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High-throughput screening has become a mainstay of small-mole-
cule probe and early drug discovery. The question of how to build
and evolve efficient screening collections systematically for cell-
based and biochemical screening is still unresolved. It is often as-
sumed that chemical structure diversity leads to diverse biological
performance of a library. Here, we confirm earlier results showing
that this inference is not always valid and suggest instead using
biological measurement diversity derived from multiplexed profil-
ing in the construction of libraries with diverse assay performance
patterns for cell-based screens. Rather than using results from tens
or hundreds of completed assays, which is resource intensive and
not easily extensible, we use high-dimensional image-based cell
morphology and gene expression profiles. We piloted this ap-
proach using over 30,000 compounds. We show that small-mole-
cule profiling can be used to select compound sets with high rates
of activity and diverse biological performance.

chemical diversity | biological performance diversity | biological activity |
chemical similarity

Profiling small molecules based on multiple biological activity
measurements can illuminate mechanisms of action by

comparing profiles with compounds whose mechanisms of action
are known (1–5). Here, we describe a previously unidentified use
of small-molecule profiling—enabling the creation of activity-
enriched and performance-diverse compound libraries for small-
molecule probe and drug discovery.
Biochemical and cell-based high-throughput screening (HTS)

is routinely used to discover novel bioactive molecules through
unbiased testing of up to several million compounds per screen
(6). However, despite ongoing advances in throughput, com-
pound libraries will always represent only a small fraction of all
relevant compounds theoretically accessible through chemical
synthesis (a concept often referred to as “chemical space”) (7).
Library composition therefore presents a strong source of bias
and potential limitation for any screening endeavor.
There is little dissent about the notion that a good screening

collection should yield many high-quality hits for a wide range
of biological targets or phenotypes. In other words, it should
be enriched for bioactive compounds and have high biological
performance diversity. A high percentage of compounds lacking
any activity will contribute to high cost and low performance of
a high-throughput screen. A practical example is a compound
collection containing a high percentage of compounds that fail
to penetrate cell membranes—such a library will be unlikely to
perform effectively in a cell-based HTS exploring an intracellular
process. Similarly, a screening collection of compounds with
highly redundant biological activities will be less efficient than
an equally sized library with diverse performance (Fig. 1). A

systematic path to reach these goals, however, remains elusive.
One common practice is analyzing structural features of com-
pounds to maximize chemical structural diversity. However, the
success of this approach requires that similarities and differences
in chemical structure be reflected in biological activities—a sim-
ilarity principle known to have limited applicability (8, 9). Other
common strategies include controlling physicochemical param-
eters (10), exploiting natural selection by sourcing natural
products, or relying on natural product-like analogs (11).
None of these approaches measure biological activity or per-

formance diversity directly. However, high-granularity measure-
ments of biological performance diversity have recently come
within reach through inexpensive high-throughput profiling
methods. Especially attractive are unbiased, high-dimensional
measurements relying on “universal languages” such as gene ex-
pression or cell morphology, performed as multiplexed measure-
ments in a single well. We hypothesize that these methods provide
a means to maximize biological activity and performance diversity
of a screening collection by “filtering” a starting collection of
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candidate compounds, ideally a diverse set from natural and
synthetic sources. This strategy can help avoid screening many in-
active compounds or sets with highly redundant bioactivity.
Due to the novelty of multiplexed profiling methods, this hy-

pothesis has not been tested before. However, the analysis of
biological performance and its relationship to chemical structure
has previously been undertaken using “parallel” profiles, i.e.,
compositions of results from independent cell-based or bio-
chemical measurements for a compound that were conducted one
at a time. We applied parallel cell-based assay profiling (12, 13) to
explore relationships between performance diversity and chem-
ical features such as stereochemistry (14) and skeletons (12). This
approach aimed at guiding the creation of effective screening
collections for cell-based, phenotypic HTS. We also applied
parallel biochemical assay profiling (15) to explore relationships
between protein-binding performance diversity and similar
chemical features as well as the role of origins of compounds.
The latter study addresses the problem of defining effective
screening collections for biochemistry-based HTS involving protein
binding and activity modulation (for example, enzyme inhibition).
Parallel profiling has further been used to inform compound

library design independently of chemical structure consid-
erations. In seminal work, Kauvar et al. (16) Kauvar (17), and
Beroza et al. (18) suggested selecting compounds with distinct in
vitro binding (biochemical) profiles against a panel of reference
proteins to avoid “clumps” in bioactivity space. However, thor-
ough evaluations of how these and other selection strategies
affect the performance of real-world libraries are rare.
One notable exception is a recent retrospective analysis of the

Novartis screening collection (9), showing that library subsets
selected for high performance diversity achieve high hit rates
in more assays than those selected for high chemical diversity
alone. Performance diversity was measured as the number of
unique target annotations for a set of compounds. The main
drawback of this approach is that large amounts of historical

bioactivity data are required, making it more useful for triaging
well-tested collections and less so for informing decisions about
novel libraries or library expansion.
We therefore sought to develop a high-throughput and ex-

tensible method to specify performance-diverse small-molecule
libraries for cell-based screens. To avoid the impracticalities of
conducting numerous independent assays on a novel set of small
molecules, we chose two recently developed profiling technolo-
gies where up to 1,000 measurements can be made from a single
well. The methods capture cell morphology (19) and gene ex-
pression (20) to characterize complex cell states. Unbiased
profiling has been shown to capture the mechanistic details of
a wide range of bioactivities (4, 5, 21) and we hypothesized it
would assist in defining the composition of performance-diverse
small-molecule libraries for cell-based screening. We evaluated
the performance of cell morphology and gene expression pro-
filing, using real-world screening data, and show that both
methods can be used in the specification of performance-diverse
small-molecule libraries for cell-based screens (Fig. 2). Our
results also suggest that combining the two methods may offer
greater value than either one individually.

Results
We collected cell-morphology profiles from U-2 OS osteosar-
coma cells treated with each of 31,770 compounds at a single
concentration. Our compound collection comprised 12,606
known bioactive molecules and confirmed screening hits (BIO)
as well as 19,164 novel compounds derived from diversity-
oriented synthesis (DOS). The DOS set was selected without
taking any bioactivity data into account. Changes in cell mor-
phology were measured after 48 h of treatment, using a multi-
plexed-cytological (MC) “cell-painting” assay (19). Cells were
stained with six different fluorescent markers to distinguish cel-
lular compartments and organelles. Automated microscopy and
image analysis led to profiles of 812 morphology features (19).

Cell Morphology Profiling Can Be Used to Enrich Libraries for Hits in
Phenotypic HTS. An effective library construction strategy should
preferentially select compounds that show activity in HTS. It is an
open question whether unbiased biological profiling is sensitive
and specific enough to infer activity in a range of targeted assays
from observing reproducible profiles. We found that sets of com-
pounds showing activity in theMC assay are enriched for HTS hits.
We first determined the set of “hits” for MC profiling, i.e.,

compounds that induced stable and characteristic morphological
changes in U-2 OS cells. We used the multidimensional pertur-
bation value (mp value) described by Hutz et al. (22) to measure
compound activity in profiling assays. Compounds were considered
active if they significantly differed from DMSO negative controls
(P < 0.05). As expected, due to the preselection for biological
activity in the BIO set only, the hit rate of BIO compounds in our
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Fig. 1. A performance-diverse library should cover bioactivity space with
uniformly distributed sets of compounds. Shown are schematic distributions
of performance-redundant (Left) and performance-diverse (Right) libraries
of equal size in a hypothetical 2D projection of a high-dimensional biological
activity space (pc: principal component). The diverse library probes a wider
bioactivity space with compounds of diverse biological function. For exam-
ple, the region highlighted in red is unpopulated in the redundant library
(Left). In the performance-diverse library (Right), it would be populated by
a small group of compounds having similar performance characteristics. To
illustrate, the five compounds on the right are a subset of the 19,164 di-
versity-oriented synthesis-derived compounds (DOS). They represent a clus-
ter of 14 compounds that were found to elicit a gene expression signature
not seen among other members of the DOS set or the known bioactive
molecules and confirmed screening hits (BIO). The structures of the five
compounds illustrate that not all of the members of a subset need to be
structurally similar. However, having clear SAR among biologically similar
compounds (structures 1–3) can greatly increase confidence in identified hits
and allow rapid follow-up studies.
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Fig. 2. We compared compound selection criteria based on HTS perfor-
mance diversity. Starting with a compound collection, we selected diverse
subsets by either biological profiling (MC or GE; main text) or chemical
structure. We then compared these subsets with respect to their perfor-
mance diversity across many HTS assays.
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MC assay (68.3%) exceeded the hit rate of the DOS set (37.0%; SI
Appendix, Table S1). Notably, the MC assay was able to identify
more than two-thirds of the BIO collection as active. The relatively
high hit rates could potentially arise due to statistical significance of
effect sizes that are not biologically relevant. If this is of concern,
additional constraints can be placed on the activity scores un-
derlying the P-value calculations, as suggested by the authors of the
mp-value study (22). For the purpose of this study, we chose to use
the standard threshold because we are interested in general sta-
tistical trends rather than individual high-confidence hits.
We then analyzed the HTS assay performance of these MC

assay hits. Based on HTS data from 96 cell-based screening
projects (comprising 178 individual assays and 512 different as-
say measurements) performed by the Center for the Science of
Therapeutics at the Broad Institute, we found that compounds
active in our MC assay were significantly enriched for hits in
HTS (Fig. 3). We limited our analysis to cell-based HTS assays
because the profiling described here depends on testing live cells;
profiling is thus used to define optimal libraries for cellular
screens. Importantly, these assays cover a variety of fluorescence-
and luminescence-based readouts that are dissimilar from our
image-based MC assay (SI Appendix, Tables S2–S4). Five of
these assays (67 measurements; 13%) were based on imaging
and 14 assays (14 measurements; 2.7%) used U-2 OS cells. For
each compound, we calculated a hit frequency as the fraction of
HTS assays in which it achieved a minimum absolute z score of 3
relative to the DMSO control distribution (23). The median HTS
hit frequency for compounds active in the MC assay (2.78%) was
significantly higher than for all tested compounds (1.96%; one-
sided Wilcoxon P = 4.5 × 10−17; Fig. 3A). Likewise, the set of
compounds inactive in the MC assay was significantly depleted
for HTS hits (median hit frequency = 0%; P = 1.5 × 10−27;
Fig. 3A). We conclude that activity in a morphological profiling
assay can be used to enrich screening libraries for bioactive
compounds. Furthermore, the extent of the difference between
treatment and the negative control was associated with the HTS
hit frequency. Compounds that showed larger differences and thus
stronger activity in the MC assay had larger HTS hit frequencies
(Fig. 3 B and C). This suggests that multiplexed profiling could
provide a way of flagging potentially promiscuous compounds
before they appear as false positives in numerous screens.

Compound Sets with Diverse Cell Morphology Profiles Have Diverse
Performance in Cell-Based HTS Assays. We next tested whether MC
profiling provides a practical approach to creating compound li-
braries with diverse biological performance for cell-based screens
(Fig. 2). We found that selection of compounds with diverse MC
profiles led to higher HTS performance diversity than either ran-
dom selection or selection of diverse chemical structures (Fig. 4).
We first ensured that MC profiles reliably captured similarities

and differences in biological performance with high granularity—
a prerequisite for selecting diverse bioactivities. Hierarchical clus-
tering of well-annotated BIO compounds based on their MC pro-
files grouped compounds with similar biological effects together (SI
Appendix, Fig. S1), confirming results from earlier studies (19, 24).
We then compared different compound selection criteria—MC

profile diversity, chemical structure diversity, and random selec-
tion—with respect to their ability to select compounds with
diverse HTS performance. HTS performance diversity was mea-
sured by first constructing an HTS assay profile for each com-
pound, indicating for each assay in which the compound was
tested whether it scored significantly positive (encoded as 1),
scored significantly negative (−1), or was not a hit (0). Com-
pounds were then clustered based on their HTS profiles and we
calculated (i) the absolute number of distinct clusters represented
in a compound set and (ii) the set diversity (or effective number
of distinct clusters). The set diversity is an information-theoretic
measure that takes the distribution of compounds over clusters

into account, rewarding even distributions over clusters and pe-
nalizing sets for which a large fraction of compounds fall into only
a few clusters (Fig. 4A). In summary, a maximally performance-
diverse set in this context would consist of compounds that all
have distinct HTS assay profiles. In a set lacking performance
diversity, all compounds would have the same profile (Fig. 4A).
We compared the HTS performance diversity of compound

sets selected to have (i) diverse MC profiles and (ii) diverse
chemical structures (CS) to randomly selected compound sets
(RND). To allow a direct comparison, we applied all three se-
lection methods to the same set of compounds. This “test col-
lection” consisted of all unique compounds in our experiment for
which MC profiles with reliable signal were available (mp-value
P < 0.05) and that were tested in at least 15 HTS assays to
calculate meaningful assay profiles. We further included only
compounds that were a hit in at least one HTS assay to avoid
having a large pool of all-zero HTS profiles considered perfor-
mance redundant only because the compounds had not been
tested in enough assays. If a compound had been tested multiple
times, we kept only the instance with the highest activity score
to exclude trivial redundancy due to identical treatments. In all,
7,154 compounds fulfilled these selection criteria. At baseline,
this test collection covered 665 distinct assay profile clusters and
achieved 23.9% of the maximum theoretical diversity (100%
diversity would be achieved if each cluster were represented by
the same number of compounds). This result indicates that a
considerable number of compounds fall into only a few clusters
and thus have redundant biological performance, providing a
good test case for our method.
We selected subsets ranging from n = 1 to n = 7,154 compounds,

using MC, CS, or RND as a selection criterion (SI Appendix,
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Fig. 3. Sets of compounds that are active in MC and GE profiling are
enriched for HTS hits. (A) Boxplots showing the distribution of HTS hit fre-
quencies (HF, fraction of HTS assay measurements in which a compound
scored as a hit) for compound sets in the MC study. Compared with all tested
compounds, the HF is significantly higher for compounds active in the MC
assay [median(HFall) = 1.96%; median(HFact) = 2.78%; one-sided Wilcoxon
P = 4.5 × 10−17]. Likewise, the HF is significantly lower for compounds in-
active in our MC assay [median(HFinact) = 0.00%, P = 1.5 × 10−27]. (B and C)
Compounds with higher activity in the MC assay have higher HF. HF (B) and
compound numbers on a log10 scale (C) are plotted for all compounds that
exceed a given activity score (SI Appendix). (D) Boxplots of HFs for com-
pound sets in the GE study. The set of active compounds for the GE assay is
enriched for HTS hits [(D) median(HFall) = 0.99%; median(HFact) = 3.52%; P =
2.2 × 10−28] whereas the set of inactive compounds is depleted for HTS hits
[median(HFinact) = 0.67%, P = 1.0 × 10−4]. (E and F) Compounds with higher
activity in the GE assay have higher hit frequencies.
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Fig. S2A). MC diversity selection led to the highest overall HTS
performance diversity, significantly improving over the baseline of
all compounds in the test collection while selecting only less than
a fifth of them (1,399 compounds achieve 40.0% diversity, covering
71.9% of all clusters; Fig. 4B and SI Appendix, Figs. S2A and S3A).
This value significantly exceeded the HTS performance diversity of
sets selected randomly (19.8%; 46.6% of clusters; one-sided Wil-
coxon P = 2.9 × 10−165). By contrast, the traditionally applied CS-
diversity–based selection did not lead to notably higher perfor-
mance diversity than random selection (20.2%; 47.9% of clusters;
Fig. 4B and SI Appendix, Figs. S2A and S3A). This result supports
our hypothesis that single-well biological profiling can be used to
select compound sets with diverse HTS assay performance patterns.
Technically, the diversity measure quantifies the effective

number of clusters (groups of compounds having similar HTS
performance) in a library, i.e., how many clusters with an equal
number of members would be needed to achieve the same av-
erage cluster variety in a sample drawn from that library. In
practice, this means that if the diversity is low, a few clusters will
be highly overrepresented and can easily dominate the top of
screening hit lists, especially if they are associated with relatively
nonspecific biological effects (e.g., toxicity). Random selection
conserves the relative representation of each cluster in the full
dataset; therefore, a reduction in compound numbers using

random selection (or the similarly performing selection based on
chemical structure) will lead to a loss of small clusters, i.e., rare
HTS performance patterns. Our data suggest that profile-based
selection could by contrast “compress” the HTS performance
information per tested compound in the library by a factor of 8
(40% with one-fifth of the library vs. 23.9% for all compounds),
while retaining most of the unique HTS performance patterns
(71.9%). Relative to the random and structure-based selection,
this represents a twofold increase in diversity and a 54% increase
in unique HTS performance patterns.

Gene Expression-Based Selection Can Identify Sets of Compounds
Enriched for HTS Hits and Diverse HTS Performance. We repeated
our analysis with gene expression (GE) profiles collected after
6 h of treatment. Using cost-effective ligation-mediated ampli-
fication and bead-based detection (20), we measured the ex-
pression levels of 977 protein-coding RNA transcripts per
sample. The transcripts were selected to be largely uncorrelated
and capture about 80% of the similarity information of genome-
wide expression profiles (∼22,000 transcripts; http://lincscloud.
org/the-landmark-genes/). We collected GE profiles for 17,553
DOS and 4,199 BIO compounds, the majority of which were also
part of our MC profiling experiment (SI Appendix, Tables S1 and
S5). On each plate, we included a set of positive control (POS)
compounds that have been shown to elicit strong gene expression
changes across different cell lines (4).
Almost all POS compounds were active in the GE assay

(96.6%; SI Appendix, Table S1). The GE assay “hit” rates for
bioactive compounds (39.0%) and DOS compounds (11.0%)
were lower than those of the MC assay (SI Appendix, Table S1).
A possible explanation is that we measured compounds in trip-
licate in the GE assay and in quadruplicate in the MC assay and
were thus able to detect smaller effect sizes in the MC assay.
Furthermore, the cells in the MC study were exposed to com-
pounds longer than in the GE study (48 h vs. 6 h).
Compounds active in our GE assay were significantly enriched

for hits in cell-based HTS (Fig. 3D), resembling the results from
our MC study. The median HTS hit frequency for compounds
active in the GE assay (3.52%) was significantly higher than for
all tested compounds (0.99%; one-sided Wilcoxon P = 2.2 × 10−28;
Fig. 3D). The set of compounds inactive in profiling assays was
significantly depleted for HTS hits (median hit frequency = 0.67%;
P = 1.0 × 10−4; Fig. 3D). As in the MC study, compounds that
showed larger profile differences from DMSO negative controls
and thus stronger activity in the GE assay had larger HTS hit fre-
quencies (Fig. 3 E and F). We conclude that GE profiling can in-
form the selection of collections enriched for active compounds and
possibly guide the selection of compounds based on their expected
promiscuity in HTS assays.
We repeated the diversity selection study, using GE profiles.

When clustered based on GE profiles, compounds formed
groups with related mechanisms of action (SI Appendix, Fig. S4).
We then selected a compound subset with diverse GE profiles or
CS and compared its HTS performance diversity to a randomly
selected subset (RND; Fig. 4A). Analogous to the MC study, we
selected a GE test collection of 1,363 unique compounds, which
at baseline achieved 41.5% maximum theoretical diversity and
covered 232 distinct clusters. We observed similar results to
those of the MC study (Fig. 4C and SI Appendix, Figs. S2B and
S3B). By selecting about a third of the test collection (463
compounds) GE profile diversity selection led to the overall
highest HTS diversity (47%; 73.2% of clusters), which signifi-
cantly exceeded results for the random control selection (34.4%;
59.7% of clusters; one-sided Wilcoxon P = 2.9 × 10−165). CS
diversity did not lead to higher diversity than random selection
(32.2%; 59.3% of clusters). We conclude that GE profiling can
be used to select compound sets with diverse HTS performance.
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over clusters, we then determined for each subset the HTS performance
diversity (step 3). A subset with high performance diversity would contain
compounds that are equally spread over many clusters. A subset with low
diversity would contain a large fraction of compounds that fall into only
a few HTS clusters. (B and C) Results for the subset size that achieved the
highest HTS performance diversity across all selection methods, using a ran-
dom compound selection (RND) as baseline (results on all subset sizes in SI
Appendix, Fig. S2). Asterisks indicate significant diversity increases over RND.
(B) Results for the MC study (test-collection size, n = 7,154 compounds;
subset size, nsub = 1,399). Selecting compounds with diverse MC profiles led
to significantly higher HTS performance diversity than random selection
(Wilcoxon rank-sum P = 2.9 × 10−165). (C) Results for the GE study (n = 1,363;
nsub = 463). GE diversity selection led to higher HTS performance diversity
than random selection (P = 2.9 × 10−165). For both the MC and the GE test
collection, selection based on chemical structure diversity did not notably
increase HTS performance diversity over the random control.

10914 | www.pnas.org/cgi/doi/10.1073/pnas.1410933111 Wawer et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://lincscloud.org/the-landmark-genes/
http://lincscloud.org/the-landmark-genes/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410933111/-/DCSupplemental/pnas.1410933111.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1410933111


Cell Morphology and Gene Expression Profilings Are Not Redundant.
The hits identified in the MC (48-h treatment) and GE assays
(6-h treatment) overlap only partially (Fig. 5A). However, the hit
sets of MC and GE are also not independent (Fisher’s exact test,
P = 3.70 × 10−94; Fig. 5A and SI Appendix, Table S5), indicating
that a compound active in one profiling assay is more likely to
also be active in the other (compared with the baseline proba-
bility of being active). When separated by compound class, DOS
compounds showed significant overlap, again indicating that the
activity in both assays is not independent. Because many of the
bioactives tested in both assays scored as “hits” (MC, 74%; GE,
38%; SI Appendix, Table S5), the overlap for the BIO set is not
significant (a large overlap is expected by chance if a large
fraction of the compounds are active in either assay).
The overlapping hits for both assays are enriched for com-

pounds that scored as positives with a high frequency in cell-
based HTS (Fig. 5B and SI Appendix, Fig. S5). Many of these
compounds are known to induce strong cellular responses (e.g.,
cytotoxic and cytostatic agents; SI Appendix, Table S6) and are
thus expected to give a strong signal in most cell-based profiling
methods. An interesting question that originates from this result
is therefore whether the hits identified in imaging and gene ex-
pression profiling assays will converge if profiling assay sensi-
tivity and specificity were further optimized or if some
bioactivities—due to mechanistic differences—can be detected
only in one of the assays. The parameters used for this study (one
cell line and different treatment times for MC and GE) limit our
ability to provide an answer to this question. However, within the
limitations of currently available methods, our data suggest that
orthogonal profiling techniques could capture a significantly
wider range of bioactivities than either method alone (Fig. 5A).
When compared directly on the set of compounds tested in both

assays, diversity selection using both MC and GE profiles led to
increased HTS performance diversity over random selection, with
MC performing better than GE (Fig. 5C and SI Appendix, Figs. S6
and S7). Again, using chemical structure diversity as a selection

criterion did not significantly improve HTS performance diversity
over random selection.

Discussion
We conclude this study by suggesting the use of multiplexed small-
molecule profiling as a strategy to construct performance-diverse
libraries for cell-based screens. We have shown that single-well
high-throughput cell morphology and gene expression profiling can
be used to select compound sets that are highly enriched for com-
pounds that score as HTS hits in cell-based assays without using
prior knowledge of the outcomes of those HTS assays. Further-
more, we can exploit the ability of cell morphology and gene ex-
pression profiling to group compounds by their mechanism of
action to support creation of a performance-diverse compound li-
brary. Existing collections can be triaged to reduce existing re-
dundancy of biological performance, and prospective library
extension and evolution can be achieved. This method is a pow-
erful partner for short and modular diversity-oriented syntheses,
where the initial focus can be on diverse structures computed to
have desirable physical and chemical properties (for example,
solubility and medicinal chemistry tractability). As we show here,
compounds can then be filtered for their performance diversity
before entering into a collection optimized for cell-based screens.
Optimally, a library should contain a few compounds for each

identified profile type that each differ slightly in their biological
performance (Fig. 1). This strategy will help to increase confi-
dence in identified hits in cases where the gene expression and
cell morphology features associated with a group of compounds
track with their performance in an HTS assay. If, in addition,
such biologically similar compounds have similar chemical
structures, these allow for easy validation and follow-up through
structure–activity relationship (SAR) studies around an identi-
fied response (25). However, there is also value in compounds
with similar biological performance but dissimilar structure (e.g.,
compounds 1–3 vs. compounds 4 and 5 in Fig. 1). Besides pro-
viding different chemical starting points, observing the same
HTS performance for such compounds is even more indicative of
related mechanisms of action, as they do not share a structural
similarity that could lead to screening artifacts. The latter
strategy represents a translation of the concept of SAR analog
series from chemical to biological space; i.e., it does not rely on
a chemical structure similarity principle.
The extent of improvement over the full library for subsets se-

lected based on chemical diversity depends on many parameters
(e.g., redundancy of the library, assay selection, resolution of the
HTS data), making it difficult to quantify without prospective anal-
yses on different libraries and assays. Although 40–50% diversity as
observed in our studies appears to leave much room for improve-
ment, 100% is a theoretical maximum that is difficult to achieve in
practice. This is especially true because we use HTS data as our
standard, which is often noisy and likely biased due to the specific
assay selection. As a pilot study for testing our results prospectively,
we have therefore plated a performance-diverse compound collec-
tion, selected using the principles described in this study. We have
started to evaluate this collection in cell-based screens.
With an ongoing reduction of both costs and technological hur-

dles associated with performing multiplexed assays, we anticipate an
increasing adoption of high-dimensional profiling assays. This would
allow our method to be readily applicable to novel screening col-
lections. Automatic microscopes used for imaging assays are already
available at many screening centers. The Luminex technology used
for the GE assay is a versatile assay system that is used for various
purposes by many laboratories. In addition, ongoing developments
in other gene expression measurement technologies (e.g., RNAseq)
will similarly simplify large-scale gene expression analyses.
Our results show that different biological profiling methods and

assay conditions currently capture different hit sets, possibly in-
cluding compounds with distinct mechanisms of action. As novel
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Fig. 5. MC and GE profiling have overlapping yet distinct hit sets. (A) Venn
diagrams of the MC and GE hit sets. Although the majority of compounds
are identified by only one of the methods, low P values (Fisher’s exact test)
indicate a nonrandom overlap between two hit sets. Both MC and GE
identify a large fraction of the BIO collection as hits; thus even high overlap
is not significant (SI Appendix, Table S5). (B) Boxplots of HTS hit frequencies
(HF, defined in Fig. 3) for active compounds tested in both the MC and the
GE study. MC, hits identified based on cell-morphology profiles; GE, hits
identified based on gene expression profiles; both, hits identified by both
MC and GE. The intersection of the sets of active compounds from the MC
and GE assay shows even stronger enrichment for compounds with high HF
[median(HFboth) = 4.41%] than either set of actives alone [median(HFMC) =
2.14%; one-sided Wilcoxon PMC = 1.4 × 10−14; median(HFGE) = 3.39%; PGE =
1.9 × 10−3]. This indicates that the MC and GE assays tend to agree on
compounds that are active in multiple HTS assays and possibly even pro-
miscuous (SI Appendix, Table S6). Asterisks indicate significant HF increases.
(C) When direct comparison was made on the intersection of the MC and GE
test collections (n = 904), we observed higher HTS performance diversity
than random selection for selection based on both MC (Wilcoxon P = 2.9 ×
10−165) and GE profiles (P = 7.1 × 10−165) when selecting about a third of the
test collection (nsub = 320). Asterisks indicate a significant diversity increase
over RND.
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profiling methods become suitable for HTS formats, they should be
evaluated, using a diverse set of cell lines (or strains, in the case of
microbial therapeutics discovery) and assay parameters, to cover
a large fraction of the theoretically possible biological measure-
ment space and to enable construction of transformative screen-
ing collections for cell-based phenotypic screens. Likewise, the
development of biochemical profiling methods should enable
construction of effective screening collections for protein-binding
and biochemical activity-modulation screens (26).

Materials and Methods
For details, see SI Appendix.

MCMorphology Profiles.We followed the protocol published by Gustafsdottir
et al. (19) After compound treatment (48 h), we stained the cells for nucleus
(Hoechst 33342), endoplasmic reticulum (Con A/AlexaFluor488 conjugate),
nucleoli (SYTO 14 green fluorescent nucleic acid stain), Golgi apparatus, and
plasma membrane (wheat germ agglutinin/AlexaFluor594 conjugate, WGA),
F-actin (phalloidin/AlexaFluor594 conjugate), and mitochondria (Mito-
Tracker Deep Red). Morphological features for each cell were obtained
through subsequent automatic image capture and analysis.

GE Profiles. We followed the protocol published by Peck et al. (20). After
compound treatment (6 h), cells were lysed and expression levels of 977
transcripts quantified using ligation-mediated amplification and Luminex
microsphere-based detection.

HTS Hit Frequency and Assay Profiles. Screening results were assembled from
an internal Broad Institute database. However, the majority of assays have
been published in ChemBank or PubChem/BARD (Datasets S1 and S2). We
calculated D scores (27) for each assay result to make them comparable
across individual assays. For hit-frequency calculations, we used a hit-calling
threshold of 3σ (relative to DMSO control), which corresponds to an absolute
D score of 3. We chose 35 assays as the lower threshold of performed assay
measurements per compound to achieve a probability of more than 50% of
being a hit in at least one assay by assuming a true hit rate of 2% per assay.
For HTS performance diversity calculations, we discretized result values in
three bins (−1, 0, 1), using a two-sided activity threshold of 2.5%. We used
a lower threshold than for hit calling because the result values were com-
bined into profiles that were exclusively used in similarity calculations. In
addition to the denoising effect of considering multiple measurements,
capturing weakly active compounds is more important for profile similarity

than for overall hit frequency calculations. Accordingly, the minimum
number of assay measurements was decreased to 15.

Diversity Selection. From a set of n compounds, we selected series of diverse
compound subsets Si ,i∈ ½1,n�, based on MC profiles, GE profiles, and extended-
connectivity fingerprints (ECFP4), using a maximum dissimilarity strategy. A ran-
dom compound was chosen as the starting set S1. To create Si+1, we iteratively
added the compound that was most dissimilar to its closest neighbor in Si until
no compounds were left to add (full set Sn). This selection process was repeated
500 times, each time with a random starting compound. Dissimilarity for GE and
MC profiles was calculated as pairwise correlation distance (1 − Pearson corre-
lation coefficient) between profiles. Chemical dissimilarity was measured using
Jaccard distance (28) on stereochemistry-aware ECFP4 fingerprints (ECFP4#S) (29).

HTS Performance Diversity.We hierarchically clustered compounds based on
their HTS assay profiles, using weighted-average linkage applied to Jaccard dis-
tances. The resulting dendrogram was cut at a distance of 0.8 to obtain final
cluster assignments. We calculated the performance diversity for a set of com-
pounds C as the effective number of HTS clusters using the true diversity D (30):

D= exp

 
−
XR
i=1

pi lnpi

!
= eH:

Here, R is the number of distinct clusters in C, pi is the fraction of compounds
in C that are members of cluster i, and H is the Shannon entropy (30).
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