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A dramatic shift has occurred in how biologists use microscopy

images. Whether experiments are small-scale or high-

throughput, automatically quantifying biological properties in

images is now widespread. We see yet another revolution

under way: a transition towards using automated image

analysis to not only identify phenotypes a biologist specifically

seeks to measure (‘screening’) but also as an unbiased and

sensitive tool to capture a wide variety of subtle features of cell

(or organism) state (‘profiling’). Mapping similarities among

samples using image-based (morphological) profiling has

tremendous potential to transform drug discovery, functional

genomics, and basic biological research. Applications include

target identification, lead hopping, library enrichment,

functionally annotating genes/alleles, and identifying small

molecule modulators of gene activity and disease-specific

phenotypes.
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Introduction
Through shifts in both technology and culture, biology is

increasingly a quantitative science. Experimental meth-

ods that capture the activity or state of multiple distinct

biological processes (‘multiplexed’ assays) are thus in-

creasingly valued. The quantitative increase in the num-

ber of independent measures that can be collected in a

single assay has brought with it a qualitative change in

experimental strategies. In fact, ‘profiling’ technologies

enable measuring hundreds to thousands of distinct prop-

erties from biological samples, an approach quite distinct

from ‘screening’, which refers to traditional, targeted

experiments that seek to quantify a single process or cell

function. In this paper, we draw a distinction between

these two experimental designs: profiling vs. screening.

Profiling aims to capture and encode as many properties

of a sample as possible, while screening focuses only on
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capturing known properties of interest, usually just a few

(see Box 1).

Whereas classical biological assays might measure a partic-

ular feature of a biological sample in response to perturba-

tion (e.g., ATP consumption, cell size, or phosphorylation

state of a single protein), profiling experiments capture a

wide range of readouts and use techniques from machine

learning and data mining to identify similarities and differ-

ences among the measured patterns (sample properties).

Thus, typically, the identity of each measured feature is not

of particular importance (as in screening experiments), but

instead the discovered difference itself is the crucial read-

out. The particular measured features themselves become

relevant only when informative similarities/differences in

patterns have been identified. Profiling is a powerful ap-

proach enabling high-throughput experimentation and

multiplexed readouts to generate massive amounts of mine-

able data for use in systems biology and drug discovery.

Microscopy, followed by image processing, is one of the

few profiling methodologies suited to relatively inexpen-

sive, large-scale experiments involving hundreds of thou-

sands of tested samples. It is compatible with many scales

of biological samples: cells, tissues, or organisms (for

simplicity in this review we refer to the most common

case: cells). In image-based profiling (also known as

morphological profiling or cytological profiling [1]), large

amounts of quantitative morphological data are extracted

from microscopy images of cells to generate a profile

comprised of various measures of the shape and size of

various cellular compartments and the intensity, texture,

and colocalization of various markers (Figure 1). The goal

is to identify biologically relevant similarities and differ-

ences among samples based on these profiles using ap-

propriate computational models (see Box 2). Profiles of

biological populations can be compared to predict previ-

ously unrecognized cell states induced by different ex-

perimental perturbations of interest.

Alternate highly multiplexed assays for biological systems

include the measurement of gene expression, protein

levels, and metabolites [2,3]. While powerful, they tend

to be low-throughput to medium-throughput (hundreds

to thousands of samples per experiment) [4] and charac-

terize the average response of a population of cells (with

important exceptions: high-throughput techniques for

gene-expression are emerging [5] and RNA-seq can mea-

sure mRNA at single-cell resolution albeit currently for

only a few samples per experiment). Measuring the

response of an arrayed panel of cell lines, for example,

the NCI-60 panel, or a panel of RNAi-perturbed lines, to
www.sciencedirect.com
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Box 1 High-throughput image-based screening vs. profiling.

Screening is a distinct strategy from profiling. Although both involve

large-scale (high-throughput) imaging experiments, the goals differ:

in screening, the researcher aims to measure one or more

phenotypes that are visually discernible, and choose a subset of hits

for further investigation [29]. In profiling, a broad spectrum of

measurements is captured from each sample (unguided by prior

knowledge) in order to reveal important differences and similarities

with other samples. Screening depends on a biologist’s expertise to

interrogate a particular phenomenon whereas profiling takes an

unbiased approach to grouping samples, with a higher potential to

capture unknown mechanisms.

Image-based profiling experiments remain relatively rare [30]. By

far, the most common application of high-throughput imaging is

screening large collections of small molecules in order to identify

research probes and therapeutic leads with useful biological

properties (often called high-content screening, HCS). High-content

screening is becoming more widespread in recent years, in part due

to the realization that screens based on cellular phenotypes are on

average more fruitful than higher-throughput but less physiological

screens on isolated protein targets [31,32]. High-throughput image-

based screens involve the development of assays that measure

particular morphological properties of single cells. This requires

flexible software tools for extracting measurements from images and

robust computational models for subsequent data analytics [33],

whether a single morphological feature is the basis of the screen, or

whether machine learning is used to combine multiple morphological

features in order to ‘score’ the relevant phenotype based on expert

input from biologists [34,35]. Given that image-based compound

screening is now relatively routine, we refer the reader to prior

comprehensive reviews [29,32,36–40].

Although somewhat less common, genetic perturbations are

screened in a similar manner as small molecules. The major limiting

factor is the initial construction and validation of libraries of

perturbation reagents; for completed screens to date, RNA inter-

ference is used most often but, depending on the organism,

alternatives include direct genetic manipulation (e.g., yeast deletion

strains) and overexpression libraries. For loss-of-function screens,

CRISPR-Cas9 and related technologies are an exciting prospect;

relative to RNAi these are currently thought to have lesser off-target

effects, thus improving the reliability of results [41–43].
each perturbation is another form of profiling [6–9] but

requires a separate well for each measurement in the

profile and is thus not generally practical for experiments

with thousands of perturbations.

In contrast, high-content imaging techniques can mea-

sure hundreds of biologically meaningful features with

single-cell resolution in a single assay well, and can be

scaled to high-throughput assays with relative ease

(Figure 2). There is therefore significant interest in

devising appropriate computational techniques specifical-

ly for image-derived profiles, which come with technical

challenges (Box 2). There is also great potential for

combining profiles from multiple methodologies (e.g.,

imaging + gene expression) in the same experiment to

capture a broader range of cell activities.

In this review, we aim to introduce an array of applications

that can be achieved using image-based profiling, the
www.sciencedirect.com 
collective potential impact of which is immense. Studies

in this field are shifting from proof-of-principle to biolog-

ical discovery; their collective breadth spans research in

drug discovery and functional genomics. Microscopy is

thus moving from a qualitative assessment tool to a

powerful high-capacity quantitative modality.

We focus here on applications that involve systematically

profiling large numbers of perturbations interrogated by

microscopy imaging; outside this scope are other important

applications such as high-throughput image-based screen-

ing (Box 1), pathology applications involving human tissue

samples [10], studies of population heterogeneity [11–14],

engineering extracellular microenvironments [15–17],

location proteomics [18–22], and expression and architec-

ture mapping [23–28].

Drug discovery
Identifying mechanisms of action, targets, and toxicity

for small molecules

Small molecule perturbations can produce morphological

changes detectable by microscopy, and these changes can

reveal similarities among compounds in terms of their

phenotypic impact in a cellular context. Many studies have

demonstrated that morphological profiles can correctly

predict the mechanism of action (plus toxicity in some

cases) for blinded compounds, by grouping each unknown

compound with already-annotated compounds, based on

their phenotypic similarity [1,44,49,55–61]; several have

made novel predictions [62–65,66��,67,68]. This builds on

a foundation of earlier work that identified targets based on

visual similarities, for example, the identification of the

mitotic kinesin Eg5 as the target of the small molecule

monastrol based on a distinctive monopolar spindle phe-

notype [69] and the phenotypic matching of gene-com-

pound pairs related to cytokinesis using parallel RNA

interference (RNAi) and small molecule screens [70] or

suppressor/enhancer screens for an RNAi-sensitized phe-

notype [71]. These studies often focused on oncology/cell

cycle, which is not surprising given their dramatic visual

phenotypes. A more recent study on hundreds of com-

pounds and several isogenic cell lines revealed novel gene–
drug interactions, which were also mapped using image-

based phenotypes [72]. As well, methods for identifying

individual reporter cell lines that are most useful for

grouping compounds with similar mechanisms of action

have also been developed, using phenotypic image-based

profiles [73]. Grouping compounds by their phenotypic

effects is not only feasible for static images of cells but also

for videos of complex behaviour in whole organisms; the

locomotor response of zebrafish correctly predicted many

small molecules’ mechanism of action, some previously

poorly characterized [74].

Although some studies use the term ‘screening’ when

describing the measurement of phenotypic properties of

cells, they may be referring to ‘profiling’ (e.g. [68,73]).
Current Opinion in Biotechnology 2016, 39:134–142
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Image-based profiling workflow and applications. Perturbations are applied to a population of cells or organisms, and the resulting phenotypes are

observed and captured with imaging. Hundreds of morphological measurements are extracted from images, which are then analyzed using

computational models, appropriate to the target application. Those models are used to draw conclusions in a diverse range of biomedical

applications.
The key distinction in these cases comes from the use of

multiple features for profiling (multivariate representa-

tions of samples), and also the unbiased analysis of

the experiments, while classical screening usually con-

siders a few phenotypes and targeted analysis of a known

phenomenon.

Lead hopping

Another application of similarity-matching among small

molecule treatments is known as lead hopping. Although

the underlying methodology is identical, the goal differs:

here, a small molecule with useful phenotypic effects but

undesirable structure is used to help identify other small

molecules with a matching phenotypic effect but with

molecular backbones better suited to medicinal chemis-

try. We have not yet seen a study using image-based
Current Opinion in Biotechnology 2016, 39:134–142 
profiling specifically for the purpose of identifying novel

structures for further therapeutic development in a par-

ticular disease area, but the data type seems well-suited to

this task.

Small molecule library enrichment

A typical small molecule library contains significant re-

dundancy, that is, sets of small molecules with the same

effect on a molecular target or pathway. There are likely

also a large number of compounds that have no impact

whatsoever on cells. The demonstrated ability of mor-

phological profiles to group compounds with similar be-

haviour led to the hypothesis that smaller, more efficient

small molecule libraries might be selected based on

phenotypic diversity, as determined by a single profiling

assay. The first study to assess this indicates that, indeed,
www.sciencedirect.com
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Box 2 Computational challenges in image-based profiling.

Morphological profiling presents many computational challenges

owing to both the size and complexity of the data. One 384-well plate

can generate more than 500 million single-cell measurements, and

an experiment might involve hundreds of plates. How to map these

raw, single-cell measurements to optimally useful perturbation

profiles is an open research question. In one comparison between

profiling techniques [44], methods that attempt to leverage popula-

tion heterogeneity were outperformed by relatively simple population

aggregation methods, highlighting the need for further research on

methods for capturing heterogeneity in profiles.

Additional complications relate to the properties of the feature space:

the measurements themselves are typically redundant, with many

features being correlated. However, given the non-linear relation-

ships between these features, simple correlation measures will not

always be sufficient to identify these associations, thereby making

feature selection non-trivial. Identifying appropriate similarity mea-

sures and dimensionality reduction methods for morphological

profiles is also an open problem [45,46]. While not unique to

morphological profiling per se, plate position effects (e.g., wells on

the edges of a plate having different characteristics than the middle

due to difference in temperature and humidity) and batch effects

introduce additional confounds that make comparing profiles across

plates or across experiments challenging [47]. At present, there are

no standard methods for addressing these problems nor are there

software packages that offer the variety of approaches that have

been proposed for each step in the workflow.

Addressing many of these problems is a high priority for labs active

in the field. Some of the most exciting computational developments

for profiling preserve single cell data and thus take into account the

increasingly well-appreciated heterogeneity of cultured cell popu-

lations [11,12,48]. For example, the Pelkmans laboratory showed

that accounting for population context of a cell (e.g. whether it lies

on the edge of a cell island, the surface area of contact with

neighbouring cells, etc.) improved the consistency between

replicate RNA interference (RNAi) screens and between siRNAs

targeting the same gene [13]. The Altschuler/Wu laboratory

identified cell subpopulations from images, measured the relative

abundance of proteins in each of these subpopulations, and

showed that grouping proteins based on this measure agreed with

known functional associations [49]. The Boutros laboratory created

morphological profiles of RNAi-induced knockdown of genes by

first identifying cell subpopulations, which in turn were used to

discover functional associations between genes [50,51]. Although

methods making sophisticated use of single-cell data have mainly

been used only in proof-of-principle studies so far, we anticipate

further development and application to real-world problems.

Image-based profiling data has always been available at single-cell

resolution, making research in this area relevant to other modalities

that have only recently become feasible to carry out at single-cell

resolution (e.g., transcription and genomics).

Finally, the use of deep learning techniques may bring interesting

benefits and solutions to some of the mentioned problems. These

methods are already common practice for solving complex

computer vision tasks [52], and are also starting to be applied in the

bioimage informatics community [53,54]. Whether applied at the

stage of segmentation, feature extraction, or classification, there is

increasing interest in adopting these methodologies to push

biological discoveries, and we expect to see more methods

incorporating these algorithms in the near future.
morphological profiling can select enriched libraries with

higher rates of activity and diverse biological performance

[77��].
www.sciencedirect.com 
Functional genomics and disease
phenotyping
Characterizing genetic regulators of particular biological

processes

Image-based profiling has also been used in functional

genomics to characterize and annotate genes; the genome

is by no means fully annotated, and systematic solutions

are needed. The strategy here is to up-regulate or down-

regulate each gene’s expression and compare the pheno-

typic impact, as measured in the morphological profile, to

that of already-annotated genes.

The simplest such case begins with a high-throughput

image-based screen (Box 1) that identifies a group of ‘hit’

genes that influence a particular phenotype of interest.

Profiling can then be used to group those hits, based on

morphological similarity using a broad spectrum of image-

based phenotypes. This goes a step beyond simply cata-

loguing genetic regulators of a particular process: catego-

rization based on phenotype, using the rich morphological

data already available in the primary screen, can lend

credibility to the involvement of entire pathways in

processes and enables more efficient triaging and fol-

low-up on individual genes.

Many important cell processes have been probed using

this strategy of in-depth morphological profiling of hits

from a genetic perturbation screen. For example, the

MitoCheck project used time-lapse microscopy to track

and profile individual cells, successfully documenting and

classifying hundreds of genetic regulators associated with

mitosis [78]. Profiling has also been used to classify hits

from a screen involving membrane-trafficking activities of

endocytosis [79,80��].

Functional annotation of genes by similarity

Some recent studies take a more systems biology-orient-

ed approach well beyond the above-described ‘screen,

then cluster’. Here, a large number of genes are grouped

based on similarity of morphological profiles resulting

from over-expression or under-expression of each gene.

This approach generates hypotheses for any previously

unannotated genes that closely cluster with functionally

annotated genes.

For example, early work using nonessential yeast deletion

mutants was able to group gene deletions into functional

pathways; nearly half of the mutants yielded a discernable

phenotype by imaging using a single set of three stains

(cell-surface mannoprotein, actin cytoskeleton, and nu-

clear DNA) [81]. In the presence of a perturbation (high

concentration of extracellular calcium), deletion strains

clustered into functionally related groups based on

changes in morphological features [82]. Synthetic genetic

arrays enable assaying the morphological impact of single

and double mutant yeast strains, often useful in revealing

genes involved in a process [83].
Current Opinion in Biotechnology 2016, 39:134–142
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Figure 2
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Morphological profiling data for a single sample. A population of U-2 OS cells was treated with rapamycin, then stained and imaged according to

the Cell Painting assay protocol [60,75] 144 hours later. Images were processed using the open-source software CellProfiler [76], yielding

1474 morphological measurements for all cells in the field of view. These data are displayed as a matrix: only a subset of the features are shown,

for 89 cells.
In mammalian cells, the DNA damage/cell cycle func-

tions of the DONSON gene were identified in an unbi-

ased profiling study that grouped genes with similar loss-

of-function phenotypes using RNAi [51]. Mapping ge-

netic interactions with combinatorial RNAi is also an

effective way to uncover functional relationships between

genes, which can be measured with single-cell phenotyp-

ic readouts [84–86]. The largest map of directional epi-

static interactions has been recently built with techniques

based on large scale image analysis combined with a

statistical model that reveals novel complex dependen-

cies between genotypes and phenotypes [87��].

Most of the experiments following this strategy have

used RNA interference;  it is the most common method

of genetic perturbation for mammalian cells. We do

offer a cautionary note: we recently found that morpho-

logical profiles of RNAi-induced gene knockdown are

highly sensitive and reproducible but are dominated by

so-called ‘seed effects’, a type of off-target effect [88�].
There are workarounds to enrich on-target versus off-

target effects in the context of RNAi screening where a

narrow set of phenotypes are measured, but computa-

tional approaches need to be developed to enable reli-

able grouping of RNAi-induced multi-dimensional

profiles.

Grouping disease-associated genes and alleles by

functional impact

The same strategy of grouping genetic perturbations

can be applied specifically to experiments involving

overexpression of genes and alleles that have been

linked to human disease, e.g., through genome-wide

association studies. This can inform the mechanistic

understanding of the disease by placing unannotated

genes into pathways.
Current Opinion in Biotechnology 2016, 39:134–142 
This can also, in theory, go a step further toward person-

alized medicine by grouping disease-causing variants

based on phenotypic impact (albeit in a cell-based sys-

tem). This could ultimately guide clinical treatment in

cases where particular drug treatments are known to be

effective only for particular alleles; a previously unob-

served allele whose morphological profile is highly similar

to a known allele lends a hypothesis for an effective

treatment for that patient. We are not aware of any

published work following this approach but expect to

see examples of this strategy emerge soon.

Identifying small molecule mimics of gene signatures

(and vice versa, for target identification)

In cases where a distinctive signature has been identified

by morphological profiling of genetic perturbations, gene–
drug connections can be made by comparison of the gene’s

profile to databases of small molecules that have also been

morphologically profiled, in a strategy akin to the Connec-

tivity Map, which is based on gene expression data [89].

The strategy’s principle has been proved using imaging

data in yeast, where the targets of four drugs with known

mechanisms were re-identified by comparison of the sig-

natures induced by those small molecules to signatures

induced by yeast deletion strains [90], and where drugs

impinging on a pathway show similarity to signatures of

deletion strains in genes related to the same pathway

[91,92,93��]. A similar approach using RNAi in mammalian

cells uncovered the mechanism of action of compounds

that inhibit bacterial growth via the host-pathogen inter-

face [94��,95]. Although it is not trivial to compare multi-

dimensional profiles across separate experiments using

different perturbation modalities (e.g., overexpression of

genes vs. treatment with small molecules), it is tremen-

dously powerful to systematically identify small molecules
www.sciencedirect.com
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that mimic or reverse phenotypes linked to particular

genetic perturbations.

Identifying disease-specific phenotypes and small

molecules to revert them (signature-based screening)

The drug discovery community has increasingly recog-

nized the effectiveness of a phenotypic approach, where a

model system is sought that reflects human disease biol-

ogy as faithfully as possible [31,96–99]. The physiological

relevance of the assay system must be balanced against

compatibility for screening large chemical libraries, or at

least testing small numbers of candidate small molecules.

But what if no disease-associated phenotype is already

known? A transformative approach to creating phenotypic

model systems is to use either cell samples taken directly

from patients with disease, or cell lines manipulated to

create a genetic perturbation correlated with the disease

(some aspects of this are reviewed in [100]). The impor-

tant first step is identifying the phenotype of interest in an

unbiased way, that is, seeking a signature of the disease

state. Once the signature is known, small molecules can

be screened to identify those that revert that particular

signature back to a more wild-type-like state, hence the

term ‘signature-based screening’.

This approach was taken to first identify a cell-culture

based morphological phenotype associated with loss-of-

function of CCM2, the gene missing in patients with the

hereditary stroke syndrome cerebral cavernous malforma-

tion (CCM) [101��]. The team then screened small mole-

cules and identified those that reverted the

computationally-defined image-based phenotype. Two

of those drugs proved effective in animal models of the

disease; of note, drugs chosen based on reverting the

computationally-defined phenotype performed better in

subsequent assays than drugs that reverted a human-

defined phenotype for the disease, which were tested

in parallel. Several other laboratories are taking this

promising approach, some even beginning in animal

systems. For example, ‘personalized’ Drosophila strains

carrying mutations mimicking those found in a patient’s

tumour are being used to test therapeutic cocktails, often

with a visual readout [102–104].

Conclusions
Profiling has the potential to transform many fields in

biology. We expect computational advances (Box 2) to be

an important force propelling image-based profiling forward.

With appropriate advancements, we expect image-based

profiling and analysis to be powerful tools that complement

well-established -omics methods to address challenging

questions in systems biology and drug discovery.

Conflict of interest
AEC has optional ownership interest in Recursion Phar-

maceuticals, a biotechnology company founded in part to
www.sciencedirect.com 
commercialize the findings of a study described in one of

the cited works [101��].

Acknowledgement
Funding for the preparation of this article was provided by the National
Science Foundation (NSF CAREER DBI 1148823 to AEC).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF,
Altschuler SJ: Multidimensional drug profiling by automated
microscopy. Science 2004, 306:1194-1198.

2. Abraham Y, Zhang X, Parker CN: Multiparametric analysis of
screening data: growing beyond the single dimension to
infinity and beyond. J Biomol Screen 2014, 19:628-639.

3. Johannessen CM, Clemons PA, Wagner BK: Integrating
phenotypic small-molecule profiling and human genetics: the
next phase in drug discovery. Trends Genet 2015, 31:16-23.

4. Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA: Multi-
parameter phenotypic profiling: using cellular effects to
characterize small-molecule compounds. Nat Rev Drug Discov
2009, 8:567-578.

5. Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J: A
method for high-throughput gene expression signature
analysis. Genome Biol 2006, 7:R61.

6. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr,
Kohn KW et al.: An information-intensive approach to the
molecular pharmacology of cancer. Science 1997,
275:343-349.

7. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA,
Kim S et al.: The Cancer Cell Line Encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature
2012, 483:603-607.

8. Roguev A, Talbot D, Negri GL, Shales M, Cagney G,
Bandyopadhyay S et al.: Quantitative genetic-interaction
mapping in mammalian cells. Nat Methods 2013, 10:432-437.

9. Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S
et al.: Parallel genome-scale loss of function screens in
216 cancer cell lines for the identification of context-specific
genetic dependencies. Sci Data 2014, 1:140035.

10. Ghaznavi F, Evans A, Madabhushi A, Feldman M: Digital imaging
in pathology: whole-slide imaging and beyond. Annu Rev
Pathol 2013, 8:331-359.

11. Snijder B, Pelkmans L: Origins of regulated cell-to-cell
variability. Nat Rev Mol Cell Biol 2011, 12:119-125.

12. Altschuler SJ, Wu LF: Cellular heterogeneity: do differences
make a difference? Cell 2010, 141:559-563.
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