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ABSTRACT
Providing a general framework for mitosis detection is chal-

lenging. The variability of the visual traits and temporal fea-

tures which classify the event of cell division is huge due to

the numerous cell types, perturbations, imaging techniques

and protocols used in microscopy imaging analysis studies.

Therefore, the commonly used machine learning techniques

that require specified sets of distinctive features along with a

comprehensive set of training examples, are specific to partic-

ular datasets.

We present a robust mitotic event detection algorithm that

accommodates the difficulty of the different cell appearances

and dynamics. Addressing symmetrical cell divisions, we

rely on the fact that the two daughter cells right after the di-

vision are approximately identical. Having detected pairs of

candidate daughter cells, based on their association to poten-

tial mother cells, we look for the respective symmetry axes.

We then calculate a similarity score for each of the selected

pair of cells. The score functions as a likelihood measure for

being a mitosis. Promising detection results for four different

data sets of time-lapse microscopy imaging were obtained.

Index Terms— Mitosis detection, Symmetry, Time-lapse

Microscopy, High-throughput images

1. INTRODUCTION
Mitosis is the process in which the previously duplicated ge-

netic material in a cell undergoes nucleus division. The study

of mitosis (or cell division) has a substantial impact on many

fields in the microbiology and biomedical world. Among

them: the study of mutations and diseases, regenerative be-

haviors, cancer and metastasis, cell tracking and more. Time-

lapse microscopy is an excellent platform to monitor cellu-

lar phenomena and events for a certain period of time. As

technology develops and acquisition techniques advance, bi-

ologists face enormous amounts of data. Thus, the manual

analysis of the images becomes impractical. As a result, the

demand for elegant automatic tools for cell image analysis is

ever growing.

1.1. Background and Related Work

Mitosis detection and cell tracking are intimately related. One

can either use cell associations to detect cell devisions or use

mitotic events as anchors for cell tracking. In [1] a mother cell

is associated with one of the daughter cells, while the other

daughter initiates a new track. Backward tracking is then per-

formed to connect the two daughters with the mother cell. The

main weakness of this strategy is the dependency of the mito-

sis detection quality on the tracking performances. Moreover,

it requires an excessive computational complexity, when the

purpose of the analysis is limited to the study of cell divi-

sions. An alternative approach, if tracking is indeed needed,

is to use the detected mitotic events which mark the initiation

and the termination of cells path to guide the tracking. As

the appearance of dividing cells can be changed dramatically,

current approaches use machine learning algorithms, such as

support vector machine (SVM), to detect mitotic events based

on the visual and temporal traits [2, 3, 4]. While these meth-

ods are successful when sufficient positive training examples

are available along with a carefully selected set of distinguish-

ing features, they are impractical in general cases due to the

huge variability in cells’ dynamics and appearance, caused by

the differences in datasets, the chemical compounds used, the

microscopy imaging technique and the imaging parameters.

For example, since mitosis is an extended process, composed

of several distinctive stages, the rate of acquisition has signif-

icant implications on the extracted features.

1.2. Contribution
Consider the two pairs of consecutive frames, displayed in

Figure 1, each showing mitosis of a different cell type ac-

quired at a different rate. The proposed algorithm accom-

modates the difficulty of the different cell visual and tempo-

ral features without relying on the shape of the mother cell.

Moreover, in contrast to most algorithms, it is not based on

a full cell tracking, neither does it require a large amount

of user annotated data. Instead, as the majority of cells un-

dergo symmetrical divisions, we detect mitosis by measuring

the similarity between the two daughter cells, right after the

split. Using symmetry for mitosis detection has been sug-

gested in [2], and applied to a data set of elongated cells,

where the symmetry axis was determined based on the major

axis of the mother cell. However, a symmetry axis is gener-

ally not as pronounced. Therefore, we suggest a novel algo-

rithm to detect it based on our observation that the symmetry

axis is orthogonal to the virtual straight line that connects the
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Fig. 1. Cell division from two different datasets: the mother

cells are in frame t and the daughters in frame t+1. Each pair

of daughter cells shows great similarity, although the datasets

visually differ. Hereafter: 1. RGB colormap (instead of gray

colormap) is used for highlighting. 2.MCF-10A dataset is

courtesy of Albeck & Brugge. 3.N2DL-HeLa dataset source

is [5, 6].

two daughter cells. We then quantify the level of ‘asymme-

try’ based on shape similarity, if cell segmentation is given

and reliable as well as a match between the gray-levels of the

two sides. Encouraging detection rates were obtained for four

different high-throughput microscopy datasets.

2. METHODS
The objective of the suggested method is a robust detection

of mitotic events: Given a sequence of time-lapse microscopy

images and their labeled segmentation, a list of detected mi-

totic events is formed. The algorithm consists of two main

stages: mitotic candidate extraction using local mother-daughters

relations, followed by examination of each candidate for mi-

tosis by estimating a potential symmetry axis and calculating

a similarity score between the candidate daughters. The score

functions as a likelihood measure for being a mitosis.

2.1. Candidate selection
The goal of the first stage of the algorithm is to reduce the

search space by creating a candidate list that will be further

examined in the next stage for similarity between the candi-

date daughters. Therefore, that list should contain as much of

the mitotic events, at the expanse of additional false positives

(FP). The construction of the candidate list is performed ac-

cording to mother-daughters spatial proximity: Let It : Ωt →
R define a gray level image frame acquired at time t where

Ωt is the 2D image domain. We define a candidate mother in

frame t by ctf , f = 1, . . . , F where F is the total number of

detected cells in frame t. We search for candidate daughters

in frame t + 1 in the region defined by ωt+1
f � {(x, y) ∈

Ωt+1|(x − xf )
2 + (y − yf )

2 ≤ R2} where (xf , yf ) are the

center of mass (COM) coordinates of ctf and R is a predefined

search radius that is estimated in a preliminary process from

the sequence statistics. We denote by {ct+1
f,di

, ct+1
f,dj
} the pair

of daughter cells candidates which relates to ctf , if found and

if none of them is closer to the COM of a different mother. If

more that two cells are detected in ωt+1
f , then the nearest pair

is selected. For now on, the superscript t+1 and the subscript

f will be omitted for the sake of clarity.

2.2. Symmetry-based detection
Given a list of cell pairs, our objective is to detect the most

likely daughter cells based on their similar appearance. Specif-

ically, for each pair, we define a sub-image Ii,j : ωi,j → R,

where ωi,j ∈ Ω, which contains the two daughter cell can-

didates and measure its degree of bilateral symmetry. We

assume that if such symmetry exists, the symmetry axis is

perpendicular to the straight line that connects the COM of

the daughter cells candidates and intersects it at its center. We

define the intersection point by (x0, y0) and the angle of inter-

section by θ0. However, note that, as cell segmentation might

be inaccurate the calculated COMs could be erroneous. We

therefore re-estimate the pose and orientation of the symme-

try axis, as will be described shortly, and use (x0, y0) and θ0
for initialization.

Symmetry axis detection: We estimate the symmetry axis

of a sub-image Ii,j containing two daughter cell candidates

in the spirit of [7]. Let Ji,j be the symmetrical counterpart

of Ii,j obtained (w.l.o.g.) by an up-down flip. Let R define

a planar rotation matrix and let τ = [τx, τy, 1] be a transla-

tion vector defined using homogenous coordinate system. We

look for the Euclidean transformation H(τx, τy, θ):

H(τx, τy, θ) = [R; τ ] =

⎡
⎣

cos θ sin θ τx
− sin θ cos θ τy

0 0 1

⎤
⎦ (1)

that aligns Ji,j to Ii,j . Formally, we solve the following opti-

mization problem:

{τ̂x, τ̂y, θ̂} = arg max
τx,τy,θ

Ssim(Ii,j , H(τx, τy, θ) ◦ Ji,j), (2)

where JH
i,j � H ◦ Ji,j defines the transformation of ωi,j (the

image domain of Ji,j) by H(τx, τy, θ) and Ssim ∈ [0, 1] is

a similarity score to be defined next. As shown in [7], the

orientation of the symmetry axis is θ/2 with respect to the

coordinate system of ωi,j , and its midpoint coordinates are

τx/2, τy/2, given that the origin of ωi,j is located at its cen-

ter. The concept is illustrated in Fig. 2.

Similarity score: Let Di,j be the binary label map (segmen-

tation) of Ii,j , obtained by setting (w.l.o.g.) the image pixels

that belong to the cell image to one and the background pixels

to zero. Let Ui,j be the symmetrical counterpart of Di,j (the

flipped image) aligned by H(τx, τy, θ). We define a similar-

ity score Ssim ∈ [0, 1] based on both the morphology and the

gray level distribution of the two daughter cells candidates as

follows:

Ssim(Ii,j , J
H
i,j) = α1Scorr(Ii,j , J

H
i,j) (3)

+ α2Shist(Ii,j , Di,j)

+ α3Sshape(Ui,j , Di,j),
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(a) (b) (c) (d)

Fig. 2. Symmetry axis estimation (a) Original image. The

symmetry axis is marked by a dashed line. Its midpoint is

marked with a cross. (b) An up-down reflection of (a). (c)

Symmetry axis and middle points of the initial image (in or-

ange) and its reflection (in yellow). Parameters of the opti-

mal H are in white. (d) After transforming the image using

{τx/2, τy/2, θ/2} the symmetry axis is the horizontal axis

that goes through the center of the sub image, and its mid-

point coincides with the center of the transformed image.

where, Scorr, Shist, Sshape ∈ [0, 1] are normalized similarity

measures to be defined in the following and
∑

αi = 1 are

non-negative weights, that were the same for all the datasets.

Intensity correlation: The term Scorr could be obtained by

a correlation between Ii,j , J
H
i,j . However, since, in dense en-

vironment, non-related cells can be captured in Ii,j and break

the symmetry, we use an approximated binary mask of the

cells: Li,j = Ui,j∨Di,j , where ∨ is the boolean operator OR.

The score, Scorr is therefore the correlation result of Ii,j ·Li,j

and JH
i,j · Li,j mapped to [0, 1].

In the case where the label maps (segmentations) are not

reliable, then a weighted correlation can be used instead:

Scorr(Ii,j , J
H
i,j) =

σij√
σiiσjj

, (4)

σij =
1

N

N∑
n=1

wn(I
(n)
i,j − Ii,j)(J

H,(n)
i,j − JH

i,j)

Ii,j =
1

N

N∑
n=1

wnI
(n)
i,j ,

1

N

N∑
n=1

wn = 1.

In fact, the weights wn are the values of two 2D Gaussian

functions Gi(oi, σi
x, σ

i
y) and Gj(oj , σj

x, σ
j
y), where the ori-

gins oi, oj are the COMs of each of the daughter cells, and

the variances σx, σy are calculated based on the major axes of

the cells. Therefore, lower weights are assigned to pixels that

are distant from the approximated cell’s center as the confi-

dence they belong to the cell is lower. Figure 3 demonstrates

the main concept.

Histogram matching: Let hi, hj be intensity histograms of

Idi and Idj , respectively, where, Idi and Idj , are the scalar

product of Ii,j with the label maps (segmentations) of daugh-

ter i and daughter j respectively. Let V = {v} define the

(a) (b) (c)

Fig. 3. Weights for correlation calculation: (a) Two daughter

cells and additional cell that breaks the symmetry. (b) Col-

ormaps representing wn. (c) Two 2D Gaussians (mesh).

range of a discretized gray level values in Idi and Idj . We

define Shist as follows:

Shist = 1−
∑

v∈V |hv
i − hv

j |∑
v∈V max(hv

i , h
v
j )

(5)

Shape similarity measures When the segmentation are rea-

sonable reliable we can add to Ssim a measure of the overlap

between daughter i and daughter j either by using either the

Dice score [8]:

Sdice(Di,j , Ui,j) =
2(|Di,j | ∩ |Ui,j |)
|Di,j |+ |Ui,j | , (6)

or (and) the Jaccard measure:

SJaccard(Di,j , Ui,j) =
|Di,j | ∩ |Ui,j |)
|Di,j | ∪ |Ui,j | . (7)

3. EXPERIMENTS AND RESULTS
Experimental data: Four different datasets encompassing

twelve microscopy sequences were examined: 1. N2DL-HeLa1,

see[5, 6] - HeLa cells stably expressing H2b-GFP, Olympus

IX81 with plan 10x/0.4 objective lens, acquisition rate: 2

frames per hour (fph), resolution: 0.645 × 0.645 microns

per pixel (mpp). 2. N2DH-SIM1 [5, 6] - simulated nuclei

moving on a flat surface, resolution: 0.125 × 0.125 mpp.

3. N2DH-SIM+1 [5, 6]: Simulated nuclei of HL60 cells,

rate 2 fph, resolution: 0.125 × 0.125 mpp. 4. A subset

of MCF-10A22 cells expressing NLS-mCerulean and RFP-

Geminin, wide-field epifluorescence, NikonTE2000, 20X ob-

jective, rate: 3fph and resolution: 0.2− 0.3 mpp.

The obtained list of mitotic events was compared to anno-

tations of mitotic events provided by the ISBI challenge [5, 6].

Cell segmentation of the MCF-10A dataset, which was not

part of the challenge, was performed via CellProfiler [9]. For

1Data source: V. Ulman and D. Svoboda, Centre for Biomedical Image

Analysis, Masaryk University. Brno. Czech Republic (Created using Cy-

topacq).
2Data source: J. Brugge and J. Albeck
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#TP #FP #FN Percision Recall F-Score

N2DH-SIM 104 5 12 95% 90% 92%

N2DH-HeLa 86 14 8 86% 91% 89%

N2DH-SIM+ 62 1 5 98% 93% 95%

MCF-10A 10 1 2 91% 83% 87%

Table 1. Mitosis detection results for four different data sets.

Positive Examples Negative Examples

Similarity score

Fig. 4. Histograms of the similarity scores Ssim for the pos-

itive (left) and negative (right) examples, taken from the can-

didates list of the N2DH-SIM dataset [5, 6].

this sequence, we detected the mitotic events (for comparison

with the automatic algorithm) by ourselves.

Results: Table 1 shows the quantitative results, which in-

clude the true positives (TP), false positives (FP), false neg-

atives (FN), precision, recall and F-scores, for each of the

tested datasets, from the pre-selected list of candidates. That

list was selected such that the number of false negatives is

zero on the expense of higher number of false positives; see

Section 2.1 for details. Histograms of the similarity scores

of the candidate list, obtained from the largest data set ex-

amined, are displayed in Figure 4. The similarity score Ssim

allows good separation between the positive (mitotic events)

and the negative cases. Nevertheless, there are a few exam-

ples of false detection (Figure 5). Addressing these outliers is

a subject of future study, to be discussed next.

4. SUMMARY AND FUTURE DIRECTIONS
We presented a novel method for mitosis detection which over-

comes the huge variability of high-throughput microscopy imag-

ing of cells. This is accomplished by addressing symmetrical

cell devisions and using symmetry as a guiding cue. High sen-

sitivity and specificity measures were obtained for four differ-

ent datasets of different sources.

Cells dynamics play an important role, distinguishing an

actual cell division event from a random pair of cells pass-

ing by each other. Due to the forces of the microtubules in

the mitotic spindle, pulling chromatin apart [10], the daugh-

ter cells appear as if they repel each other. This repulsion

is captured within a frame or two after the splitting. Track-

ing the daughters, while measuring their relative distance and

direction may provide additional useful information. Higher

separability between positive and negative examples can be

obtained by constructing a multi-dimension similarity score

False Positive False Negative

MFC-10A N2DL-HeLa N2DL-HeLa

Fig. 5. Examples of false detection (left) and mis-detection in

MFC-10A and N2DL-HeLa [5, 6] datasets.

using both dynamic and appearance.
Accurate segmentation is a key to improved mitosis de-

tection, facilitating symmetry axis estimation and allowing
more adequate similarity scores. Accurate association of the
mother and daughters enhances the selection of the initial
list of daughter candidates and improves motion detection.
Therefore, current study focuses on the incorporation of the
mitosis detection within a unified cell segmentation and track-
ing framework.
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