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Abstract
RNA interference and morphological profiling—the measurement of thousands of pheno-

types from individual cells by microscopy and image analysis—are a potentially powerful

combination. We show that morphological profiles of RNAi-induced knockdown using the

Cell Painting assay are in fact highly sensitive and reproducible. However, we find that the

magnitude and prevalence of off-target effects via the RNAi seed-based mechanism make

morphological profiles of RNAi reagents targeting the same gene look no more similar than

reagents targeting different genes. Pairs of RNAi reagents that share the same seed

sequence produce image-based profiles that are much more similar to each other than pro-

files from pairs designed to target the same gene, a phenomenon previously observed in

small-scale gene-expression profiling experiments. Various strategies have been used to

enrich on-target versus off-target effects in the context of RNAi screening where a narrow

set of phenotypes are measured, mostly based on comparing multiple sequences targeting

the same gene; however, new approaches will be needed to make RNAi morphological pro-

filing (that is, comparing multi-dimensional phenotypes) viable. We have shared our raw

data and computational pipelines to facilitate research.

Introduction
The systematic perturbation of genes by RNA interference has been used to identify novel play-
ers in many biological processes and pathways [1–3]. Although off-target effects of RNA inter-
ference reagents are known to complicate such experiments [4–6], many findings have been
thoroughly validated. High-throughput microscopy is frequently a readout of choice for large-
scale screens, including those involving RNAi [7–9]. Usually, only one or two morphological
features of cells are measured from images in order to score samples [10]. However, much
more information can be extracted from images, making it a “high-content” data source. Multi-
ple stains can be employed to visualize a range of cellular components, enabling hundreds of
cellular morphology features to be measured at a single-cell level in a single assay.
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Imaging is thus a potentially powerful candidate readout for ‘profiling’–defined as the sys-
tematic harvesting of hundreds or thousands of distinct measurements in parallel, and the sub-
sequent mining of these large arrays of measurements, termed profiles, for similarities and
patterns. These similarities and patterns can allow powerful data-driven analyses, for example,
to identify signatures associated with disease, connect disease targets with potential therapeu-
tics, assess the impact of genetic mutations, and identify compounds with similar function to
query compounds of interest [11–25].

The goals and practice of profiling are quite different from screening for a narrow, pre-
defined set of phenotypes. In high-content screening based on lower-dimensionality readouts,
the phenotypes of interest (e.g., cell ploidy, staining intensity, a particular morphology) have
already been identified and controls are usually available. Even if pattern recognition tools are
needed to score for the phenotypes based on multiple cell measurements [26–31], the aim is
still to select a small number of hits based on the narrow, predefined set of phenotypes. By con-
trast, the goal of profiling is to look for patterns across the entire dataset based on a wide spec-
trum of cellular features, typically hundreds. Positive and negative controls are often difficult
or impractical to define.

Image-based profiling has been successful using small molecules as the perturbing reagents
[8,12–16,18,25,32]. In our own experience, we have used image-based profiling to classify the
mechanism of action of compounds [33], to cluster compounds into meaningful groups [34],
and to create a performance-diverse compound library [35].

However, in contrast to the multitude of image-based screening experiments using RNAi,
there are few published studies of image-based profiling that characterize cells perturbed by
RNAi [19–22,32]. Why is this the case? One possible explanation is simply that image-based
profiling is in its infancy: even for experiments involving small molecules, there are only a
dozen published experiments.

Here, we explore an additional hypothesis, that RNAi image-based profiling has not been
widely successful because the phenotypic effects resulting from reducing the expression of the
target gene (“on-target effects”) are too obscured by changes induced by reducing the expres-
sion of unrelated genes (“off-target effects”) to identify the on-target effects. In particular, we
suspected that seed-sequence effects, which result from the binding of a short “seed” region of
RNAi reagents to multiple messenger RNAs and are known to complicate screening experi-
ments [6,36–40], might preclude similarity matching in high-dimensional profiling experi-
ments. In one study using gene expression profiles as a high-dimensionality readout,
significant off-target effects mediated by seed sequences were identified for a handful of RNAi
targets [41].

We find that for image-based profiling of a larger number of gene targets, pairs of RNAi
reagents that share the same seed sequence produce morphological profiles that are much
more similar to each other than profiles from pairs designed to target the same gene. We note
that our experiment involves broad image-based profiling of shRNA effects in mammalian
cells. It may be that in other systems, such as long dsRNA libraries in Drosophila cells, the rela-
tive magnitude of seed-driven effects might be smaller as evidenced by higher concordance of
distinct reagents targeting the same gene [42]. Still, given the history of off-target effects in all
systems, including Drosophila [43–45], carefully designed controls and validation are
warranted.

Overall, our finding indicates that for RNAi to be successful for profiling, advances in data
interpretation are needed beyond what has been used for simpler types of RNAi screen data.
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Results

An RNAi image-based profiling assay
We devised a profiling experiment whose ultimate aim was to place uncharacterized genes into
pathways based on similarities to known genes, in terms of morphological phenotype. As an
initial test of whether RNAi could yield sensitive and reproducible image-based profiles, we
used a microscopy assay we previously developed called “Cell Painting” [34] (Fig 1). Its multi-
ple stains provide a snapshot of the morphology of eight cellular structures/components; the
assay has been used thus far to group compounds by similarity [34] and to profile a large com-
pound library [35].

We targeted a set of 41 genes in the U2OS cell line using short-hairpin RNAs (shRNAs) in
arrayed, 384-well format (see Materials and Methods). Most genes were targeted by at least six
distinct shRNAs and the experiment was performed in eight replicates. Using our open-source
CellProfiler software [46], we identified cellular compartments and structures across the differ-
ent channels and extracted 1402 morphological features for every cell imaged in the experiment
(Fig 2). Features include metrics such as staining intensities, size, shape, and texture of the

Fig 1. Cell Painting assay.U2OS cells prepared for this study were stained using the Cell Painting assay protocol [34], with six stains imaged across five
channels, revealing eight cellular components/structures. Scale bar 25 μm.

doi:10.1371/journal.pone.0131370.g001
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various cellular structures, as well as correlation between stains across channels and neighbor-
hood relationships among cells and among intracellular structures. From this raw per-cell data,
we constructed morphological profiles for each shRNA reagent (see Materials and Methods).

Different shRNAs targeting the same gene have distinct profiles
We tested how frequently different shRNA sequences targeting the same gene have similar
morphological profiles. Although we anticipated that off-target effects would make many
shRNAs that target the same gene look dissimilar, we were surprised to find that nearly all
same-gene shRNAs were dissimilar from each other. In fact, the correlations between profiles
of shRNAs targeting the same gene are comparable in magnitude to the correlations between
shRNAs targeting different genes: both average around zero (Fig 3A and 3B), consistent with
similar observations in a previous study using lower-dimensional image-based profiles focused
on endocytosis [21] as well as high-throughput gene-expression data (our unpublished results).
This implies that either the Cell Painting assay is not sensitive enough to create reproducible
profiles, or that it is, but that the same-gene shRNAs induce very different morphological phe-
notypes in cells.

Image-based profiles induced by RNAi are highly reproducible
We next observed that more than 90% of shRNA replicate pairs—repeat measurements
employing the same shRNA—were significantly correlated (Fig 4); the result holds true even
when replicates were constrained to come from different well positions on the plate (S1 Fig).
Therefore, the morphological effect induced by an individual shRNA sequence, and thus its
profile, is highly reproducible. We draw two conclusions: (1) the morphological phenotypes
induced by nearly all shRNAs are distinguishable from each other, and (2) image-based profiles
induced by RNAi are highly reproducible. Together with our initial result we conclude that
shRNAs meant to target the same gene often induce very different morphological phenotypes
in cells. We observe that this result holds true even with putative negative control shRNAs, that
is, shRNA sequences not matching any genes in the cell’s genome (S2 and S3 Figs). We find
that more than 90% of shRNA replicate pairs targeting these so-called negative controls are sig-
nificantly correlated (S2 Fig) and that different shRNA sequences targeting the same negative
control (unexpressed) gene look dissimilar (S3 Fig).

The off-target seed effect is stronger than the on-target effect
Although different morphological effects might result from shRNAs knocking down target
genes to different levels, we first investigated whether known off-target effects might be domi-
nating the morphological profiles. RNAi reagents are involved in at least two pathways: the

Fig 2. Workflow for generatingmorphological profiles using Cell Painting.U2OS cells are treated with shRNAs and transferred to 384-well plates in
which they are stained and then imaged. The images are analyzed and ~1400 features are extracted from each cell. These data are then transformed to
generate multivariate profiles.

doi:10.1371/journal.pone.0131370.g002
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RNAi pathway and the microRNA pathway [47,48]. In the canonical RNAi pathway, 18–22
nucleotides of sequence similarity are needed to direct the degradation of a target mRNA; this
is the pathway responsible for on-target effects. In the microRNA pathway, a specific 6–8
nucleotide portion of the shRNA, the “seed sequence,” plays a key role in target recognition. Its
shorter length results in lower specificity––potentially repressing many hundreds of messenger
RNAs and contributing to the off-target effects of the shRNA or siRNA [41,47,49] that compli-
cate interpretation of screening data [37–40].

We found that pairs of shRNAs that share the same seed sequence produce image-based
profiles that tend to be more similar to each other than profiles from shRNAs designed to tar-
get the same gene (Fig 3C). In fact, more than 70% of the seed pairs had significantly correlated
profiles, compared to only 10% of same-gene pairs. This implies that the off-target effect from
the microRNA pathway—the so-called seed effect—typically dominates the morphological pro-
files. A visually interpretable example of this phenomenon is illustrated in Fig 5. The high cor-
relation between same-seed shRNAs also rules out more trivial explanations for the low
correlation between same-gene shRNAs, such as a poor assay or computational methodology,
which in any event have been validated in other contexts [34,35]. It is worth noting that same-
gene pairs do indeed have more high-correlation instances than random or mismatched
shRNA pairs (10% vs. 5% of instances, respectively, exceed 95% of the null distribution; P-
value< 10−5 for two-sided Student's t-test), and these may indeed reflect significant on-target-
driven morphology effects. However, given the much higher prevalence of strong seed-driven

Fig 3. Different RNAi reagents targeting the same gene rarely produce similar profiles, whereas RNAi reagents sharing a seed sequence do.
shRNAs targeting the same gene have very low correlation (B), whereas those containing the same seed sequence have a much higher correlation (C).
Using the 95th percentile of a null distribution (A) as a threshold to define significant correlations, only 10% of correlations in B are significant, compared to
73% in C. This indicates that the phenotypes induced by RNAi knockdown are dominated by seed effects. Correlations are computed between profiles of
sequences, obtained by median-averaging profiles of replicate wells. The percentage of correlations above the defined threshold is indicated for each group;
dotted line indicates 95th percentile of the null distribution (A). The difference between means of B and C is highly significant (P-value < 10−5; two-sided
Student's t-test).

doi:10.1371/journal.pone.0131370.g003
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effects on the overall morphological signature, these cases would be quite difficult to identify
and validate.

Discussion
Our observations indicate that RNAi can induce remarkably strong, detectable, and reproduc-
ible morphological effects but that off-target ‘seed’ effects dominate the profiles. While the
presence of seed-sequence—driven off-target effects is not surprising, as they were discovered
more than a decade ago [3,41,48], the magnitude of the problem had not previously been quan-
tified across multiple genes in the context of high-dimensional RNAi profiling, particularly
when using imaging.

We found that the magnitude and prevalence of off-target effects is powerful enough that,
most of the time, morphological profiles of RNAi reagents targeting the same gene look no
more similar than reagents targeting different genes. We do not think this is unique to imaging
profiles, as we have seen poor correlations in high-throughput gene expression profiles as well
(our unpublished results). This indicates that morphological profiles based on RNAi cannot be
used as a reliable readout of a particular gene’s impact without new methods to extract the on-
target component of the profile from the rest of the signal (discussed later).

If RNAi reagents generally produce diverse, off-target morphological phenotypes so strong
as to confound profiling experiments, one could wonder how RNAi high-content screens have
yielded useful results. First, it should be noted that the results of RNAi screens often do not sub-
stantially overlap; meta-analyses of RNAi screens have indicated this [6,50]. Specifically, a

Fig 4. Image-based profiles of RNAi sequences are highly reproducible. Using the 95th percentile of the
null distribution (A) as a threshold to define significant correlations, 92% of replicate correlations in B are seen
to be significant. Correlations are computed between profiles of individual wells. The percentage of
correlations above the defined threshold is indicated; dotted line indicates 95th percentile of the null
distribution (A). The difference between means of A and B is highly significant (P-value < 10−15; two-sided
Student's t-test).

doi:10.1371/journal.pone.0131370.g004
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recent study on a set of infection screens has suggested that a majority of hits could be attrib-
uted to the seed effect [6].

Still, screening for a narrow pre-defined set of phenotypes may have enjoyed greater success
due to fundamental differences versus profiling. Generally, off-target effects are confounding
only if they induce a detectable phenotype in the assay being employed. For a set of narrowly
defined phenotypes of interest, the probability of any particular off-target mechanism inducing
those particular phenotypes is relatively low (roughly equivalent to the hit rate of the screen,
often 0.1–5%). Thus, approaches to identify and then exclude or de-emphasize shRNAs that
are acting on the assayed phenotypes through the seed effect have been shown to improve
screening results [37,39]. In the case of profiling, however, so many features are measured that
it is much more likely that there are at least some that will be sensitive to the off-target effect of
a given RNAi sequence.

RNAi has also likely been more successful in the context of screening for more narrowly
defined phenotypes because the goal is only to choose a small number of hits at the top of a

Fig 5. Visual example of seed effects dominating morphological profiles.Only nuclear shape features were used in this example in order to yield
visually interpretable phenotypes. Two of the shRNA sequences targeting CDCA7L and BECN1 share a seed sequence (sequences 299864 and 17937
have a common seed GAATGA at nucleotides 12–17). The Spearman correlation between the morphological profiles of these shRNAs is high (seed
correlation = 0.44, red bar). For each of these two shRNAs, a same-gene shRNA with a dissimilar phenotype is also shown (same-gene shRNA correlation =
-0.31 and -0.11, green bars). All four shRNAs have high replicate correlation and are dissimilar from untreated cells. We specifically chose an example where
the seed correlation is high and the same-gene shRNA correlations are low; however this phenomenon is seen globally (Fig 3). Images have been zoomed
in, showing only 2% of the imaged region.

doi:10.1371/journal.pone.0131370.g005
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rank-ordered list for each specific phenotype of interest. As RNAi screening experts have long
stressed [5,51,52], multiple hairpins per gene should be analyzed; a number of methods have
been introduced to select hits from multiple-hairpin data to reduce the chances of the pheno-
type being a result of an off-target effect, as summarized recently [53]. However, in profiling
experiments, off-target effects are much more likely to be confounding because the goal is to
compare the multi-dimensional patterns produced by all the reagents, not just a tiny subset at
the very top of a list.

Several workarounds may be worth pursuing to make RNAi viable for profiling. Any such
solution must accommodate that all RNAi reagents, including putative negative controls, have
a seed sequence and seed activity. At present, all reagents with siRNA activity also additionally
produce this seed effect, such that it is not possible to simply pre-filter libraries of RNAi
reagents (e.g. shRNAs or siRNAs) that avoid any seed effect. While a particular seed may
appear ‘silent’ in a specific context (i.e. a specific cell line and assay readout) and this can
empirically mitigate off-target concerns for that reagent within that particular context, this
does not guarantee that it will not produce a detectable effect in any new context. Chemical
modifications to the guide and passenger strands is a strategy introduced in many commercial
siRNA libraries [54], though this can only reduce but not eliminate seed effects. Another strat-
egy is to use sequence-specific controls [36] for each RNAi reagent to help factor out off-target
effects, but these are yet to be widely available. Delivering multiple independent RNAi reagents
targeting each assayed gene in every screened cell has been proposed as a means to dilute seed
effects while preserving on-target activity [48,55,56]. Small pools of a few reagents per gene
may not be so helpful in this regard since this increases the number of seeds, and the activity of
each seed contributor may not be sufficiently diluted in magnitude-of-effect to offset this disad-
vantage. It has been claimed that much larger pools of dozens of siRNAs may, on balance,
reduce off-target effects [47,52]. The technology remains to be scaled up, independently vali-
dated, and tested in the context of profiling, and has not come into widespread usage.

When appropriate to the experimental design, one simple solution to capturing gene func-
tion information is to switch to a gain-of-function rather than loss-of-function strategy, that is
to overexpress genes rather than suppressing their expression [57]; we are currently following
this path in several experiments. If reducing gene expression is preferred or required, CRISPR
[58] and related technologies may accomplish this with fewer off-target effects, although the
consequences to an extensive profiling-type readout, tested across many perturbations and tar-
gets, have yet to be reported.

Finally, some groups have worked on computational solutions to handle off-target effects
for profiling applications. For example, one approach is to retain only those genes for which
the profiles of same-gene RNAi reagent pairs “match” each other [20]. This approach was
tested in an experiment with 11 image-based features that yielded strong matches between
same-gene RNAi pairs for 87% of genes. Our results indicate that this strategy is unfortunately
not extendable to higher-dimensional profiles, such as those presented here, for which very few
same-gene pairs of profiles show any similarity. It has also been proposed to use orthogonal
information (e.g., protein-protein interaction data) to inform the creation of profiles [23] but
this has not been demonstrated to work at the level of individual genes, as opposed to gene
families, nor to overcome seed effects. Another approach is to use a probabilistic model to
“average” the profiles of same-gene RNAi reagents to create a gene-specific signature [21], but
the method has neither been published nor demonstrated in subsequent experiments.

In summary, none of the proposed approaches has been proven to resolve the seed effect
problem—a source shown here to dominate off-target effects in RNAi—in particular by testing
whether the seed effect is indeed absent in the deconvoluted profiles. Given that most of the
existing approaches have been tested on ~10–50-dimensional profiles, it is likely that applying
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them to profiles with hundreds to thousands of dimensions would be expected to work less
well, for the same reasons that screening for a narrow, pre-defined phenotype has a more
straightforward path to identifying and disentangling off-target effects than profiling. Addi-
tionally, solutions may need to be modality-specific because the assumptions made about the
structure of the data, such as additivity of features or correlations, that are valid for one modal-
ity may not be valid for the other (e.g. gene expression vs. morphological profiling). Finally,
developing computational approaches to solve the seed effect problem for high-dimensional
profiling experiments would require conducting large experiments with multiple RNAi
reagents targeting each gene, as well as designing multiple RNAi reagents with the same seed
sequence.

We have provided our raw data and computational pipelines to facilitate further research.

Materials and Methods

Selection of genes
We selected 41 genes based on multiple criteria. Expression of the gene in the U2OS cell line
was required, which was verified using existing Affymetrix data. Genes with known biological
function or those that are known to produce morphological phenotypes upon knockdown
were preferred. shRNAs were obtained from The RNAi Consortium (TRC) Lentiviral shRNA
Library (http://www.broadinstitute.org/rnai/public/).

Selection of shRNAs
shRNAs were selected to span a range of knockdown efficiencies to avoid the dataset being
biased towards high knockdown efficiency alone. Knockdown efficiency was observed not to
correlate with morphological profile robustness, measured as the median of the Spearman cor-
relation between all its replicates (data not shown). In all, 37 out of the 41 genes had six or
more shRNAs targeting them. A small number of shRNAs were excluded after being filtered
out in the image processing quality control step. The 315 unique shRNA sequences used in the
analysis are listed in S5 Dataset.

Quantification of shRNA knockdown efficiency by qPCR
Relative gene expression—the percentage of target transcript remaining after knockdown of
the target gene by each construct—was quantified (S8 Dataset) using the ddCt method,
described in detail in Section 15.8.9 of Bookout et al. [59].

Cell culture
U2OS cells (#HTB-96, ATCC) were plated at the density of 200 cells per well in 384-well
imager quality black/clear plates (Aurora Biotechnologies/Nexus Biosystems). Cells were
infected with an arrayed set of shRNA lentiviruses. Six replicates of each plate layout (see
below) were prepared. Two replicates were used to assess infection efficiency, with puromycin
added to one replicate and the other replicate left untreated. Viability for these two replicates
was quantified 96 hours post-infection using Cell Titer-Glo. The infection efficiency was deter-
mined by comparing luminescence values of puromycin-treated cells to luminescence values of
non-treated cells and expressed as a percentage (S7 Dataset, Column “IE”). The remaining four
replicates were processed for Cell Painting assay at 96 hours post-infection. The experiment
was carried out using two plate layouts in order to have shRNAs in different positions, resulting
in eight Cell Painting replicates in total.
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Cell staining and imaging
The assay followed a previously published protocol [34]. Briefly, eight different cell compart-
ments and organelles were stained with fluorescent dyes: nucleus (Hoechst 33342), endoplas-
mic reticulum (concanavalin A/AlexaFluor488 conjugate), nucleoli and cytoplasmic RNA
(SYTO14 green fluorescent nucleic acid stain), Golgi apparatus and plasma membrane (wheat
germ agglutinin/AlexaFluor594 conjugate, WGA), F-actin (phalloidin/AlexaFluor594 conju-
gate) and mitochondria (MitoTracker Deep Red). WGA and MitoTracker were added to living
cells, with the remaining stains were carried out after cell fixation with 16% paraformaldehyde.
Images from five fluorescent channels were captured at 20x magnification on an ImageXpress
Micro epifluorescent microscope (Molecular Devices): DAPI (387/447 nm), GFP (472/520
nm), Cy3 (531/593 nm), Texas Red (562/642 nm), Cy5 (628/692 nm). Nine sites per well were
acquired, with laser based autofocus using the DAPI channel at the first site of each well.

Image processing and feature extraction
CellProfiler [46] software version 2.1.0 was used to identify and segment cells and measure cel-
lular features. We used pipelines described and provided by Gustafsdottir et al. [34] (S1 Data-
set) to correct for uneven illumination and segment cells into nuclei, cell body and cytoplasmic
sub-compartments. 69 wells containing blurry images were excluded, retaining 3003 wells in
the experiment. Morphological, intensity, textural and adjacency statistics were measured for
each sub-compartment [34]. The 1402 cellular features thus extracted were normalized as fol-
lows: For each feature, the median and median absolute deviation were calculated across all
untreated cells within a plate; feature values for all the cells in the plate were then normalized
by subtracting the median and dividing by the median absolute deviation (MAD) times 1.4826
[60]. Features having MAD = 0 in any plate were excluded, retaining 1301 features in all.

Creating per-well and per-sequence profiles
Multivariate profiles for each well were computed as follows. First, for each of the 3003 wells,
the median for each feature was computed across the cells in the well, resulting in a
1301-dimensional profile per well. Principal components analysis (PCA) was used to reduce
the dimensionality of the data, retaining 99% of the variance, resulting in a 205-dimensional
feature space. This 205-dimensional vector is the multivariate profile used in the analysis. The
per-sequence profile was obtained by computing the median of all the replicates of that
sequence, where the median is computed for each feature across all the replicates.

Reproducibility
We provide (S1 Text) the complete image set, the CellProfiler pipelines used to identify and
measure the cells, the dataset of morphological profiles, and the source code for the programs
that analyze the profiles and produce the figures in this article.

Supporting Information
S1 Dataset. CellProfiler pipelines.
(ZIP)

S2 Dataset. CellProfiler illumination functions.
(ZIP)

S3 Dataset. Image features extracted by CellProfiler.
(ZIP)
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S4 Dataset. Source code for analyzing image features.
(ZIP)

S5 Dataset. The 315 shRNA sequences profiled using our assay.
(ZIP)

S6 Dataset. Image feature names measured for each cell by CellProfiler (see the CellProfiler
manual for descriptions of each feature).
(ZIP)

S7 Dataset. Experimental metadata.
(ZIP)

S8 Dataset. Quantification of shRNA knockdown efficiency by qPCR. Note that this infor-
mation is based on single-biological replicate HT qPCR measurements in various cell lines, but
not U2OS cells. Nevertheless, this should provide a good indication of relative shRNA on-
target efficacy among the shRNAs for each gene.
(ZIP)

S1 Fig. Image-based profiles of RNAi sequences are highly reproducible, even across differ-
ent well positions. Treatment replicates coming from different well positions (across plates
with different layouts) were compared. Using the 95th percentile of the null distribution (A) as
a threshold to define significant correlations, 92% of the replicate correlations in B are seen to
be significant. Correlations are computed between profiles of individual wells. The percentage
of correlations above the defined threshold is indicated; dotted line indicates 95th percentile of
the null distribution (A). The difference between means of A and B is highly significant (P-
value< 10−15; two-sided Student's t-test).
(TIF)

S2 Fig. Image-based profiles of RNAi sequences are highly reproducible, even for putative
negative controls. RNAi reagents with sequences not matching any genes in the cell’s genome
—thereby putative negative controls—were analyzed for the reproducibility of their image-
based profiles. Specifically, shRNA sequences against GFP, LacZ, Luciferase and RFP were con-
sidered. 93% of the replicate pairs of these treatments were significantly correlated. Correla-
tions are computed between profiles of individual wells. The percentage of correlations above
the defined threshold is indicated; dotted line indicates 95th percentile of the null distribution
(A). The difference between means of A and B is highly significant (P-value< 10−15; two-sided
Student's t-test).
(TIF)

S3 Fig. Different RNAi reagents targeting the same gene rarely produce similar profiles,
even for putative negative controls. For the putative negative controls considered in S2 Fig,
shRNAs sequences targeting the same (non-existent) genes had very low correlation (B). Data
was insufficient to do a seed analysis similar to Fig 3C; however the off-target effect is likely to
be due to the seed effect. Correlations are computed between profiles of sequences, obtained by
median-averaging profiles of replicate wells. The percentage of correlations above the defined
threshold is indicated; dotted line indicates 95th percentile of the null distribution (A).
(TIF)

S1 Text. Data and software.
(DOC)
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