 
from mock-treated cells did not offer improvement either 
(83%), and adding a feature-reduction step reduced perfor-
mance (64%). A GM method that tries to model subpopula-
tions of cells with a mixture model might be expected to 
have an advantage in experiments in which the perturba-
tions lead to shifts between a small number of discernible 
cell states (e.g., cell-cycle states), but we did not observe 

Figure 2.  Distributions of classification accuracies for 20 runs 
of the factor analysis method for each possible choice of the 
number of factors from 2 to 100. The performance was similar 
to the other methods when using ~25 factors, but the accuracy 
increased gradually with the number of factors, reaching a plateau 
at ~50 factors.

Figure 3.  Confusion matrix for the factor-analysis method, 
showing the number of compound concentrations that were 
classified correctly (on the diagonals) and incorrectly (off the 
diagonals), the classification accuracies for each mechanism of 
action (right columns), and overall classification accuracy (number 
of correctly classified compound concentrations divided by the 
total number of compound concentrations). Average outcomes 
over 20 models are shown; dimly colored squares without 
numbers indicate classification outcomes that occurred fewer 
than 0.5 times on average.
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this: Although the treated samples were heterogeneous with 
respect to cellular phenotype, and some phenotypes were 
not specific to any mechanistic class, the GM model per-
formed no better than other methods (83%). The profiles 
that best represented the phenotypes were obtained using 
factor analysis (94% accuracy in predicting MOA). This 
method’s potential limitation of excluding important nonre-
dundant image-based features as noise has been demon-
strated in a screening context in which only 29 measurements 
were made of each cell,26 but with our higher-dimensional 
features, the method proved effective at extracting the 
underlying sources of variation.

Because all of the profiling methods we tested operate 
on measurements at the resolution of single cells, there 
was the potential that some of them might detect effects 
that are present in only a small subpopulation of the cells 
in the sample. However, only the GM method makes 
explicit attempts to model cell subpopulations across 
samples. It was therefore surprising that even the means 
method was sufficient to characterize treatments produc-
ing heterogeneous phenotypic response. Because com-
pound treatments typically affect most cells in a sample 
(although frequently in different ways), our experimental 
results are insufficient to predict the methods’ relative 
performance in RNAi screens in which the interference 
is effective in only a small percentage of the cells. It is 
possible that the KS statistic may work better than the 
mean in such experiments or that the GM method may be 
able to detect a globally popular phenotype even though 
it occurs at a low proportion in a particular sample. It is 
also possible that new profiling methods will be required 
to fully realize the potential of using single-cell measure-
ments to profile samples that are distinguished only by 
small, subtle subpopulations of cells or to be robust to 
off-target effects.

The assay and compound collection chosen for this study 
are typical of a profiling experiment: Morphology assays 
are attractive for profiling because they can capture a wide 
variety of subtle cellular responses without focusing on par-
ticular pathways. However, there may be particular MOAs 
that are not displayed within the assay parameters described 
in this study. One important parameter is time following 
compound exposure. In this study, we chose 24 h following 
compound treatment of cells as this produced an optimal 
mitotic arrest phenotype in the MCF-7 cell line studied. For 
other cell lines or other compound classes, there may be 
added value gained from increasing the biological space of 
profiling studies by combining features quantified from 
multiple assays and applying the profiling methods across 
multiple time points following compound treatment. The 
choice of assay and optimal time point for profiling will 
likely depend on the scientific questions being asked. The 
chemical compounds we tested are commonly studied bio-
active compounds. Therefore, the present study is valuable 

in providing a comparative analysis of methods in the con-
text of one particular (but representative) profiling experi-
ment. Creating and annotating a ground-truth set of 
compounds with known MOA is not trivial; we hope this 
work provides a template for future creation of ground-truth 
data sets.

With the emergence of image-based high-content 
screening across more complex and diverse assay formats 
incorporating co-cultures, stem cells, and model organ-
isms, future studies may demonstrate that particular profil-
ing methods perform better on specific assays, cell types, 
or even focused compound or siRNA libraries. Thus, we 
foresee additional value in providing an analysis frame-
work and a ground-truth data set to facilitate further com-
parisons in the field using alternate data sets or methods. 
We have implemented all five methods and offer the source 
code (Suppl. Text S2), along with our entire set of cellular 
measurements for our ground-truth data set (Suppl. Data S2) 
so that they can aid in the future application, development, 
and comparison of image-based phenotypic profiling 
approaches.
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