
lable at ScienceDirect

Experimental Eye Research 147 (2016) 50e56
Contents lists avai
Experimental Eye Research

journal homepage: www.elsevier .com/locate/yexer
Methods in eye research
An open-source computational tool to automatically quantify
immunolabeled retinal ganglion cells

Ana C. Dordea a, Mark-Anthony Bray b, Kaitlin Allen a, David J. Logan b, Fei Fei c,
Rajeev Malhotra d, Meredith S. Gregory c, Anne E. Carpenter b, Emmanuel S. Buys a, *

a Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research
Institute, Harvard Medical School, Boston, MA, USA
b Broad Institute of MIT and Harvard, Cambridge, MA, USA
c Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
d Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
a r t i c l e i n f o

Article history:
Received 23 December 2015
Received in revised form
28 March 2016
Accepted in revised form 18 April 2016
Available online 24 April 2016

Keywords:
Automated quantification
Retinal ganglion cell
CellProfiler
CellProfiler analyst
* Corresponding author.
E-mail address: ebuys@mgh.harvard.edu (E.S. Buy

http://dx.doi.org/10.1016/j.exer.2016.04.012
0014-4835/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t

A fully automated and robust method was developed to quantify b-III-tubulin-stained retinal ganglion
cells, combining computational recognition of individual cells by CellProfiler and a machine-learning tool
to teach phenotypic classification of the retinal ganglion cells by CellProfiler Analyst. In animal models of
glaucoma, quantification of immunolabeled retinal ganglion cells is currently performed manually and
remains time-consuming. Using this automated method, quantifications of retinal ganglion cell images
were accelerated tenfold: 1800 images were counted in 3 h using our automated method, while manual
counting of the same images took 72 h. This new method was validated in an established murine model
of microbead-induced optic neuropathy. The use of the publicly available software and the method's
user-friendly design allows this technique to be easily implemented in any laboratory.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Glaucoma is the leading cause of irreversible blindness world-
wide, affecting an estimated 60 million people (Tham et al., 2014).
While there are many forms of glaucoma, all are associated with an
optic neuropathy characterized by the loss of retinal ganglion cells
(RGCs) and their axons, resulting in optic nerve degeneration and
irreversible vision loss. Animal models of glaucoma that simulate
the optic neuropathy observed in human disease facilitate the
elucidation of possible mechanisms of RGC loss and enable re-
searchers to develop and evaluate neuroprotective therapies. The
ability to specifically identify and accurately count RGCs is essential
to assess the death or survival of RGCs in models of the disease.

Various techniques for visualizing and quantifying RGCs have
been reported, including retrograde labeling and immunolabeling
(Buckingham et al., 2008; Huihui et al., 2011). In a healthy, non-
diseased retina, fluorogold retrograde labeling is a specific and
accurate method to label and automatically quantify RGCs
s).
(Buckingham et al., 2008; Danias et al., 2003). However, this
method is technically challenging, requiring intracranial surgery
and, in a glaucomatous retina, retrograde labeling can result in the
labeling of retinal microglia in addition to RGCs, due to the
phagocytosis of degenerating RGCs (Peinado-Ramon et al., 1996;
Thanos, 1991a,b). An alternative quantification method of RGC
viability may be carried out with immunolabeling of RGCs in retinal
flatmounts using an RGC-specific antibody directed against b-III-
tubulin, which labels the RGC somata and nerve fiber extensions.
The specificity of the b-III-tubulin antibody has been confirmed by
colocalization of b-III-tubulin staining with fluorogold-labeled
RGCs (Huihui et al., 2011).

While the immunolabeling method is technically simpler than
fluorogold labeling, manual quantification of immunolabeled mu-
rine RGCs is onerously time-consuming. In a small-scale pre-clin-
ical project with only 2 experimental groups, an investigator would
be required to manually quantify RGCs in approximately 1000
images, necessitating at least 48 h of effort. In addition, manual
counting can be inconsistent, with significant inter- and even intra-
observer variability, due to the use of differing quantification
techniques and/or inhomogeneous staining.
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Box 1

CellProfiler software.

The CellProfiler software is freely available to download at

www.cellprofiler.org. The image analysis template used for

the automated quantification presented in the manuscript,

the latest software updates and the source code are avail-

able to download at http://www.cellprofiler.org/published_

pipelines.shtml under the “B3-

tubulin_RetinalGanglionCell_Assay.cpproj” nomenclature.
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2. Materials and supplies

2.1. Animals

This study was carried out in strict accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institute of Health. Wild-type mice bred on
a 129S6 background (129S6/SvEvTac, Taconic Farms Inc.) were used
in this study. All animals were treated in accordance with the
Institutional Animal Care and Use Committees (IACUC) of Massa-
chusetts General Hospital (Subcommittee on Research Animal
Care), and the Schepens Eye Research Institute.

2.2. Processing and imaging of retinas

Animals were sacrificed under CO2. Eyes were enucleated and
retinas dissected from the anterior segments at the conclusion of
the study: day 32 post-injection. Resultant retinal cups were
incised to create four quadrants of similar size and were fixed in 4%
paraformaldehyde at 4 �C overnight. Retinas were then treated
with 1% Triton-X-100 and 5% fetal BSA in PBS for 1 h, followed by a
2 h incubation with DAPI (1:500) and the primary antibody against
an RGC marker, b-III-tubulin (anti-TUJ1þ, Millipore, Billerica, MA,
1:500), and 1 h incubation with the Alexa Fluor® 594 Goat Anti-
Mouse IgG secondary antibody (Life Technologies, Carlsbad, CA,
1:500) at room temperature. Retinal whole-mounts were then
flattened on SuperFrost Plus slides (VWR, Batavia, IL), coverslipped
with mounting medium for fluorescence (VectaShield®, Vector
Laboratories, Burlingame, CA) and imaged under the Leica TSC SP5
confocal microscope at �63 magnification. Imaging was performed
on themid-peripheral area of the retina (around 0.5mmdistal from
the optic nerve head) divided into 4e5 distinct areas across all four
quadrants. Each retinawas imaged in 20e25 frames of 0.0696mm2.

2.3. Microbead injections

Micewere anesthetized by intraperitoneal injection of amixture
of ketamine (100 mg/kg; Ketaset; Fort Dodge Animal Health, Fort
Dodge, IA) and xylazine (9 mg/kg; TranquiVed; Vedco, Inc., St. Jo-
seph, MO) and eyes were dilated by topical application of propar-
acaine (0.5%; Bausch & Lomb, Tampa, FL). Elevation of IOP was
induced unilaterally in adult 129S6mice by injection of polystyrene
microbeads (FluoSpheres; Invitrogen, Carlsbad, CA; 15 mm diam-
eter) into the anterior chamber of the right eye of each animal
under a surgical microscope. Microbeads were reformulated at a
concentration of 5.0 � 106 beads/ml in phosphate-buffered saline
(PBS). The right cornea was gently punctured near the center using
a sharp 30-gauge needle (World Precision Instruments Inc., Sar-
asota, FL). An air bubble was injected via the micropipette con-
nected with a Hamilton syringe, itself coupled to a syringe pump to
avoid overflow of the AqH from the anterior chamber prior to in-
jection of microbeads. A precise volume (2 ml) of microbeads was
injected through the pre-formed hole into the anterior chamber
using the micropipette. Mice were placed on a heating pad for re-
covery after the injection, and antibiotic Vetropolycin ointment
(Dechra Veterinary Products, Overland Park, KS) was applied topi-
cally onto the injected eye to prevent infection.

2.4. IOP measurement

Mice were anesthetized with isoflurane inhalation (2%), which
was delivered in 95% oxygen with a precision vaporizer. IOP mea-
surement was initiated within 2 min after animal lost toe pinch and
blink reflex. IOPs were acquiredwith a TonoLab rebound tonometer
(iCare, Franconia, NH, USA). Five TonoLab readings were averaged
to obtain a single IOP value per eye. IOPmeasurements were carried
out at days 4, 10, 15, 18, 22 and 28 of the 32-day study.

2.5. Statistical analyses

All statistical analyses were performed using GraphPad Prism
(version 6.0). Statistical tests included the Student's t-test, Pearson
correlation, or multivariate linear regression. In order to compare
correlation coefficients, the Fisher method of r-to-z transformation
was employed, using the following equation:

zn ¼ 1
2
ln
�
1þ r
1� r

�

Pairwise correlations with their respective samples sizes (n1 and
n2) were compared with the following test statistic:

Z ¼ ðz1 � z2Þ
√ 1

ðn1�3Þþðn2�3Þ

Correlation dispersionwas used to quantify differences between
automated and manual counts for each retina. Correlation disper-
sion was determined using the following equation:

CD ¼ √½yðmanualÞ � yðautomatedÞ�2

where y represents the cell count in RGC/mm2.
P < 0.05 was considered significant throughout the study. Data

are presented as mean ± s.d.

3. Detailed methods

3.1. Generation of a rapid and robust automated quantification
technique

To minimize variability and enable faster and more efficient
quantification of immunolabeled RGCs, we sought to develop and
validate a reproducible automated quantification method. The
approach uses the freely-available softwares, CellProfiler and Cell-
Profiler Analyst (CPA) (Carpenter et al., 2006; Kamentsky et al.,
2011; Lamprecht et al., 2007), and can be used for high-
throughput image analysis. The CellProfiler image analysis tem-
plate was designed to recognize all DAPI-positive (nuclear marker)
and b-III-tubulin-labeled cylindrical RGC somata (Box 1).

The workflow was as follows: the CellProfiler template was
loaded and images from experimental set-ups were fetched into
the “File list”. Automated processing of each image was initiated
(“Analyze Images”): the morphological features for each cell,
including the nuclei and cellular shapes, as well as intensity-based
and textural features from both the DAPI and b-III-tubulin channels
were recognized and measured by CellProfiler; the complete set of
these measurements for each cell is defined as the “cytoprofile”
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(Carpenter et al., 2006). Once the measurements were collected,
the supervised machine-learning tool “Classifier” in CPA (Jones
et al., 2008) was used to perform phenotypic classification of the
RGCs. In brief, a “training set”was initialized by the researcher, first
“fetching” a small selection of sample cells drawn at random from
the experiment that exhibit the desired RGC phenotype (i.e. b-III-
tubulin-stained cells co-labeled with DAPI: “positives”), as well as
cells that did not present that phenotype (“negatives”). The
researcher then assigned images of cells that were deemed to be
“RGC-positive” to the “positive” window and images of cells that
were deemed “RGC-negative” to the “negative” window (Fig. 1A).
Following classification of each “fetched” image, the “Train Classi-
fier” tool was activated and a tentative “rule” was formed based on
the cytoprofiles of the positive and negative example cells (Fig. 1A).
The researcher was then presented with new sample cells to score
as positive or negative, the score of which was used by the CPA to
improve the training set by correcting errors (Fig. 1A) and refine the
quantification “rule”. Following each classification step, the “Train
Classifier” tool was initiated to save recognition refinements to the
“rule”. This iterative process allowed the researcher to produce a
classifier specific to the RGC phenotype of interest within a few (on
average, three to five) rounds of corrections and refinements.
Overall, the training step generally takes 20 min. An example of a
“rule” classifier is provided in Fig. 1A; each line represents a mea-
surement deemed useful by the CPA classifier in distinguishing the
phenotype, with the more valuable measurements located towards
the top. The accuracy of the classifier's ability to correctly identify
positive and negative cells was assessed at each training step using
cross-validation (“Check Progress”), until training based on 50% of
the training set was equally effective as 95% of the training set, i.e.
until the training set was large enough that adding more samples
would not increase accuracy (Fig. 1B). An accuracy above 80% was
considered adequate (Jones et al., 2009). The final step was to apply
the classifier to the experimental groups, scoring all cells as positive
or negative (“Score All” Fig. 1A; engendering a results table, Fig. 1C).

To test the workflow, 72 retinas (1800 images: 25 confocal im-
ages per retina) were first quantified using manual and automated
techniques. Manual quantifications were carried out using ImageJ
(Box 2).

Images were loaded consecutively through the (Fiji is Just)
ImageJ software. Using the “Cell Counter” plugin (Supplementary
Fig. 1A), the image loaded into ImageJ was “initialized” and the
color counter type was chosen (Supplementary Fig. 1B). “Type 3”
was our counter of choice for its green color, enabling clear parti-
tion with the b-III-tubulin-positive RGC cells.

A linear regression model, comparing manual and automated
quantifications, initially revealed only a weak correlation between
results from the automated quantification method and those ob-
tained by manual quantification (Fig. 2A). We hypothesized that
image quality affected the ability of an observer (manual counting)
and/or the image processing algorithms (automated counting) to
accurately identify and count RGCs. To probe this assumption, we
first assessed the quality of the images visually (Fig. 2BeD). While
some images displayed consistent staining, homogeneous expo-
sure, and clean RGC delineations (Fig. 2B), other images were of
lower quality, due to heterogenous immunostaining (Fig. 2C),
increased density of nerve fibers, or uneven imaging (Fig. 2D).

3.2. Quality control using ImageJ

A guideline in ImageJ was developed to select images of suffi-
cient quality to be reproducibly counted (manually or automati-
cally) based on the averages of circularity and pixel thresholds of
RGCs in each image. Specifically, for each image, a binary contrast
enhancement was carried out: images were converted from the
original color (red-green-blue (RGB), Supplementary Fig. 2A and D)
to an 8-bit grayscale, set to a threshold intensity of 89 and inverted
so that fluorescent cells would appear as black objects on a white
background (Supplementary Fig. 2B and E). Particles were then
analyzed to assess circular areas of pixels (with thresholds set to
include Circularity 0.05e1.00 and Size in pixel units 200-Infinity),
denoting circular RGCs within same-sized frames in “high-quality/
included” (Supplementary Fig. 2C) and “low-quality/excluded” im-
ages (Supplementary Fig. 2F). This method highlighted the signif-
icant differences in circular pixilation areas between high-quality
and low-quality images (Supplementary Fig. 2C and F and
Supplementary Table 1), irrespective of the RGC counts obtained
per image. Images with a circularity score �0.13 (selected cut-off
value; Supplementary Fig. 2 and Supplementary Table 1) were
deemed of insufficient quality.

The impact of image quality on the reproducibility of both
manual and automated methods was studied in 18 selected retinas
(21 images per retina): nine retinas representing the highest
quartile of correlation dispersions (D398 ± 80.8 RGC/mm2) and
nine retinas representing the lowest quartile of correlation dis-
persions (D70.1 ± 68.6 RGC/mm2) (Fig. 2A, see ‘Statistical analyses’
for a description of correlation dispersions calculations). Using the
unbiased ImageJ quality assessment platform, 272 images of the
total 378 images from 18 retinas were categorized as included im-
ages (Fig. 3A and B), while 28% (106 images) were labeled as
excluded images (Fig. 3C and D). The linear regression fit between
manual and automated quantifications improved markedly for
included images (r2 ¼ 0.64, Fig. 3E) as compared to excluded images
(r2 ¼ 0.22, Fig. 3F), highlighting the advantage of a quality control
step prior to RGC quantifications, whether performed manually or
automatically.

Additionally, to investigate whether observer bias may have
affected the supervised classification quality, two researchers
independently counted images manually, and carried out auto-
mated quantification using CellProfiler and the machine-learning
tool in CPA. The two observers’ counts were strongly correlated
for included (r2 ¼ 0.87) and excluded (r2 ¼ 0.83) image groups using
automated counting (Z ¼ 1.25, Fig. 3G and I, respectively), while
correlations were lower for manual quantification, with r2 ¼ 0.70
for included images and r2 ¼ 0.47 for the excluded images (Z ¼ 3.08,
Fig. 3H and J, respectively). Consistent quantification of RGCs was
achieved using both techniques. Importantly, the automated
counting method provided greater reproducibility for images of
lower quality as compared to the manual quantification method
(Fig. 3I and J), highlighting the robustness of our automated
quantification method. Particularly advantageous is the fact that
the automated approach was considerably faster than the manual
method; manual counting of 1800 images took one observer 72 h to
complete, while automated quantification was achieved in 3 h.

3.3. In vivo validation of the computational quantification method

To validate our approach, the automated counting method was
applied to study RGC loss in an established mouse model of optic
neuropathy, the microbead occlusion model (Huihui et al., 2011;
Sappington et al., 2010). Injection of 15 mm-diameter microbeads
into the anterior chamber blocks the outflow of aqueous humor,
resulting in a significant increase in intraocular pressure (IOP) for
up to threeweeks post-injection and a 25e40% loss of RGCs (Huihui
et al., 2011). The microbead-injected eyes exhibited a significant
increase in IOP over a period of 18 days compared to uninjected
contra-lateral eyes (average changes in IOP over 18 days:
14 ± 0.8 mmHg to 22 ± 1.1 mmHg, n ¼ 6, P < 0.05). Both our
automated approach and manual quantification were able to
identify significant neuropathy at the conclusion of the 32-day



Fig. 1. Automated scoring of cell morphologies using the CellProfiler Analyst machine learning and iterative feedback system. (A) The software system presents the researcher
with individual cells to classify from segments of images, sampled randomly from the set of images. After classification of a few cells, the researcher begins the iterative machine-
learning phase (“Train Classifier”), in which the software generates a tentative rule based on the classified cells and presents the researcher with cells classified according to that
rule. (B) The accuracy of the CPA classifier rule may be checked after each training set (“Check Progress”) and accuracy above 80% is considered suitable. (C) Following 4 training
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Box 2

(Fiji is Just) ImageJ.

The (Fiji is Just) ImageJ software is freely available to

download at http://fiji.sc/Fiji. The Cell Counter plugin infor-

mation used for manual quantifications of RGCs in this

study is available at http://fiji.sc/Cell_Counter.

Fig. 2. (A) Correlation between manual and automated quantifications of 72 murine retinas. Each count represents the averages of 20e25 images per retina. Counts are presented as
number of RGC/mm2. Green square symbols: 9 retinas with highest quartiles of correlation dispersion (well-correlated manual and automated counts). Red round symbols: 9 retinas
with lowest quartiles of correlation dispersion (poorly-correlated manual and automated counts). (B) “High-quality” image with clean RGC body delineations. (C) Image with
discordant/low staining or underexposure to highlight the RGCs. (D) Image of a fiber-rich uneven exposure, possibly due to the retinal structure not being fully flattened onto the
imaging slide.
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study, with comparable RGC loss (29.2 ± 9.1% vs. 29.8 ± 10.3% loss of
RGC/mm2, Fig. 4A and B, respectively). Manual and automated
quantifications were also correlated (r2¼ 0.61, Fig. 4C), highlighting
the efficacy and translatability of our fully automated quantification
method.

4. Potential pitfalls and troubleshooting

The CellProfiler software provides a platform to recognize cells
according to texture, size and color; the training set in CPA is the
tool enabling reproducible quantifications. Since CPA is initialized
and overseen by the researcher, setting up a template to accurately
recognize and measure b-III-tubulin-positive RGC somata and
training for recognition of “positive” and “negative” cells to
“include” or “exclude” in quantifications remain relatively subjec-
tive. However, subjectivity is also inherent to manual quantifica-
tions, in which the researcher arbitrarily decides which cells to
count. The CPA training set will consistently quantify cells assigned
as “positive” throughout images of experiments, while, during
manual quantifications, human error may inadvertently occur and
subjectivity may fluctuate between 2 researchers and/or from one
set of images to another. The greater reproducibility of the CPAwas
highlighted with greater correlations between automated quanti-
fications from 2 independent researchers than those between
manual quantifications from the same 2 investigators.

Quantifications were also influenced by the quality of the image.
In an experimental setting, heterogeneous immunolabeling of b-III-
tubulin-positive cells occurs, affecting the ability of the CPA tool to
iterations, all cells from the experiment of interest are classified in order to calculate the nu
cells recognized as RGCs. “Negative Cell Count” refers to image regions, in which the cells' m
number of cells recognized per image. “Image Number” represents the number of the imag
accurately count cells. An ImageJ-based quality control was estab-
lished to filter high-quality images for quantification. It is important
to note that, while performing the ImageJ-based quality control
improved the correlation between manual and automated counts,
foregoing the use of ImageJ prior to quantifying images using
CellProfiler and CPA would not corrupt results obtained, as auto-
mated quantifications of cells using poor quality images remained
more reliable than those from manual counting. Moreover, the
number of training sets within CPA may be increased to refine the
“RGC recognition rule” for image sets that present with higher
numbers of lower quality images.
In the validation cohort (Fig. 4), absolute RGC numbers were

higher when counted using CellProfiler and CPA than when coun-
ted manually. This discrepancy may be the result of a combination
of subjectivity in manual counts throughout images and definition
of inclusion and exclusion criteria in the CPA training phase. Pre-
vious studies reported RGC counts similar to the average of 3,019
RGC/mm2 we obtained using the automated method, with various
staining methods in various strains of mice (Table 1). Our data,
together with published data, suggest that our manual count may
have underestimated the number of RGCs present. In general, it
remains challenging to determine absolute numbers of RGCs:
manual quantifications are affected by inter-observer variability
due to subjective observer error. Importantly, the reproducibility of
the automated method was validated in an established model of
glaucoma, in which relative differences in RGC counts (a primary
endpoint in several studies (Chen et al., 2011; Huihui et al., 2011;
Yang et al., 2012)) between microbead-injected and uninjected
eyes were comparable using the presented automated and the
manual methods. Taken together, our data suggest that automated
counting is at least as reliable as, butmuch less time consuming and
prone to inter-observer variability, than manual counting.

Finally, while the presented automated counting platform was
designed for b-III-tubulin immunolabeled RGC recognition, the
CellProfiler template features may recognize and process additional
cell sizes and shapes or bemodified to do so as necessary. The use of
the machine-learning tool in CPAmay then be taught to implement
the new cell features. For instance, staining with Brn3a, an RGC-
mber of positive (RGC) and negative (non-RGC) cells. “Positive Cell Count” denotes the
orphological features were not recognized as RGCs. “Total Cell Count” refers to the total
e associated with the cell counts.
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Fig. 4. Automated quantification method successfully captures microbead-induced optic neuropathy. (A) Number of RGCs/mm2 counted using the CellProfiler automated
quantification method in retinas isolated from non-injected (1,616 ± 333 RGC/mm2, n ¼ 6) and microbead-injected (1,144 ± 452 RGC/mm2, n ¼ 6) eyes. Values are presented as
mean ± s.d. *P < 0.05 vs. uninjected contralateral eye. (B) Number of RGCs/mm2 counted manually in retinas isolated from non-injected (3,019 ± 643 RGC/mm2, n ¼ 6) and
microbead-injected (2,404 ± 438 RGC/mm2, n ¼ 6) eyes. (C) Results are correlated between manual and automated quantification methods of images (n ¼ 162) from 12 murine
retinas.

Fig. 3. (A-D) Examples of an included image (Fig. 3A and B) and an excluded image (Fig. 3C and D, based on ImageJ exclusion criteria described in ‘Materials and Methods’). Cells
were counted either manually (Fig. 3A and C) or automatically with CellProfiler followed by training with CellProfiler Analyst (Fig. 3B and D). Green dots represent RGCs identified
by the observer. The number 3 refers to the Cell Counter type chosen, an arbitrary label from the software. Blue dots represent RGCs recognized by the software. Orange dots
represent structures identified by a step in the image-processing pipeline but not counted as RGCs by the software. (E) Correlation between the two quantification methods of
included images (n ¼ 272). Counts are presented as raw number of cells per image. (F) Correlation between the two quantification methods of excluded images (n ¼ 106). Counts are
presented as raw number of cells per image. Markedly greater correlations were observed for included (Fig. 3E) than excluded (Fig. 3F) images (Fisher r-to-z transformation with Z
factor ¼ 4.62). (G-J) Correlations of manual (Fig. 3H and J) and automated (Fig. 3G and I) quantification methods of RGC images carried out by two independent observers. Counts are
presented as raw number of cells per image. Image groups are presented as included (Fig. 3G and H) and excluded (Fig. 3I and J) images, as defined by the pre-selection of image
quality carried out using ImageJ.
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specific protein and alternative to b-III-tubulin staining, has been
highlighted as a dependable identification method of RGC somata
alone (Leahy et al., 2004; Schlamp et al., 2013). The current pipeline
Table 1
Retinal ganglion cell numbers.

Reference Species Strain Cell

(Khan et al., 2015) Mouse C57Bl/6J RGC
(Templeton et al., 2014) Mouse C57Bl/6J Axo
(Jeon et al., 1998) Mouse C57Bl/6J GCL
(Chen et al., 2011) Mouse C57Bl/6J RGC
(Danias et al., 2003) Mouse C57Bl/6J RGC
(Cone et al., 2010) Mouse C57Bl/6J RGC
(Nusbaum et al., 2015) Mouse CD-1 RGC
(Cone et al., 2010) Mouse CD-1 RGC
(Sanchez-Migallon et al., 2016) Mouse Crl:CD-1 RGC
(Nadal-Nicolas et al., 2015) Rat Sprague Dawley RGC
(Danias et al., 2003) Mouse DBA/2NNia RGC
(Cone et al., 2010) Mouse DBA/2J RGC

Summary of rodent ganglion cell numbers segmented by species and strain. PPD: Pheny
set up in CellProfiler was altered to recognize Brn3a-stained RGCs
and cells were successfully recognized and quantified by CellPro-
filer (Supplementary Fig. 3), with RGC numbers averaging
type Labeling method Count/mm2 Count/retina

Neurobiotin 2,867 ± 445
n PPD 44,846 ± 3980
neurons EH-stained nuclei 5,510e5918

Fluorogold 3,828 ± 355
Fluorogold 4212 ± 323 69,824 ± 7943

/Axon Dapi/1% T 4196 ± 406 51,064 ± 5045
b-III-Tubulin 3,713 ± 262

/Axon Dapi/1% T 3,820 ± 232 60,995 ± 6994
Brn3a 49,631 ± 4633
Brn3a 2,889 ± 80
Fluorogold 3882 ± 295 72,322 ± 5192

/Axon Dapi/1% T 4121 ± 262 60,938 ± 5553

lenediamine; EH: Ethidium homodimer; T: Toluidine.
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2,546 ± 425 RGC/mm2 (172.1 ± 27.9 RGC/image) and 2,586 ± 413
RGC/mm2 (174.8 ± 28.7 RGC/image) for manual and automated
quantifications, respectively, which are similar to previous reports
of Brn3a-stained RGC counts (2,889 RGC/mm2) (Nadal-Nicolas
et al., 2015).

In summary, a reliable investigator-supervised counting tool
was developed for automatically quantifying immunolabeled RGC
somata in a highly time-efficient manner. This freely available
protocol enabled rigorous quantification of b-III-tubulin-stained
RGCs for unbiased assessments of relative changes in RGC numbers
in pathological conditions (e.g. between control animals and ani-
mals treated with an experimental therapy). This approach may
also serve to reconcile intra- and inter-observer variability.
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