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Data sharing is an essential element of the scientific

method, imperative to ensure transparency and repro-

ducibility. Researchers often reuse shared data for

meta-analyses or to accompany new data. Different

areas of research collect fundamentally different types

of data, such as tabular data, sequence data, and

image data. These types of data differ greatly in size

and require different approaches for sharing. Here, we

outline good practices to make your biological data

publicly accessible and usable, generally and for sev-

eral specific kinds of data.

FAIR principles

Sharing data proves more useful when others can

easily find and access, interpret, and reuse the data.

To maximize the benefit of sharing your data, follow

the findable, accessible, interoperable, and reusable

(FAIR) guiding principles of data sharing [1] (Box 1),

which optimize reuse of generated data. The FAIR

principles outline clear standards for ensuring that

others can find and access your data and that once

accessed, users can easily understand and reuse the

data. The FAIR principles provide a clear collection

of important details to include within your data and

metadata (see ‘Data metadata and documentation’).

The repositories and practices we recommend below

fulfill some of these principles and make it easier for

you to follow others. This will not only help others

using your data, but can also save you time in the

future (see ‘The benefits of sharing data to individual

researchers’).

The National Institutes of Health (NIH), Canadian

Institutes of Health Research (CIHR), Monarch Initia-

tive [2,3], and the Research Data Alliance (https://www.

rd-alliance.org/) all recommend FAIR principles for

data sharing. Amendments to these recommendations

that add measures for traceability (such as evidence

and provenance), licensing, and connectedness (such

as identifiers and versioning) further improve data

reusability [4,5].

Why share?

The benefits of sharing data to science and

society

Sharing data allows for transparency in scientific stud-

ies and allows one to fully understand what occurred

in an analysis and reproduce the results. Without com-

plete data, metadata (see ‘Data and metadata’), and

information about resources used to generate the data,

reproducing a study proves impossible [6,7].

Within the biological sciences, we have a problem

of data waste—ostensibly shared data that no one

ever uses. Many otherwise useful datasets go under-

used because researchers cannot effectively reuse the

data. The inability to reuse arises from lack of discov-

erability, lack of important information provided,

inconsistencies in data and metadata, and licensing

issues.

When shared effectively, we can multiply the bene-

fits of large datasets that cost large amounts of funds

and research time. Combining previously shared bio-

logical data accelerates development of analytical

methods used to analyze biological data. Reusing

rare samples increases the sample impact. Combining

data together in meta-analyses increases study power.

Data sharing also leads to fewer duplicate studies.

Researchers can build on previous studies to corrob-

orate or falsify their findings rather than repeating

the same experiment. Many research projects rely on

data from resources such as the Encyclopedia of

DNA Elements (ENCODE) Project [8,9]. The

847FEBS Letters 595 (2021) 847–863 ª 2021 Federation of European Biochemical Societies

 18733468, 2021, 7, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14067, W

iley O
nline L

ibrary on [14/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4346-9696
https://orcid.org/0000-0003-4346-9696
https://orcid.org/0000-0003-4346-9696
https://orcid.org/0000-0002-0503-9348
https://orcid.org/0000-0002-0503-9348
https://orcid.org/0000-0002-0503-9348
https://orcid.org/0000-0002-3105-1359
https://orcid.org/0000-0002-3105-1359
https://orcid.org/0000-0002-3105-1359
https://orcid.org/0000-0001-9195-2282
https://orcid.org/0000-0001-9195-2282
https://orcid.org/0000-0001-9195-2282
https://orcid.org/0000-0001-9114-8737
https://orcid.org/0000-0001-9114-8737
https://orcid.org/0000-0001-9114-8737
https://orcid.org/0000-0002-4517-1562
https://orcid.org/0000-0002-4517-1562
https://orcid.org/0000-0002-4517-1562
https://www.rd-alliance.org/
https://www.rd-alliance.org/
http://crossmark.crossref.org/dialog/?doi=10.1002%2F1873-3468.14067&domain=pdf&date_stamp=2021-04-11


existence of a large collection of accessible data also

aids in the development of cross-cutting analyses

such as recount2 [10].

Published manuscripts with reusable data will garner

more citations and have more long-term impact on sci-

entific knowledge [11]. As such, many funders now

require that grant proposals include a data manage-

ment and sharing plan describing biological data and

metadata [12,13]. Many journals have also imple-

mented policies making public data sharing a require-

ment upon publication.

The benefits of sharing data to individual

researchers

Sharing data increases the impact of a researcher’s work

and reputation for sound science [14]. Awards for those

with an excellent record of data sharing [15] (https://re

searchsymbionts.org/) or data reuse [16] (https://researc

hparasite.com/) can exemplify this reputation.

Demonstrating a track record of excellence in

resource sharing benefits you when applying for fund-

ing. A commitment to and detailed plan for sharing

Box 1. FAIR data sharing principles

The first step in (re)using data is to find them. Metadata and data should be easy to find for both humans and com-

puters. Machine-readable metadata are essential for automatic discovery of datasets and services, so this is an essen-

tial component of the FAIRification process.

F1. (Meta)data are assigned a globally unique and persistent identifier

F2. Data are described with rich metadata (defined by R1 below)

F3. (Meta)data clearly and explicitly include the identifier of the data they describe

F4. (Meta)data are registered or indexed in a searchable resource

Once the user finds the required data, she/he needs to know how can they be accessed, possibly including authentica-

tion and authorization.

A1. (Meta)data are retrievable by their identifier using a standardized communications protocol

A1.1 The protocol is open, free, and universally implementable

A1.2 The protocol allows for an authentication and authorization procedure, where necessary

A2. Metadata are accessible, even when the data are no longer available

The data usually need to be integrated with other data. In addition, the data need to interoperate with applications

or workflows for analysis, storage, and processing.

I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representa-

tion

I2. (Meta)data use vocabularies that follow FAIR principles

I3. (Meta)data include qualified references to other (meta)data

The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, metadata and data should be well-de-

scribed so that they can be replicated and/or combined in different settings.

R1. (Meta)data are richly described with a plurality of accurate and relevant attributes

R1.1 (Meta)data are released with a clear and accessible data usage license

R1.2 (Meta)data are associated with detailed provenance

R1.3 (Meta)data meet domain-relevant community standards

By GO FAIR [1] (https://www.go-fair.org/fair-principles/), provided under the Creative Commons Attribution 4.0

International license.
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data publicly increase the perception of a grant pro-

posal’s impact [14]. A detailed data sharing plan outli-

nes the types of data you will share, available

metadata, and in which repositories you will deposit

the data.

Preparing to share data publicly reduces uninten-

tional errors within your own research group. When

preparing the data for sharing, providing detailed

metadata and documentation will eliminate guesswork,

lost details, and maintain tacit knowledge that might

otherwise remain unrecorded. Posting data on public

repositories with links to the publication and links to

data deposited within your publication ensure findabil-

ity of your data.

Data citation standards now allow directly citing

datasets in journal reference list [17]. Citable datasets

provide an important incentive to data sharing since

those using your shared data can now properly attri-

bute citations to your dataset.

Addressing common concerns about data

sharing

Despite the clear benefits of sharing data, some

researchers still have concerns about doing so. Some

worry that sharing data may decrease the novelty of

their work and their chance to publish in prominent

journals. You can address this concern by sharing

your data only after publication. You can also choose

to preprint your manuscript when you decide to share

your data. Furthermore, you only need to share the

data and metadata required to reproduce your pub-

lished study.

Time spent on sharing data

Some have concerns about the time it takes to organize

and share data publicly. Many add ‘data available upon

request’ to manuscripts instead of depositing the data in

a public repository in hopes of getting the work out

sooner. It does take time to organize data in preparation

for sharing, but sharing data publicly may save you

time. Sharing data in a public repository that guarantees

archival persistence means that you will not have to

worry about storing and backing up the data yourself.

You can consider putting off data sharing tasks as

incurring a form of ‘sharing debt’, by analogy with the

concept of technical debt used in software engineering.

Delaying these tasks may appear to save you time in

the short run, but sharing the data later will take at

least as much time as doing it now. You may also

incur interest, as it can take longer in the long run to

handle individual requests for data availability. Taking

a few hours now to organize data and submit it to a

repository will save you much of this time.

Human subject data

Sharing of data on human subjects requires special

ethical, legal, and privacy considerations. Existing rec-

ommendations [18–24] largely aim to balance the pri-

vacy of human participants with the benefits of data

sharing by de-identifying human participants and

obtaining consent for sharing. Sharing human data

poses a variety of challenges for analysis, transparency,

reproducibility, interoperability, and access [18–24].
Sometimes you cannot publicly post all human data,

even after de-identification [25]. We suggest three

strategies for making these data maximally accessible.

First, deposit raw data files in a controlled-access

repository, such as the European Genome-phenome

Archive (EGA) [26]67. Controlled-access repositories

allow only qualified researchers who apply to access

the data. Second, even if you cannot make individual-

level raw data available, you can make as much pro-

cessed data available as possible. This may take the

form of summary statistics such as means and stan-

dard deviations, rather than individual-level data.

Third, you may want to generate simulated data dis-

tinct from the original data but statistically similar to

it. Simulated data would allow others to reproduce

your analysis without disclosing the original data or

requiring the security controls needed for controlled

access [21].

Data, metadata, and documentation

Data and metadata

Data consist of recorded observations of the biological

artifacts or models studied. Metadata describe the pri-

mary data and the resources used to generate it.

In a biological context, metadata often provide addi-

tional information on samples such as sex, disease,

and tissue source site. Metadata often include informa-

tion about resources such as cell lines and antibodies.

You should share metadata alongside every dataset.

A lack of clear metadata for your specific dataset

makes it more difficult to understand [27]. This may

make it more difficult to reproduce the research or

reuse the data. For example, roughly half of >1700
evaluated research studies lacked sufficient specificity

in describing resources such as cell lines, organisms,

and antibodies to make the study reproducible [6].

In addition to information about samples, metadata

also describe experimental protocols and bioinformatic
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processes. These include tools used to generate the

data, hardware and software versions, processing

batch information, and details necessary for under-

standing data generation.

Most biological disciplines have specific metadata

standards that describe the information expected to

accompany datasets. For example, genomic researchers

have benefited enormously from consistent minimum

standard of metadata reporting. The Minimum

Information About a Microarray Experiment [28] and

Minimum Information About a Next-generation

Sequencing Experiment [29] (http://fged.org/projects/

minseqe/) guidelines have enabled large-scale efforts to

combine and harmonize data, promoting reuse. These

guidelines require descriptive standards, experimental

design information, essential sample information such

as tissue or sex, and bioinformatic processing proto-

cols. Repositories of gene expression data, such as

Gene Expression Omnibus (GEO) [26], have mandated

use of these guidelines. We discuss metadata standards

for individual biological disciplines below.

Using controlled vocabularies or ontologies can

improve the rigor of describing biological concepts in

your metadata. Ontologies are controlled vocabularies

that include both human- and machine-readable

semantic relationships between concepts. Widely used

biological ontologies include the Gene Ontology

[30,31] (http://geneontology.org/) used to annotate

gene function and the Uberon anatomy ontology [32]

(https://uberon.github.io/). Many repositories or con-

sortium projects require the use of a controlled vocab-

ulary in their metadata standard or data model. For

example, the ENCODE Project suggests using Uberon

to describe the source of biological tissues.

The formally defined linkages between concepts in

an ontology further support interoperability and

reusability beyond a simple controlled vocabulary. For

example, there exists a logical relationship defining the

Gene Ontology term ‘dentate gyrus development’

(GO:0021542) using a term from Uberon, ‘dentate

gyrus of hippocampal formation’ (UBERON:0001885).

Well-constructed controlled vocabularies and

ontologies use globally unique persistent identifiers to

refer to each concept. This eliminates ambiguity and

makes it easier to link uses of the concept across the

whole scientific endeavor. To refer to any controlled

vocabulary or ontology term, use a persistent identi-

fier, and version, if applicable.

Documentation

Document your data in three ways: (a) with your

manuscript, (b) with description fields in the metadata

collected by repositories, and (c) with README files.

README files provide abbreviated information about

a collection of files. README files associated with

biological data should explain organization, file loca-

tions, observations and variables present in each file,

details on the experimental design, and details on

bioinformatic processes.

We regard README files as essential for making

your data easy to navigate. Below, we include specific

recommendations on README files for different

types of biological data.

Source code

Ideally, readers should have all materials needed to

completely reproduce the study described in a publica-

tion, not just data. These materials include source

code, preprocessing, and analysis scripts. Guidelines

for organization of computational biology project

[33,34] can help you arrange your data and scripts in a

way that will make it easier for you and other to

access and reuse them.

Licensing

Clear licensing information attached to your data

avoids any questions of whether others may reuse it.

While copyright law does not protect facts themselves,

permission to reuse compilations of facts such as data-

bases may seem less clear without an explicit license.

Many data resources turn out not to be as reusable as

the providers intended, due to lack of clarity in licens-

ing or restrictive licensing choices [35].

Accompany your data with a license that allows

reuse and possibly redistribution. We recommend dedi-

cating your data to the public domain with the CC0

Universal Public Domain Dedication (https://creativec

ommons.org/choose/zero/). Using CC0 maximizes the

ability for others to reuse and remix the data. Other

guidelines recommend CC0 [4,36] and many journals

and repositories require it.

For nondata artifacts associated with your manu-

script, you may wish to use a license with more restric-

tions than CC0. Relevant licenses include the GNU

General Public License (https://www.gnu.org/licenses/

gpl-3.0.html) for code and Creative Commons licenses

(https://creativecommons.org/choose/) for documents.

When to share

We encourage you to share any data underlying a

manuscript by the time of its publication. Many pub-

lishers and funding agencies such as NIH [37,38] now
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make data sharing an explicit requirement. In addition

to sharing all relevant data by publication time, some

researchers will go further and make it available when

posting a preprint.

Reviewers should have access to underlying data

and code when assessing a manuscript [5]. It may seem

tempting to restrict data access so that only assigned

reviewers can see it during manuscript peer review but

this has hidden costs and uncertain benefits. Making

the data and code public when submitting the manu-

script can avoid this hassle, with few drawbacks. Post-

ing a preprint of the associated manuscript at the

same time provides a public record of priority.

How to share: tabular data

Researchers commonly store data in tabular format,

an intuitive way to describe multiple similar observa-

tions. Tabular format stores information in a structure

of rows and columns. Usually, rows contain observa-

tions and columns contain variables. In biological

data, observations usually refer to samples, replicates,

or genes. Variables consist of quantitative or qualita-

tive properties assessed for each observation.

File format

Researchers often save tabular data as spreadsheets.

Especially when you have multiple supplementary

tables to attach to a manuscript, save the data as a

single XLSX workbook [39] with a data dictionary

sheet at the beginning of the document. Saving tabular

data as XLSX allows for download of all supplemen-

tary tables at once. Most programming languages have

libraries that make it easy to import and read XLSX

workbooks.

Despite the advantages of XLSX workbooks,

Microsoft Excel works poorly with certain types of

data. Famously, Microsoft Excel changes some gene

names to dates [40,41]. This posed a sufficiently severe

issue that geneticists changed the gene symbol nomen-

clature to prevent this mishap [42]. Eluding Excel’s

mangling of gene symbols can prove complicated.

When your data have gene symbols and you have any

uncertainty about avoiding corrupting these symbols

when saving XLSX workbooks, use non-XLSX for-

mats instead.

When depositing data in public repositories, rather

than including it in a manuscript or on the journal’s

supplementary data Web site, save the data in tab-sep-

arated values (TSV) format. This format separates

variables with a tab character and separates observa-

tions of multiple variables with a newline character.

Many programs and programming environments can

easily use TSV data.

Avoid comma-separated values (CSV) format, when

possible. CSV format has the disadvantage of using

commas to separate variables, when commas often

occur within variables themselves. This leads to ambi-

guity and different, incompatible format variants that

attempt to solve this problem.

Organization

Certain organizational tactics make data much more

interpretable and reduce errors. Broman & Woo [43]

and Ellis & Leek [44] provide excellent suggestions

on how to organize tabular data. First, ensure that

you use the same labels in all areas of your data.

For example, inconsistent sex labels, such as ‘female’,

‘Female’, ‘F’, ‘f’, and ‘0’, make the data hard to read

and to reanalyze. Second, pick one representation of

data nomenclature and remain consistent throughout

your data and documentation. Third, ensure that you

use consistent missing value notation, such as ‘NA’.

Fourth, avoid using spaces in file and column names

as this complicates use in many analyses [44]. Incor-

porating these recommendations makes your data

easily interpretable and usable by yourself and

others.

Data dictionary

Data dictionaries have a crucial role in organizing

your data, especially explaining the variables and their

representation. When using XLSX workbooks, add a

data dictionary as a separate sheet. When using TSV

files, add an additional TSV file containing the data

dictionary. Your data dictionaries should provide

short names for each variable, a longer text label for

the variable, a definition for each variable, data type

(such as floating-point number, integer, or string),

measurement units, and expected minimum and maxi-

mum values. Data dictionaries can make explicit what

future users would otherwise have to guess about the

representation of data.

Where to share

Share the tabular data most important for interpreting

your manuscript as a table within the manuscript

itself. You can supply more voluminous data or data

less crucial for interpretation as supplementary data

attached to the manuscript. Sharing data through the

manuscript publisher this way can have three limita-

tions. First, a publisher may limit the size of data you
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can include. Second, publishers may make the data

difficult to download, especially to download many

datasets at once. Third, sometimes publishers have

misplaced supplementary data making it difficult to

access later or have placed it behind a paywall. To

avoid these problems, share especially larger or more

complex tabular data in generalist repositories such as

Zenodo (https://zenodo.org/; see ‘How to share: every-

thing else’).

How to share: genomics

File format

Genomic data come in many formats with many dif-

ferent associated biological and technical variables.

Usually, raw genomic data consist of sequences stored

in FASTA [45] (https://faculty.virginia.edu/wrpearson/

fasta/) or FASTQ format [46]. When possible, deposit

raw data in CRAM format [47] (https://samtools.

github.io/hts-specs/), with unaligned reads included.

CRAM files contain sequence information, similar to

binary alignment/map (BAM) [48] files, but take up

much less space [47] than either a BAM file or a

FASTQ file. With unaligned reads included, you

should have the ability to reproduce a FASTQ file

from a CRAM file.

When possible, deposit your processed data as

CRAM, browser extensible data (BED) [49] (https://ge

nome.ucsc.edu/FAQ/FAQformat.html), or TSV files.

Format data with genomic regions as BED files

instead of generic TSV files. BED files store genomic

coordinates of genomic region of interest in the first

three columns. The BED format allows additional

annotations in subsequent columns, making BED files

great for working with genes, binned windows, CpG

sites, or transcript data, such as experimental results

from genomic assays such as RNA-seq [50–53], chro-
matin immunoprecipitation-sequencing (ChIP-seq) [54]

and assay for transposase-accessible chromatin

(ATAC-seq) [55] Using BED formats makes it easy to

perform quick analyses on your data with software

such as BEDTools [56] (https://bedtools.readthedocs.

io/) or Bioawk (https://github.com/lh3/bioawk). Use

the bedGraph [57] variant of BED when saving contin-

uous-value data in track format.

In microarray analyses, use CEL (Affymetrix, Santa

Clara, CA, USA; https://www.affymetrix.com/support/

developer/powertools/changelog/gcos-agcc/cel.html) or

IDAT [58] (Illumina, San Diego, CA, USA) file for-

mats for raw data. For storing processed microarray

data, store information about genomic regions such as

transcripts or CpG sites in BED format.

Compression

Compress large-scale genomic data to minimize the

amount of computational storage used. Use gzip

(https://www.gnu.org/software/gzip/) compression for

single files and ZIP archives for collections of files.

Text-based file formats easily compress.

Reference assemblies

Most genomic data have coordinates defined by align-

ment to a reference genome for a species. Note the refer-

ence genome assembly version you align your data to in

your manuscript and README file (see ‘Documenta-

tion’). With advancement of sequencing technologies,

genomic coordinates will vary between reference assem-

blies. For example, a number of parts of the genome

changed coordinates between the GRCh37/hg19 [59]

and GRCh38/hg38 [60] genome assemblies. Thus, with-

out knowing the reference assembly used for an aligned

file, the genomic coordinates hold little value.

Unfortunately, some file formats, such as BED, do

not require reference genome assembly metadata. In

these cases, make sure to explicitly note which refer-

ence assembly you used to align your samples.

Where to share

Public repositories make datasets easily findable by

interested parties (Table 1). The GEO [26] repository

(https://www.ncbi.nlm.nih.gov/geo/) houses public gene

expression and gene regulation data [61]. This includes

data on DNA methylation, histone modifications,

chromatin organization, and interactions between the

genome and proteins such as transcription factors. The

submission form requires you to specify both data files

and relevant metadata, such as experimental details.

After successful deposition, GEO provides you with an

accession number for your manuscript. You can place

an embargo on your data to withhold public access

until publication of your manuscript. GEO will allow

an embargo of up to 3 years, but you can change the

release date at any time.

Deposit high-throughput sequencing reads that do

not fit into GEO in the Sequence Read Archive (SRA)

[62] (https://www.ncbi.nlm.nih.gov/sra/). GEO will

actually submit raw data files to SRA on your behalf,

so you need not submit to both.

Deposit data that contain purely DNA or RNA

sequence, rather than quantitative data, in GenBank

[63] (https://www.ncbi.nlm.nih.gov/genbank/). These

data include sequence of genomic DNA, mRNA, non-

coding RNA, plasmids, and synthetic constructs.
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GenBank and the SRA make up part of the Interna-

tional Nucleotide Sequence Database Collaboration

(INSDC) [64] (https://www.insdc.org/), which also

includes DNA Data Bank of Japan (DDBJ) [65]

(https://www.ddbj.nig.ac.jp/) and European Nucleotide

Archive [66] (https://www.ebi.ac.uk/ena/). The INSDC

members take data submitted to any of these reposito-

ries and automatically make it available in the others.

For sensitive genetic and phenotypic information

from human participants, EGA [67] (https://ega-arc

hive.org/), a controlled-access genomics archive only

permits qualified researchers you approve to access the

data. Each dataset must have an associated data access

committee that approves access requests and ensures

responsible use of the data [25].

How to share: proteomics

File format

Like genomic data, mass spectrometry proteomic

experiments generate both raw data and processed

data. You should share both. Raw data typically come

in a proprietary vendor file format, such as .raw

(Thermo Scientific, Waltham, MA, USA), .wiff

(SCIEX, Framingham, MA, USA), or .d (Agilent,

Santa Clara, CA, USA). Besides the raw data in their

original format, also share peak files in the standard

mzML file format [68] (https://www.psidev.info/

mzML).

Processed data include (a) identification results con-

sisting of peptide-spectrum matches and protein identi-

fications, and (b) quantification results consisting of

determined amounts for the identified proteins. Public

repositories, such as the ProteomeXchange consortium

[69], require raw data and identification data for ‘com-

plete’ submissions. Provide identification data and

quantification data in the standard mzTab format [70]

(https://www.psidev.info/mztab). Storing proteomic

data in this format, a TSV variant, allows for use of

various programming languages without the use of

specialized libraries.

Also share other essential files besides the data itself

used during the analysis. These include FASTA files

with protein sequences or spectral libraries used for

spectrum identification.

Metadata and documentation

Provide a README with comprehensive metadata

about the experiment, including sample metadata (such

as organism and tissues), technical metadata (such as

instrument model), and experimental design (such as

number of technical and biological replicates). Use the

Sample and Data Relationship Format for Proteomics

(https://github.com/bigbio/proteomics-metadata-standa

rd) [71] to encode this information in a structured

fashion.

Use free-text metadata to describe the study, the

sample processing protocol, and the data processing

protocol. Comprehensively describe all sample process-

ing steps, including full analytical details. Provide full

information on the bioinformatic tools used to process

the data, including tool names, version numbers, the

organism name, and version information of the

FASTA files used for spectrum identification. Also

provide the details of any statistical tests and thresh-

olds employed.

For a reanalysis, describe the tools used and how

the results differ from the originally deposited data.

Do this both in a free-text metadata and in a

README document.

Where to share

The ProteomeXchange consortium [69] (https://www.

proteomexchange.org/), which includes the main pro-

teomics data repositories such as Proteomics Identifi-

cations Database (PRIDE) [72] (https://www.ebi.ac.uk/

pride/) and Mass Spectrometry Interactive Virtual

Table 1. Genomic repositories

Repository Purpose Formats

GEO [26] Quantitative gene expression, gene regulation, and

epigenomic data, including data from RNA-seq [50–53],

ChIP-seq [54], Hi-C [118], bisulfite sequencing [119], and

microarrays

CRAM [47], BAM [48], SFF, HDF5, FASTQ, bedGraph, bigBed,

WIG, bigWig, general feature format (GFF), gene transfer

format (GTF), GEOarchive

SRA [62] Unassembled, high-throughput sequencing reads CRAM [47], BAM [48], SFF, HDF5, FASTQ

EGA [67] All kinds of genomics data that contain private genetic or

phenotype information on human participants

CRAM [47], BAM [48],, FASTQ, VCF, SFF, HDF5

GenBank

[63]

Other DNA and RNA sequences FASTA
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Environment (MassIVE) (https://massive.ucsd.edu/),

provides a centralized system for sharing mass spec-

trometry proteomic data (Table 2). To submit data to

ProteomeXchange member repositories, you must

specify the data type of all files and link raw files to

their corresponding peak files and identification

results. By default, ProteomeXchange makes submitted

datasets private and you can wait until publication

time to make the data public. You can include a user-

name and password in scientific manuscripts so that

manuscript reviewers can still access the data.

Most ProteomeXchange member repositories take

any kind of mass spectrometry proteomics data,

whereas some focus on a specific type of data. For

example, PeptideAtlas SRMexperiment library (PAS-

SEL) [73] (http://www.peptideatlas.org/passel/) and

Panorama Public [74] (https://panoramaweb.org/) only

accept deposition of targeted proteomic data.

Some repositories, including MassIVE, store the

results of reanalysis of publicly available datasets also.

MassIVE makes deposition of data reanalyses simple, as

it does not require re-uploading original raw data files

already available in public repositories. MassIVE will

automatically link the new results to the original data.

How to share: microscopy

Microscopy image data use large amounts of disk

space. Microscopy images also have complex associ-

ated metadata with great heterogeneity across datasets.

The extreme heterogeneity comes from many sources,

both biological and technical. Biologists acquire

images in two or three spatial dimensions, and some-

times across time via live cell imaging experiments.

Biologists also acquire images at different magnifica-

tions and across multiple light wavelength channels.

The biological substrate captured varies in size (x, y)

and depth (z). Biological substrates range from single

molecules to whole organisms. Sample preparation

before image acquisition also varies widely. Different

biologists acquire images using different microscopes

with different settings, often using proprietary software

and file formats to save output image data with differ-

ent resolutions, bit depths, and colors. These complexi-

ties pose unique data sharing challenges [75,76].

We provide guidelines on how to share microscopy

images, intermediate data types, and metadata (Fig. 1).

These guidelines have three distinct themes:

1 Use standardized file formats.

2 Select an appropriate repository.

3 Share high-value intermediate data and data pro-

cessing pipelines.

Following these guidelines will enable the use of

your microscopy data in secondary analyses, which

will increase the impact of your data.

Compression

Always share images with at least lossless compression.

Lossless compression uses less disk space but loses no

information as one can expand the compressed file

into something identical to the original. Lossy com-

pression, by contrast, loses information.

For very large microscopy datasets, using lossy com-

pression may provide storage and access benefits with-

out losing much vital biological information [77].

Biologists often cringe at losing image resolution or

information, but if the loss only marginally decreases

analysis performance while increasing access speed and

decreasing cost, only sharing the compressed formats

may prove the best option. While microscopy data

repositories currently offer high ceilings for dataset

size (Table 3), this may change as microscopy image

datasets grow in size and velocity.

Intermediate data

To maximize the value and impact of your microscopy

studies, also share high-value intermediate processed

data such as illumination-corrected images. You must

correct for uneven illumination around the edges of

each microscopy field of view, called shading or vig-

netting, using computational tools before measuring

intensity-related continuous phenotype [78,79]. Typi-

cally, additional downstream analyses will use these

adjusted images instead of the raw images. Ask the

repository if it requires image adjustments before sub-

mission.

Image analysis

Depending on experimental goals and strategies, you

can also apply an image analysis pipeline. Image anal-

ysis produces summary data describing the images,

Table 2. Mass spectrometry proteomic repositories

Repository Purpose

PRIDE [72] Archival of all kinds of proteomic data

MassIVE Archival and reanalysis of all kinds of proteomic

data

PASSEL [73] Targeted selected reaction monitoring (SRM)

proteomic data

Panorama Public

[74]

Targeted proteomic data analyzed using Skyline

[120]
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Fig. 1. You should share raw images, corrected images, image-based readouts, analysis pipelines, and comprehensive metadata. While

sometimes challenging, this process will ultimately increase the value of your data. Figure made with BioRender (Toronto, ON, Canada).

Table 3. Microscopy image repositories

Repository Purpose Substrate Maximum size Formats

IDR [100] Large and complete benchmark

microscopy image datasets associated

with a publication

Cells and tissues 1000 GB, but you

can ask to

increase limit

Any Bio-Formats [90],

OME-TIFF preferred

EMPIAR

[101]

Electron microscopy image data High-resolution subcellular

structures

Tens of TB TIFF, HDF5, MRC,

MRCS, DM4,

IMAGIC, SPIDER, FEI

BioImage

Archive

[102]

Link microscopy image data to

associated publications

All nonmedical images not

suitable for IDR or EMPIAR

Tens of TB Any Bio-Formats [90],

OME-TIFF preferred

Cell Image

Library

[103]

Cell images and movies Cells and intracellular structures Tens of TB Any Bio-Formats [90],

OME-TIFF preferred

SSBD [104] Analysis of experimental and

computationally simulated biological

image data

Any microscopic biological entity,

from single molecules to

organelles and cells

Tens of TB Any Bio-Formats [90],

OME-TIFF preferred
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such as morphology feature embeddings. These sum-

mary data take much less disk space than the original

images. You can extract this summary data either

manually or with specialized software.

Manual annotations provide a gold standard for

benchmarking many computational approaches.

Researchers generally create such annotations only for

small image subsets, and these annotations include few

phenotypic measurements [80]. Nevertheless, if you

create such annotations, you should make them public.

When doing so, include important metadata such as

the images used to derive the annotation, the annota-

tor, time collected, and annotation batch (see ‘How to

share: tabular data’).

To more rapidly and consistently measure a richer

phenotypic landscape in larger datasets, avoid manual

annotation and instead use a computational image

analysis pipeline. Many free software packages per-

form image analysis and extract measurements, includ-

ing CellProfiler [81], ImageJ [82], Icy [83],

PhenoRipper [84], Wndcharm [85], and EBImage [86].

These tools can perform many analyses, including seg-

menting and counting cells exhibiting a specific pheno-

type, identifying colocalization of molecules with

fluorescent tags, and measuring cell morphology in an

unbiased fashion [87].

Image-based profiles

Following image analysis, certain experiments result in

high-dimensional readouts that require additional data

processing. In these experiments, one extracts image-

based profiles. Image-based profiles lack specificity for

any target biology—instead, the profiles have no bias

toward any biological hypothesis and represent the

samples’ morphological states. This approach has

evolved into a field known as image-based profiling, in

which scientists discover biological insights through

the aggregation and normalization of morphology fea-

tures derived from image analysis tools [87–89].

Metadata

To share microscopy data, first catalog experimental

metadata in a standard format. Well-structured meta-

data provide a vital ingredient enabling others to find

and use your data [90].

Metadata standardization initiatives provide guideli-

nes on what metadata to share. For example, the Open

Microscopy Environment (OME) data model has pro-

posed generic standards and developed software, such

as Bio-Formats [90], for standardized metadata report-

ing and interoperable output file formats [91]. The 4D

Nucleome [92] Imaging Standards Working group

extended these guidelines to promote rigorous data

sharing standards [93].

Individual research communities have augmented

these general standards. For example, communities

have produced specialized guidelines for reporting cell

migration data [94], time-lapse data [95], 3D micro-

scopy images of whole brains (https://www.dorywork

space.org/), and fluorescence microscopy [96].

Follow reporting standards for describing cell phe-

notypes [97] and cell behavior [98]. To increase the

interoperability and value of your data, annotate your

images using consistent ontologies.

Where to share

Deposit your data in an appropriate repository [99]

(Table 3). Each microscopy data repository has a

focused purpose, and accepts data that meet certain

size, format, and biological sample conditions. For

example, Image Data Resource (IDR) [100] (https://

idr.openmicroscopy.org/) accepts benchmark datasets

with likely future secondary data analyses and in

additional data integration efforts. Electron Micro-

scopy Public Image Archive (EMPIAR) [101]

(https://www.ebi.ac.uk/pdbe/emdb/empiar/) accepts

high-resolution images from subcellular compartments

and biological structures. BioImage Archive [102]

(https://www.ebi.ac.uk/bioimage-archive/) provides a

home for all other microscopy image datasets, often

those of a smaller size. Cell Image Library [103]

(http://www.cellimagelibrary.org) hosts a wide variety

of biological images and movies for research and

education purposes. The Systems Science of Biologi-

cal Dynamics (SSBD) database [104] (http://ssbd.qbic.

riken.jp) also hosts a variety of images and even pro-

vides a home for computationally simulated micro-

scopy images.

To determine the appropriate repository, align your

microscopy image dataset to the repository with the

best-aligned purpose, biological substrate, file size, and

output file format (Table 3). When in doubt, contact

the repository to determine the suitability of your

data. Together, the repositories described here provide

a home for all microscopy image datasets.

Depositing your images only in a journal Portable

Document Format (PDF) file or pasted in a Microsoft

Word or PowerPoint document does not satisfy the

FAIR principles (Box 1). This practice will result in

low-quality images and compression artifacts and will

make future analysis impossible. Do not share data by

shipping physical storage devices to requesters or by

using cloud provider links [105]. Do not share data
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using a custom solution either (see ‘How not to share:

do not use custom, in-house solutions’).

For sharing image data, we usually do not recom-

mend using generalist repositories such as Figshare

and Zenodo (see ‘How to share: everything else’).

These repositories store data that do not have domain-

specific resources. They therefore lack the special focus

necessary to sufficiently catalog the complexities of

microscopy images. Image-based profiles, which con-

sist in small, intermediate data representing morphol-

ogy feature embeddings, provide the only exception to

this. For now, generalist repositories serve as the best

place to deposit image-based profiles.

How to share: structural biology

Structural biology encompasses a range of different

techniques, including X-ray crystallography, NMR,

and multiple kinds of electron microscopy (EM) meth-

ods, such as single-particle cryogenic electron micro-

scopy (cryo-EM), cryogenic electron tomography

(cryo-ET) [106,107], and microcrystal electron diffrac-

tion [108]. Each technique derives information from

distinct initial raw data using unique processing

approaches.

Where to share

The various structural biology techniques exhibit vast

differences in raw data types, files sizes, and paths

toward final results. As such, each scientific commu-

nity developed independent repositories for storing the

input and output of these experiments (Table 4). In

addition to sharing the final atomic coordinates, each

structural biology field developed an individual path to

sharing raw and processed data.

Protein Data Bank (PDB) [109] (https://rcsb.org/)

serves as a repository for atomic coordinates of nucleic

acids, proteins, and larger assemblies. Most journals

require structural biology manuscripts to include

unique PDB identifiers. Upon deposition of the final-

ized coordinate files and metadata, authors obtain an

unique PDB identifier. Deposition involves creation of

a unique identifier and a password. This keeps the files

and metadata visible only to the authors and the data-

base operators.

You can place an embargo on your PDB deposition

to withhold public access until publication of your

manuscript, or 1 year, whichever comes first. We rec-

ommend immediate access at the time of publication.

Moreover, some journals currently also require coordi-

nate files at the time of submission or by reviewer

request. We encourage you to make all your data

accessible upon acceptance of the manuscript.

Associate X-ray crystallography structure factors

directly with your PDB entries. Store raw diffraction

data in the Integrated Resource for Reproducibility in

Macromolecular Crystallography (IRRMC) [110,111]

(https://www.proteindiffraction.org/).

Deposit NMR structural ensembles in the Biological

Magnetic Resonance Bank (BMRB) [112] (https://

bmrb.io/). The BMRB usually represents multiple

chains under a single identifier. For many experiments,

you can deposit raw NMR data, in the form of

restraints, in the NMR Restraints Grid [113] (https://

restraintsgrid.bmrb.io/).

The most important element of sharing EM data con-

sists in the deposition of the raw, unprocessed data into

EMPIAR [101] (https://www.ebi.ac.uk/pdbe/emdb/

empiar/). Modern direct detection cameras can generate

thousands of images each day. Each image file can con-

tain tens or hundreds of movie frames. Depending on

Table 4. Structural biology repositories

Repository Purpose Substrate

Maximum

size Formats

PDB [109] Atomic coordinates

and ensembles

Subcellular structures Tens of

MB

PDB, mmCIF

EMDB

[117]

3D reconstructions

from processed

EM data

Subcellular structure MRC, CCP4

EMPIAR

[101]

EM raw and

processed image

data

Subcellular structures

(single-particle cryo-EM,

cryo-ET)

Tens of

TB

TIFF, HDF5, MRC, MRCS, DM4, EER, IMAGIC, SPIDER,

SCIPION, EMDB-SFF, AMIRA, STL, VTK, VTP, OBJ, AVI,

JPEG, PNG, EMX, BLENDER, TXT

IRRMC

[110,111]

X-ray diffraction raw

data

Subcellular structures Hundreds

of MB

Raw diffraction data formats

BMRB

[112]

NMR raw data Subcellular structures GB CCPN, mmCIF, PDB, NMR-STAR, X-PLOR
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the file format, raw data from a single session can range

from 1 TB to 10 TB. Deposit the raw, uncorrected

movie stacks, as well as summed, motion-corrected

micrographs, final particle coordinates, and final align-

ment files in EMPIAR. This greatly simplifies data vali-

dation and reproducibility. It also simplifies software

development—having access to raw and processed

training data improves heterogeneity classification and

machine learning approaches [114–116].
Cryo-EM microscopy uses Coulomb potential densi-

ties to build and refine coordinate files. Thus, the final

coordinate model depends on the quality of the EM

reconstructions, on your individual choices, and on the

model-refinement approaches used. Thus, providing

final filtered and unfiltered maps has great importance

to the validation claims made in a manuscript. Deposit

the coordinates and final calculated Coulomb potential

maps in the Electron Microscopy Data Bank (EMDB)

[117] (https://www.ebi.ac.uk/pdbe/emdb/), obtaining

unique PDB and EMDB identifiers.

When a cryo-EM dataset reveals structural variabil-

ity, provide a consensus output and deposit all the

associated models and maps needed to support the

claims of the manuscript in separate depositions. In

addition, if multiple 3D variability clusters result in a

large number of intermediate maps, add them to an

EMPIAR deposition, along with the raw data. As new

technologies enable collecting more data in shorter

times, the focus on describing motion will increase.

Accordingly, computational structural heterogeneity

analysis approaches will become more sophisticated.

How to share: everything else

For some types of data not covered above, no special-

ized repositories exist. Deposit these kinds of data in

generalist repositories that can manage many different

types of data.

Organization

Organize your data depositions with raw data separate

from results. Use ZIP archives to collect your data so

that viewers can preview individual files in repositories

such as Zenodo. To make your data clear and inter-

pretable, include a README with a detailed descrip-

tion of the project and an explanation of what each of

the files contains.

Where to share

First, see whether an appropriate data repository exists

in the re3data directory (https://www.re3data.org/).

For cases where no such repository exists, we recom-

mend Zenodo (https://zenodo.org/), a generalist reposi-

tory that allows for deposition of data, code, analysis,

and manuscripts and has robust semantic versioning

as well as a persistence guarantee.

Open Science Framework (OSF) (https://osf.io/)

provides a system for organizing scientific projects,

including data, code, and protocols. It also serves as a

generalist repository, allowing you to share data and

other materials simply by making you OSF project

publicly available.

How not to share: Do not use custom,
in-house solutions

Hosting your data using a customized solution you

create may seem attractive. For example, some share

their data using public Amazon Web Services Simple

Storage Service (S3) links or even building a new

repository specifically for their project. Using a custom

solution provides an illusion of complete control. In

reality, custom efforts usually result in something frag-

ile with uncertain permanence and in difficulty for

tracking attribution and citation.

Do not reinvent the wheel. Third-party repositories

have more permanence, exist outside the control of

the original data generators, and provide storage and

infrastructure maintenance cost savings. Third-party

repositories also enforce metadata standards that

facilitate FAIR sharing principles (Box 1). These

repositories have access to funding streams and insti-

tutional commitments that individual investigators

lack. Users interact with third-party repositories fre-

quently, and many have had negative experiences by

custom hosting efforts, which generate more problems

than solutions.

Discussion

We suggest a four-step checklist for biological

researchers to complete when submitting a manuscript:

1 Deposit raw and processed data. Use a specialist

repository if possible. Dedicate these datasets to the

public domain with CC0.

2 Deposit code to a generalist repository.

3 Deposit all miscellaneous files to generalist reposi-

tory.

4 Put all repository accession numbers and license

information in your manuscript.

We encourage you to create a laboratory publication

checklist that contains the necessary steps for a labora-

tory member to prepare a manuscript and associated
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artifacts for publication. Use the four-step checklist as

a starting point, and add details specific to you and

the kinds of data you work with.

We understand that some will find the above recom-

mendations difficult or overwhelming at first. We

encourage you to do what you can. Improving your

data management and sharing practices gradually will

still provide great value for you and other researchers.

Finally, the intent to share matters.
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