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Fat accumulation is a complex phenotype affected by factors such as neuroendocrine signaling, feeding,
activity, and reproductive output. Accordingly, the most informative screens for genes and compounds
affecting fat accumulation would be those carried out in whole living animals. Caenorhabditis elegans is
a well-established and effective model organism, especially for biological processes that involve organ
systems and multicellular interactions, such as metabolism. Every cell in the transparent body of C.
elegans is visible under a light microscope. Consequently, an accessible and reliable method to visualize
worm lipid-droplet fat depots would make C. elegans the only metazoan in which genes affecting not only
fat mass but also body fat distribution could be assessed at a genome-wide scale.

Here we present a radical improvement in oil red O worm staining together with high-throughput
image-based phenotyping. The three-step sample preparation method is robust, formaldehyde-free,
and inexpensive, and requires only 15 min of hands-on time to process a 96-well plate. Together with
our free and user-friendly automated image analysis package, this method enables C. elegans sample
preparation and phenotype scoring at a scale that is compatible with genome-wide screens. Thus we
present a feasible approach to small-scale phenotyping and large-scale screening for genetic and/or
chemical perturbations that lead to alterations in fat quantity and distribution in whole animals.

� 2014 Published by Elsevier Inc.
1. Introduction two vesicular compartments stained with the same fluorophore
Live staining of fats with Nile red or BODIPY-labeled fatty acids,
or fixative-based staining with Sudan Black and oil red O (ORO) are
common approaches to visualize fats contained in lipid droplets in
mammalian specimens [1,2]. By contrast, the use of these fat-
staining techniques in Caenorhabditis elegans is not straightfor-
ward. Depending on the experimental conditions, feeding worms
with the vital dye Nile red leads to exclusive staining of the
lysosomal-related organelle compartment, or staining of this
compartment in addition to the lipid droplet compartment [3–7].
Similarly, live staining with BODIPY-labeled fatty-acids, although
robust, leads to staining of both the lysosomal-related organelle
compartment and the lipid droplet compartment [4,8]. Having
complicates the use of automated scoring for lipid-droplet fats
only. Feeding high concentrations of Nile red (2–10 lM) improves
lipid droplet staining with this dye. However, live high-concentra-
tion Nile red staining leads to heterogenic signal within and among
samples [7]. Nile red exclusively stains the C. elegans lipid droplet
compartment in paraformaldehyde-fixed worms [5], however
paraformaldehyde fixation leads to variable staining and broken
animals, which together preclude the use of automated scoring
for lipid-droplet fats. Sudan Black stains lipid-vesicle fats only
[9], but it is highly error-prone due to a final alcohol-based wash
that introduces enormous variability. Therefore, Sudan Black
requires mixing of the control and the test samples in the same
tube after marking or labeling them in a way that the original pop-
ulations can be distinguished after imaging (e.g., an additional
fluorescent dye or an independent phenotypic distinction such as
sterility or size that enables distinguishing control worms and
sample worms). This requirement makes Sudan black incompatible
with large-scale studies. Also, Stimulated Raman-Scattering (SRS)
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Fig. 1. qORO workflow. (1) Harvest worms with S buffer. Transfer worms to PCR
plate. (2) Let worms settle and remove supernatant. (3) Add fixative (60%
isopropanol), let worms settle, stain 6–18 h in 60% ORO in water (stain made one
day before use, filtered, and re-filtered right before use). (4) Aspirate supernatant.
Add Triton 0.01% in S buffer to worm pellets. Add 2 ll of mounting medium to each
well and transfer 4 ll of worm suspension, mix gently. (5) Place cover by slightly
tilting it towards the top first. (6) Image with color camera or monochromatic
camera with RGB filters.

2 C. Wählby et al. / Methods xxx (2014) xxx–xxx
and Coherent Anti-Stokes Raman Scattering (CARS) have been suc-
cessfully used to assess fat levels in C. elegans [6,10,11]. However,
these techniques require manual imaging of individual worms,
and experimental implementation of CARS and SRS is, in general,
costly and difficult. CARS and SRS require dedicated, expensive
equipment, and highly specialized expertise, which are currently
not available to most researchers and certainly not to most teach-
ing laboratory classrooms.

Our previous ORO staining protocol represented a significant
advance over previous techniques [4]. First, it allowed scoring of
C. elegans fat stores contained only in lipid droplets. Second,
because ORO does not require alcohol-based de-staining, it limits
the variability introduced by de-staining timing, which is the
major caveat of Sudan black. Our ORO staining protocol is robust
and correlates well with biochemically-measured lipids (total
fatty-acid methyl esters by GCMS). Nevertheless, this protocol, as
well as the alternative fixative-based Nile red staining protocol,
includes paraformaldehyde-based fixation. Paraformaldehyde is a
carcinogen, requiring the user to perform the protocol in a fume
hood and increasing the cost of the procedure by generating toxic
waste. Additionally, paraformaldehyde-based fixation of C. elegans
generates a large proportion of broken animals, which affects
staining and makes automated image-based phenotype scoring
difficult.

Here, we describe a radically improved whole-animal fat
screening protocol, which allows the user to phenotype a 96-well
plate of RNAi- or compound-treated animals in 15 min of hands-
on time. This method, named ‘‘quick oil red O’’ (qORO), does not
use paraformaldehyde or other toxic fixatives. Instead, fixation is
achieved with a mixture of water and isopropanol. This qORO
method yields almost 100% intact worms, making it possible to
quantify fat storage patterns in relation to the worm’s anatomy.

We also present a set of digital image processing and analysis
tools for high- and low-throughput quantitative qORO phenotype
scoring. We have previously presented image-analysis methods
for scoring of ORO stained worms [4]; however, our original image
analysis protocol required both expertise in code writing and pur-
chasing the licensed software package MATLAB (The MathWorks
Inc., Natick, MA) [4]. Subsequently, we presented the WormTool-
box, which is part of the free and open source CellProfiler software
[12–14]. Here, we describe an upgraded version of the WormTool-
box and CellProfiler, including a simplified software interface and
fully automated as well as semi-manual tools for the analysis of
qORO images derived from high-throughput and low-sample
number experiments. We have also created a set of detailed video
tutorials on how to put together and optimize analysis pipelines
for qORO phenotyping. Complete analysis pipelines together with
sample data and video tutorials are available at www.cellprofil-
er.org/wormtoolbox.
2. Methods and results

The qORO protocol is outlined in Fig. 1.
2.1. Worm growth and harvesting

Multiple variables affect body fat levels and distribution.
Consequently, it is important to carefully control the experimental
conditions. Food quality and quantity, as well as fertility and age,
are especially important variables. We recommend, whenever pos-
sible, to use developmental and not chronological age to compare
fat levels after genetic, chemical, or environmental perturbation.

General guidelines for high- and low-throughput growth and
harvesting conditions are described below.
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
2.1.1. High-throughput screening
Worms of the desired genetic background are grown, and RNAi

or compound treated in 96-well plates as previously described
[15]. Fat analysis requires specific modifications to the published
growth method as follows:

For F1 screening, manually pipette around 50 hatchlings into
each well of a 96-well plate. If compatible with the genetic back-
ground, incubate worms at 15 �C. Optimal harvesting time will
depend on the genetic background and growth conditions. How-
ever, the most robust differences among true fat regulators are
observed between the L4 and 1-day adult stage. Earlier time points
would be informative for early onset increased fat mass pheno-
types because wild-type worms show low levels of fat at the L3
stage [16]. Later time points make it difficult to assess increases
in fat mass because the wild-type levels of fat reach saturation at
3-days adulthood when worms are grown at 15 �C (data not
shown).

Always have at least one well with the appropriate control in
each 96-well plate (L4440 empty vector RNAi or compound sol-
vent). Ideally, also include a positive control. Test each RNAi clone
or compound minimally in duplicate, and we recommend experi-
mental repeats to be carried out independently (days apart with
different plates and reagent batches).

Harvest the worms growing on 96-well plates by adding 200 lL
of 1� S-buffer, and the worms (http://www.wormbook.org/chap-
ters/www_strainmaintain/strainmaintain.html). Worms that swim
out of the bacterial lawn are washed out by gently pipetting up and
down 3 times using a 12-channel pipette. A second wash may help
harvest more worms if they are younger than L4 or sma (small
body size), but it does not increase worm recovery for wild-type
L4 or later developmental stages. The S-buffer suspensions of
worms (up to 200 ll) are transferred to the wells of 96-well PCR
plates (wells should hold up to 250 lL of volume per well). Let
animals settle to the bottom of the wells. Aspirate up to 175 lL
of buffer with a VP Scientific VP177AD 96-well liquid aspirator or
similar (Fig. 1). Immediately add fixative (continue in Fixation
and Staining below).

2.1.2. Low-throughput analyses
Prior to setting up a qORO assay, compare the developmental

times (i.e. by observing gonadal development) of each new
doi.org/10.1016/j.ymeth.2014.04.017
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genotype or treatment to be tested so that all sample strains and
the control strain are at the same developmental stage at the time
of scoring. Grow strains using the same conditions (same batch of
plates, same incubator, etc.) to reduce variability. Seed approxi-
mately 500 worms per 6 cm NGM plate containing 500 ll of Esch-
erichia coli grown overnight to saturation (OD approx. 3–4),
concentrated 2 times by centrifugation, and resuspended in S-buf-
fer. Make sure to cover as much of the surface of the lawn as pos-
sible to avoid the dietary restriction effects of leaving behavior.

Harvest worms at the desired developmental stage by washing
the plates twice with 750 ll of S buffer (if worms were scarce, use
glass Pasteur pipettes to minimize losing animals that otherwise
would stick to the surface of plastic tips). Transfer worms to
1.5 mL tubes. Let worms settle to the bottom of the tubes.
Aspirate as much supernatant as possible without disturbing the
worms. Immediately add fixative (see Fixation and Staining below).

2.2. Stain preparation

Prepare a 0.5% oil red O (MP, Cat. No. 155984) stock solution in
high-quality 100% isopropanol. Incubate on a rocking platform at
room temperature for a day and filter through a 0.45 lm filter. A
stock solution kept at room temperature is good for several months.

The day before use, freshly dilute the stock to 60% with filtered
water. Incubate the 60% solution on a rocking platform at room
temperature overnight. Filter through a 0.45 lm filter. To prevent
dye precipitation on the samples, filter again through a 0.45 lm fil-
ter right before use.

2.3. Fixation and staining

Sixty percent isopropanol is used as an alcohol-based fixative in
several cytological techniques because of its good osmolarity,
effectiveness, and safe use. We tested if resuspending harvested
worms in 60% isopropanol was sufficient to fix them, and we
observed perfect organ and cellular structure preservation when
worms harvested from plates were resuspended in 60% isopropa-
nol and immediately stained, indicating that resuspension in 60%
isopropanol was sufficient to properly fix worms.

For large-scale qORO, add 200 ll of high-quality 60% isopropa-
nol to worms contained in the 96-well PCR plates. Let worms settle
to the bottom of the wells. Aspirate up to 175 lL of buffer with a
12-channel pipette or 96-well aspirator (VP-177AD, VP Scientific).
Add 200 ll of freshly filtered ORO working solution and seal the
plates with aluminum seals. Stain worms for 6–18 h at 25 �C in a
wet chamber (wet paper towels in a hermetic or parafilm-wrapped
plastic box); this keeps the samples humidified as the isopropanol
fumes tend to unseal the plates during the incubation time.

After 6–18 h of staining aspirate the supernatant with a 12-
channel pipette or a VP Scientific VP177AD 96-well aspirator or
similar (shorter staining times may lead to weak signal, and longer
staining times increase the changes of precipitation of the dye).
Add 100 ll of 0.01% Triton X-100 in S buffer. Stained worms can
stay in this solution at 4 �C for at least a month without altering
quantities or distribution of fat. The protocol can be adapted to
any standard 96-well robot that can work with 200 ll tips with
at least five pads for 96-well plates (pads: sample, washing buffer,
fixative, ORO dye working solution, and resuspension buffer).

For staining single samples, add 500 ll of high-quality 60% iso-
propanol to worms contained in 1.5 mL tubes. Let worms settle to
the bottom of the tube. Aspirate as much supernatant as possible
without disturbing the worms. Add 500 ll of freshly filtered ORO
working solution. Stain worms at 25 �C in a wet chamber (wet
paper towels in an hermetic or parafilm-wrapped plastic box).

After 6–18 h of staining, wash out the supernatant and add
250 ll of 0.01% Triton X-100 in S buffer. Stained worms can stay
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
in this solution at 4 �C for at least a month without altering quan-
tities or distribution of fat.

2.4. Sample mounting

For high-throughput image acquisition, prepare to mount
worms on a 96-well slide (Trevigen) by adding 2 ll of Vectashield
mounting medium (Vector Labs) to all wells with a 12-well chan-
nel pipette. Without resuspending, pipette 4 ll of worms from the
bottom of each sample well (a sudden upward movement accom-
panying the release of the plunger helps to get worms into the tip).
Gently dispense the worms on the mounting medium, and pipette
up and down less than 3 times to detach worms from the tip walls;
avoid generating bubbles. Mix the worms with the mounting med-
ium by gently swirling the liquids with the tip of the pipette tips.
Ideally, there should be 20–30 worms per well. Add cover slip (a
1 mm thick full plate glass used to produce the 96-well slides
but without the stamped Teflon wells or another 96-well slide).

For low-throughput image acquisition, prepare 2% agar pads on
as many slides as necessary. Add 3 ll of mounting medium to a
24 � 24 mm cover slip. Transfer 5 ll (approximately 50 worms)
of worm suspension to the cover slip. On the coverslip, mix the
worm suspension with the mounting medium by gently swirling
the liquids with the tip of the pipette tip. Flip the cover with the
worms onto the agar pad and label the slide. Do not seal with nail
polish; the solvent will negatively affect staining.

2.5. Image acquisition

For high-throughput image acquisition, use an automated
microscope capable of capturing images from a 96-well slide and
equipped with a high-resolution color camera (an adapter to hold
slides maybe required for scopes designed to image 96-well plates).
A PlanApo 4� objective enables capturing a full well in one image
when using a 5.5 megapixel camera. However, higher resolution
imaging can be obtained using a PlanApo 10� objective but 16
images would need to be stitched to capture more than 80% of the
well with a 5.5 pixel camera. Aim to have a minimum coverage of
75% for each well in order to ensure capturing the majority of the
worms, which may not be evenly distributed across the well. Mini-
mal or no autofocusing is required when using 96-well slides. Com-
bine multiple images of each well into a single image using software
with image stitching capabilities prior to quantitative analysis. If
stitching software is unavailable, simple tiling of images is possible
in CellProfiler, which works best if the acquired images are precisely
aligned adjacent to each other with no overlaps or gaps. It should be
noted that the subsequent image analysis relies on full-length
worms completely within the image field because worm detection
relies on a computational model of the worm shape. Worms not
completely within the image, or with segments that are not
properly aligned between two adjacent individual images because
of tiling errors, may be automatically discarded as debris.

2.6. Image analysis

Automated image analysis provides a quantitative, fast, and
reproducible approach to phenotype scoring. The software tools
presented here, as well as video tutorials and a set of test images
prepared using the above qORO method, are available in the
WormToolbox of the user-friendly and open source CellProfiler
project (www.cellprofiler.org/wormtoolbox) [14]. We recommend
the use of Google Chrome to access these resources.

The procedures are described as pipelines consisting of a num-
ber of steps, or modules, each contributing to the final result of the
analysis. Here we describe the general steps of four different pipe-
lines: Pipeline 1 for high-throughput qORO phenotyping, Pipelines
doi.org/10.1016/j.ymeth.2014.04.017

http://www.cellprofiler.org/wormtoolbox
http://dx.doi.org/10.1016/j.ymeth.2014.04.017


Fig. 2. Overview of image analysis pipelines. Pipeline 1 in the tutorial (blue), is fully
automated, and consists of the following steps: (a) Load input images from qORO
assay (here showing only part of full well for better visualization of worms). (b) Pre-
process to remove artifacts such as bubbles and well edges. (c) Detect worms and
clusters of worms. Individual worms/worm clusters are randomly colored. (d)
Delineate individual worms by model-based worm untangling (this step is called
‘‘segmentation’’). Here, each individual worm has a unique (and arbitrary) color. (e)
Digitally straighten worms and align them to a simple worm atlas for measurement
of stain distribution. (f) Detect fatty regions within worms. Once worms and fatty
regions are identified, a large number of measurements are extracted from
individual worms, such as the intensity of stain, fat stain distribution, fat region
size, worm width, etc. All measurements are exported to a spreadsheet or database
for further exploration and analysis. Pipeline 2 and 3: If the provided default worm
model does not fit the input data (e.g. due to a different image resolution, worm age
range, or different worm strain), a new worm model can be built using the pipelines
2 an 3 in the tutorial (pink) by (g) manual selection of non-touching worms that
build up a training set for a new model. Pipeline 4: For low-throughput
experiments, it is possible to manually curate segmentation results using pipeline
4 in the tutorial (orange) by (h) manual editing of the output from step (d) of the
blue pipeline to correct errors, and (i) manual flipping of digitally straightened
worms so that they all align with their heads or tails up (in cases where the
orientation of fat within the worm is important for the study). The same set of
measurements as described in part (f) above can be extracted from such manually-
edited segmentation results.
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2 and 3 for creating a customized worm model (used for untan-
gling of clustered worms or to score an experiment in which
worms significantly differ in size or illumination from the prebuilt
pipelines available at cellprofiler.org/wormtoolbox), and Pipeline 4
for low-throughput phenotyping with manual interaction. An
overview of the pipelines is outlined in Fig. 2.

The example images presented here come from a control 96-
well qORO experiment. The animals have been treated with RNAi
against either the insulin receptor daf-2 (which makes the animals
fat), peb-1 (DNA-binding protein required for normal development
of the pharynx [17], which defect likely affects feeding making ani-
mals slim), or with an empty RNAi vector (L4440) as negative
control.

The user starts the analysis by opening CellProfiler (available for
download from www.cellprofiler.org) and simply dragging and
dropping the image folders into the ‘File list’ panel. In order to keep
track of the different treatments and positions in the 96-well plate,
metadata (information about each image) can be extracted from
file- and folder names, as detailed in the tutorials and example
pipelines. Note that it is also possible to load metadata, such as
treatment doses, drug- or RNAi names etc. from a text file.

The qORO input data is color images with a bright background.
CellProfiler was originally designed for fluorescence microscopy
images with a dark background, so images are first inverted so that
the worms appear bright on a dark background, and then separated
into their red, green and blue color channels. Before identifying the
worms, the red image channel is pre-processed to identify and
remove artifacts such as non-uniform illumination, well edges
and bubbles that may influence automated analysis. Several differ-
ent options for compensating for uneven illumination are available
through the ‘CorrectIllumination’ modules. For the presented data-
set, however, illumination is comparably uniform, so this step is
omitted and the first step of the analysis is removal of well edges
and bubbles. These regions of the image are identified based on
being significantly darker (brighter in the inverted image) than
the worms, as illustrated in Fig. 2b. Once artifacts are removed,
worms and worm clusters are separated from the image back-
ground by foreground/background image segmentation, Fig. 2c.
This step relies on a sufficient difference in contrast between the
worm bodies and the image background. Adjusting image expo-
sure time during image acquisition may improve the result of this
analysis step, but these settings should thereafter be kept constant
throughout the entire experiment.

The steps above serve to identify worms or worm clusters,
rather than individual worms. As the goal of the quantitative anal-
ysis is to extract measurements relevant to worm phenotype from
individual worms, the next step in the analysis pipeline is to iden-
tify individual worms by worm untangling. The ‘Worm untangling’
module makes use of a worm model, which is a mathematical
description of the acceptable variation in worm shape and posture
[14,18,19]. A worm model called ‘DefaultWormModel.xml’ is pro-
vided together with the example pipelines at www.cellprofil-
er.org/wormtoolbox, but the procedure for creating a new worm
module is also described in Pipelines 2 and 3. To use or test the
provided worm model, click on the .xml file and save the file to
your hard drive in the same folder as where you have your input
data. This model has been created to fit the provided sample data
set, and may be used in Pipelines 1 and 4.

The ‘Worm untangling’ step results in two different outlines of
the worms: one that includes, and one that excludes regions where
the worms overlap. This means that overlapping worm regions can
be included when measuring size but excluded when measuring,
for example, the mean intensity of a worm. Once individual worms
are identified, the user can select which measurements to extract.
In CellProfiler, measurements are grouped by category. For exam-
ple, the ‘MeasureObjectIntensity’ module includes total intensity,
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
mean intensity, intensity mass displacement, minimum intensity,
etc., on a per-object basis.

When it comes to qORO quantitation, and this would be true for
broadly distributed fluorescent markers also, the pattern of
doi.org/10.1016/j.ymeth.2014.04.017
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distribution of the stain in the worm provides important informa-
tion on the worm phenotype. In order to compare stain distribution
between worms, individual worms can be digitally straightened
and aligned to a very simple atlas or grid, enabling measurement
of stain intensity in a number of longitudinal and/or transversal
sub-regions. This task is performed by the ‘StraightenWorms’ mod-
ule (Fig. 2e). Additionally, qORO-phenotypic classification benefits
from identifying the fatty sub-regions within each worm. This is
done using a fixed intensity threshold in the module called Identi-
fyPrimaryObjects (Fig. 2f). It is important to optimize this threshold
for each new experiment, and also to keep it constant throughout
the analyses of the experiment to ensure that measurements are
comparable. The identified fatty regions are then coupled with a
given worm using the ‘RelateObjects’ module. Any fatty region
measurement, such as size and shape, is averaged and linked to a
specific worm or worm sub-region using this module.

Once a pipeline has been created and optimized, it can be run
on a large number of images by batch processing or using a com-
puter cluster. Nevertheless, it is important to keep in mind that
an automated approach optimized for one data set may not work
optimally on a different data set. Parameter settings may have to
be re-optimized if, for example, the imaging system, staining pro-
tocol, or worm strain is changed. When analyzing your own data,
the provided worm model may not provide the desired results
due to experimental differences such as a different image resolu-
tion or worm strain. To create a new worm model, 40–60 worms
representing the variability within an experiment must be manu-
ally selected from your own experiment. These sample worms
are referred to as a training set and this training set is used to cre-
ate a new worm model. The procedure for manually selecting and
saving single worms for a training set is described in Pipeline 2.
After visual confirmation of the selected worms, a model is created
using Pipeline 3.

The fully automated worm detection sometimes fails to create a
perfect delineation of every worm in the image. Some errors may
be acceptable in favor of a fully automated and unbiased analysis.
However, for some treatments leading to high phenotypic varia-
tion, it may be necessary to manually inspect and correct errors.
We have therefore included Pipeline 4. This pipeline loads the seg-
mentation masks created by Pipeline 1, and allows manual correc-
tion of the worm outlines. Pipeline 4 also enables digital
straightening of the worms and it allows the user to orient worms
(heads- or tails-up), therefore making measurements of fat distri-
bution possible.

2.7. Data analysis

CellProfiler extracts a large number of different measurements
per worm. Individual measurements can be exported to a
comma-delimited spreadsheet for further data processing using
an appropriate program such as Microsoft Excel. However, it may
be difficult to decide which particular measurement(s) best dis-
criminate between different phenotypes. To facilitate phenotypic
classification we use Classifier tool available in CellProfiler Analyst
(CPA) to interactively train a machine-learning classifier to
automatically find the best combination of measurements for dis-
criminating between different phenotypes [20]. CPA 2.0 can be
downloaded from (http://www.cellprofiler.org/download-
CPA.shtml) and a detailed manual and a users forum are accessible
online. We will here provide basic guidelines in the use of CPA to
score qORO but we encourage users to take advantage of the exten-
sive tutorials available online.

In order to explore data in CellProfiler Analyst (CPA), the CellPro-
filer user has to create a database. The provided CellProfiler example
pipeline exports all measurements to an SQLite database that
enables the measurements in the database to be further explored
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
using CPA [21]. When creating a CellProfiler pipeline, select the
option to create a ‘‘properties file’’ output in the ‘ExportToDatabase’
module. The properties file is a simple text file that describes where
raw data and extracted measurements are located, and when
launching CPA, the user will be prompted to select this properties
file. It is important to note that the properties file contains informa-
tion of file location and CPA will fail to locate files if they are moved
from their original location unless the path in the properties file is
appropriately updated to reflect the actual location of the files. For
training CPA to classify ORO phenotypes, prior to launching CPA,
the user would need to edit the CellProfiler properties output file
in a regular text editor. CellProfiler Analyst was originally designed
for fluorescent images of cells, so a few modifications are needed to
optimize viewing of brightfield images of worms, which are
also often larger than cells. The following additions/changes to the
properties file are needed prior to launching CPA (each on separate
lines and without the brackets): [image_channel_colors =
red,green,blue,red,green,blue] [channels_per_image = 3,3] [image_
channel_blend_modes = subtract, subtract, subtract, add, add, add]
[image_tile_size = 250]. The Classifier tool of CPA needs to be
‘‘trained’’ to recognize worm phenotypes such that CPA can deter-
mine the likelihood that a given well shows worms belonging to a
given class (i.e. wild type, slim, or fat); the user does so by hand-sort-
ing examples of worms into phenotypic class bins. To change the
default Classifier class bin names (‘‘positive’’, ‘‘negative’’) to more
meaningful class names (‘‘fat’’, ‘‘wild-type’’) right-click in the corre-
sponding bin. Click the ‘Add new class’ button located at the bottom-
right of the interface (Fig. 3A) if more than two phenotypic variants
are expected (i.e. to add ‘‘slim’’ worms). Click the ‘Fetch’ button to
retrieve image tiles of random worms and drag the tiles to their cor-
responding phenotypic bin. If multiple worms appear in the image,
the worm that CPA is presenting to the user for classification is the
one labeled with a little square when the user scrolls over the image
with the mouse. Once a reasonable number of worm samples are
dragged to their corresponding phenotypic bins (in the example of
Fig. 3a, fifteen example worms were used for each phenotype class
or bin), press the ‘Train Classifier’ button. Test the classification
accuracy by fetching animals of a particular class, i.e. change ‘ran-
dom’ class drop down to ‘fat’, and fetch. In this example, verify that
only or mostly fat worms are fetched after training. If satisfied with
the training, press the ‘Score All’ button to automatically classify
every worm in every well of the experiment: the result is a table dis-
playing an ‘‘enrichment score’’ for each well. The enrichment score is
a measure of the likelihood that a well is ‘‘enriched’’ for the pheno-
type of interest (i.e. a well with an enrichment score of 0.94 for High
ORO phenotype is likely to contain mostly fat worms, and a well with
an enrichment score for Low ORO of 0.94 is likely to contain mostly
slim worms); note that the sum of enrichment scores for all classes
does not add to 1. CPA enrichment scores can be visualized as a table,
heat map, histogram, scatter plot, etc. To use these alternative views,
the enrichment score table needs to be saved as a database and
images have to be linked to positions in the plate. To do this, select
‘File’ from the main menu in the table and then select ‘Save table
to database’. Chose a short name without spaces or special charac-
ters, e.g. ‘‘results’’. At the next prompt, choose ‘Store permanently’
and press ‘OK’. As an example of an alternative view of the scoring
data, open the ‘PlateViewer’ in CPA. There, under the ‘Data source’
drop-down (located to the left of the plate layout display), choose
⁄OTHER TABLE⁄ and at the prompt, select the name of the enrich-
ment score table just saved. At the next prompt, select ‘Per-well’
and press OK. At the next prompt, you have to select ‘Plate_ID’ (or
image number) to correspond to ‘Image_Metadata_Plate’ (or image
number), then press ‘OK’.

In the ‘Plate Viewer’, the default measurement displayed is the
‘ImageNumber’ index, which is uninformative. To view a heat map
of phenotypes, select the desired enrichment score from the
doi.org/10.1016/j.ymeth.2014.04.017
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Fig. 3. Use of the machine learning capabilities of CellProfiler Analyst to classify worms as having a wild-type, fat, or slim phenotype. Twenty-four wells (columns 1–3)
contained vector-control treated worms (wild type), 24 wells (columns 4–6) contained daf-2 RNAi treated worms (fat), and 24 wells (columns 7–9) contained peb-1 RNAi
treated worms. (a) Fifteen training individual worms were randomly selected among the wells from each of the three RNAi treatments, and used for training the classifier.
After training, the classifier was applied to the full dataset (consisting of 1527 worms). Enrichment scores were then calculated and displayed as a plate layout heatmap in
CellProfiler Analyst for each of the phenotypes (b) wild-type worm enrichment, (c) fat worm enrichment, and (d) slim worm enrichment. As can be seen, the three well
columns containing each of these controls scores highest (yellow/red) for the expected phenotype whereas the remaining columns show lower scores (blue). (e) The most
significant classification rule, or feature measurement, identified by CellProfiler Analyst (shown in the top window of a), was the mean intensity of all pixels within a worm in
the blue image channel. If this per-worm measure is scatter-plotted versus image number (the sequential order of images in the experiment, left to right across the plate), it is
clear that this measurement is significantly lower for peb-1 (the right-hand third of the data points) as compared to daf-2 and L4440 (the left-hand two-thirds of the data
points) but it is not sufficient to separate all three phenotypes. This indicates that more than a single measurement is necessary to separate all three phenotypes from each
other and thus that the machine-learning Classifier step is necessary. Indeed, a 3D scatterplot of per-well enrichment scores from the machine-learning Classifier step (f)
clearly shows that the three phenotypes can be separated if a combination of differentiating parameters is used instead of a single measurement.
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‘Measurement’ drop-down to the left of the plate layout display. As
an example, a heat map plate layout is shown in Fig. 3b–d, where
the the phenotypes are High ORO (Fig. 3b), wild-type (Fig. 3c), or
Low ORO (Fig. 3d): the redder wells likely have an overrepresenta-
tion of fat, wild type, or slim animals, whereas the bluer ones are
likely underrepresented for that phenotype. Individual measure-
ments may also be exported to a comma-delimited spreadsheet
for downsstream data processing using other analysis software.
Additional video tutorials for how to use CPA are provided at
www.cellprofiler.org/wormtoolbox.

To illustrate the rich phenotypic descriptions that are made
possible using the worm straightening and atlas fitting of
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
Pipeline 4, we selected one well from each of the three RNAi
treatments (Fig. 4a–c), manually edited any segmentation errors,
and then manually flipped the straightened worms to align
them tail up. In this case we only used the measurements of
mean and standard deviation of stain intensity in each of eight
transverse segments across the worm body (Fig. 4d). As
illustrated in Fig. 4e–f, two measurements are sufficient to
separate the three phenotypes. It is interesting to note that
the outliers represent worms that deviate also in visual pheno-
type (circled worm numbers in Fig. 4a and c), illustrating that
this approach also provides valuable information on within-
population heterogeneity.
doi.org/10.1016/j.ymeth.2014.04.017
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Fig. 4. Result of the low-throughput worm pipeline 4. Segmentation errors from the automated worm detection were manually corrected (Pipeline 4). Worms were then
automatically digitally straightened, and manually ‘flipped’ to ensure they all have the same orientation. (a–c) show the input data and aligned worms from a single sample
well from peb-1, daf-2 and L4440 respectively. (d) A very simple anatomical atlas (in this case 8 transverse segments) is fitted to each worm, and the mean and standard
deviation of ORO staining intensity is measured for each segment. (e) Segmentation allows scoring of differences in body fat distribution. Mean and standard deviation of the
ORO signal intensity in transverse segments T1–T8 is plotted for all analyzed worms. It is observed that, in agreement with established manual scoring of fat staining, the
intensity measurement of T7 (anterior intestinal cells) has the best discriminative power to classify fat, slim, and wild-type worms. (f) Scatter plot of measurements. Note that
the outliers 9, 10 and 16 for L4440 (red) and 30 for peb-1 (blue) also represent measurements from worms that visually have a deviating phenotype (circled in a and c).
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3. Discussion

In this paper, we describe a radically improved whole-animal
fat scoring protocol, quick oil red O (qORO). qORO allows users
to process a 96-well plate of RNAi or compound treated animals
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
in 15 min of hands-on time. qORO also enables accurate fat
assessment in a small number of samples for routine or follow
up analyses. With qORO, intact-animal recoveries are close to
100% by comparison to <40% using the original ORO and post-
fixation Nile red methods [5,22], making this protocol amenable
doi.org/10.1016/j.ymeth.2014.04.017
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to high-throughput automated scoring. The method is based on an
isopropanol/water mixture for preservation and staining, which
has the advantages of lower cost, negligible exposure to toxic
compounds, and reduced usage of dye reagents. Furthermore, the
method does not require alcohol-based de-staining, avoiding
the variability introduced by time of de-staining, which is one of
the major caveats of the alternative lipid staining method, Sudan
black. This protocol allows the user to perform the whole proce-
dure on the bench top without the need of a chemical hood. Addi-
tionally, unlike fluorescent dyes, qORO is not light sensitive. qORO
stained worm samples can be stored for weeks without affecting
the quality of the signal, enabling processing of hundreds of worm
populations in the same day and imaging at a later time. The qORO
method requires about 20 times less labor per sample. Because the
qORO protocol saves time, researchers can increase the number of
samples processed at once and thus improve data quality, while
yielding quantitative results.

One large-scale, biochemical lipid screen has been reported
using Drosophila [23], and while highly informative, biochemi-
cally-based screens do not enable analyses of body fat distribution
or parallel observation of pleiotropies. A screen for membrane and
nuclear hormone receptors regulating organismal fat has been car-
ried out using Stimulated Raman Scattering (SRS) in C. elegans [10].
Although dye-free imaging of lipids in whole-animals constitutes a
great advance towards unperturbed in vivo lipid measurements,
SRS quantification is currently based on the analysis of fat content
in 2 pairs of cells of the intestine of 5 randomly but manually
selected worms per treatment. Limited sampling dramatically
reduces the power of these screens, especially in whole animal
RNAi screens where there is significant within-population hetero-
geneity [14]. Moreover, two pairs of intestinal cells are not infor-
mative of full body fat distribution at the organismal level. By
contrast, automated whole-population high-content image-based
screens enable unbiased scoring of not only fat amounts, but also
fat distribution. In addition, high-content screening of worm pop-
ulations permits evaluation of the impact of each genetic modifica-
tion or chemical treatment on growth and reproduction, among
other relevant parameters scorable in full-well images containing
dozens of worms.

In addition, we present an upgraded set of image analysis tools
for automated quantification of the qORO signal. The analysis tools
can either be used in a fully automated mode, or allow the user to
interact with the data. The image analysis tools are provided to the
research and teaching communities through www.cellprofiler.org/
wormtoolbox. This resource is free, user-friendly, and requires no
more than a standard computer. The analysis pipelines and video
tutorials allow any inexperienced user without programming
background to analyze their images. Furthermore, analysis pipe-
lines can easily be included as supplementary information upon
publication of research results, facilitating reproducible science.

Functional genomics is an emerging field with the ambitious
task of comprehensively determining the function of a large
number of genes. We present here an improved fat staining
method for C. elegans that is compatible with high-content
Please cite this article in press as: C. Wählby et al., Methods (2014), http://dx.
screening and automated scoring. We have highlighted the bene-
fits of using the presented protocol, including increases in through-
put and robustness, and making large screens for fat regulators
possible in whole animals. Additionally, automated image capture
and analysis enables objective scoring and reanalysis of primary
data. Finally, the simplicity and affordability of the qORO method
makes it compatible with the teaching laboratory, increasing the
interest of future scientists in the biological and medical relevant
area of fat metabolism, and in computational analysis, an increas-
ingly important component of modern biological research.
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