
One cubic millimetre doesn’t sound 
like much. But in the human brain, 
that volume of tissue contains some 
50,000 neural ‘wires’ connected by 
134 million synapses. Jeff Lichtman 

wanted to trace them all. 
To generate the raw data, he used a protocol 

known as serial thin-section electron micros-
copy, imaging thousands of slivers of tissue 
over 11 months. But the data set was enormous, 
amounting to 1.4 petabytes — the equivalent 
of about 2 million CD-ROMs — far too much 
for researchers to handle on their own. “It is 
simply impossible for human beings to man-
ually trace out all the wires,” says Lichtman, a 
molecular and cell biologist at Harvard Uni-
versity in Cambridge, Massachusetts. “There 

are not enough people on Earth to really get 
this job done in an efficient way.” 

It’s a common refrain in connectomics — the 
study of the brain’s structural and functional 
connections — as well as in other biosciences, 
in which advances in microscopy are creating 
a deluge of imaging data. But where human 
resources fail, computers can step in, espe-
cially deep learning algorithms that have been 

optimized to tease out patterns from large 
data sets. 

“We’ve really had a Cambrian explosion of 
tools for deep learning in the past few years,” 
says Beth Cimini, a computational biologist 
at the Broad Institute of MIT and Harvard in 
Cambridge, Massachusetts. 

Deep learning is an artificial-intelligence 
(AI) technique that relies on many-layered 
artificial neural networks inspired by how 
neurons interconnect in the brain. Based as 
they are on black-box neural networks, the 
algorithms have their limitations. Those 
include a dependence on massive data sets to 
teach the network how to identify features of 
interest, and a sometimes inscrutable way of 
generating results. But a fast-growing array of 

FIVE WAYS DEEP LEARNING HAS 
TRANSFORMED IMAGE ANALYSIS
From connectomics to behavioural biology, artificial intelligence is making it 
faster and easier to extract information from images. By Sandeep Ravindran

Neurons (teal) can have thousands of connections to other cells.
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“We’ve really had a  
Cambrian explosion  
of tools for deep learning  
in the past few years.”
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open-source and web-based tools is making it 
easier than ever to get started (see ‘Taking the 
leap into deep learning’).

Here are five areas in which deep learning 
is having a deep impact in bioimage analysis.

Large-scale connectomics
Deep learning has enabled researchers to 
generate increasingly complex connectomes 
from fruit flies, mice and even humans. Such 
data can help neuroscientists to understand 
how the brain works, and how its structure 
changes during development and in disease. 
But neural connectivity isn’t easy to map. 

In 2018, Lichtman joined forces with Viren 
Jain, head of Connectomics at Google in Moun-
tain View, California, who was looking for a 
suitable challenge for his team’s AI algorithms.

“The image analysis tasks in connectomics 
are very difficult,” Jain says. “You have to be 
able to trace these thin wires, the axons and 
dendrites of a cell, across large distances, 
and conventional image-processing methods 
made so many mistakes that they were basi-
cally useless for this task.” These wires can be 
thinner than a micrometre and extend over 
hundreds of micrometres or even millimetres 
of tissue. Deep-learning algorithms provide a 
way to automate the analysis of connectomics 
data while still achieving high accuracy.

In deep learning, researchers can use anno-
tated data sets containing features of interest 
to train complex computational models so that 
they can quickly identify the same features in 
other data. “When you do deep learning, you 
say, ‘okay, I will just give examples and you 
figure everything out’,” says Anna Kreshuk, a 
computer scientist at the European Molecular 
Biology Laboratory in Heidelberg, Germany.

But even using deep learning, Lichtman and 
Jain had a herculean task in trying to map their 
snippet of the human cortex1. It took 326 days 
just to image the 5,000 or so extremely thin sec-
tions of tissue. Two researchers spent about 100 
hours manually annotating the images and trac-
ing neurons to create ‘ground truth’ data sets to 
train the algorithms, in an approach known as 
supervised machine learning. The trained algo-
rithms then automatically stitched the images 
together and identified neurons and synapses 
to generate the final connectome. 

Jain’s team brought massive computational 
resources to bear on the problem, including 
thousands of tensor processing units (TPUs), 
Google’s in-house equivalent to graphics 
processing units (GPUs) built specifically for 
neural-network machine learning. Processing 
the data required on the order of one million 
TPU hours over several months, Jain says, after 
which human volunteers proofread and cor-
rected the connectome in a collaborative pro-
cess, “sort of like Google Docs”, says Lichtman. 

The end result, they say, is the largest such 
data set reconstructed at this level of detail in 
any species. Still, it represents just 0.0001% of 

Plenty of resources are available to help 
researchers get up to speed. 

Organizations such as the Woods Hole 
Oceanographic Institute in Massachusetts 
and NEUBIAS, the global Network of 
European BioImage Analysts, offer courses 
on how to get started. And the Center for 
Open Bioimage Analysis, a collaboration 
between the Broad Institute of MIT and 
Harvard in Cambridge, Massachusetts, 
and the University of Wisconsin–Madison 
sponsors image.sc, a discussion forum about 
scientific-image software. Researchers 
can also comb old Kaggle challenges — 
computational competitions for scientists 
and AI enthusiasts — for examples of models 
and data that they can practise with and 
learn from. “All the data and the training sets 
are available, and you can look at the code 
and descriptions for the winning models, 
so it’s a very good starting point,” says 
Emma Lundberg, a bioengineer at Stanford 
University in California.

Researchers might also want to start with 
pre-trained models from tool sets such as 
Cellpose, StarDist and DeepCell, which 
can be used through web interfaces, as 
plug-ins for the ImageJ and napari software 
ecosystems, or as standalone applications. 
“They’ve trained models that work pretty 
well for a good fraction of use cases,” says 
Beth Cimini, a computational biologist at 
the Broad Institute. “You don’t really need 
to know what they’re doing or understand 
how a deep-learning network works, you 
just kind of tweak the knobs until you 
get a good result.” For those who require 
greater customizability, Piximi and ImJoy 
allow researchers to train their own neural 
networks to identify various phenotypes, and 
to locate cells in images, a process known as 
segmentation.

Most such tools can be run in a browser. 
ZeroCostDL4Mic, an open-source toolbox for 
deep learning in microscopy, uses Google’s 
computational-notebook platform Colab and 
allows researchers to train various popular 
open-source models in the cloud, as well as 
access pre-trained models that can be run in 
the cloud9. There’s also the BioImage Model 
Zoo, a one-stop shop for open-source pre-
trained models for popular-use cases.

Alternatively, researchers can install 
and run dedicated software. For instance, 
ilastik has a point-and-click interface to 
help detect not just cells and nuclei but 

also features such as microtubules and 
vesicles. Co-developer Anna Kreshuk, 
a computer scientist at the European 
Molecular Biology Laboratory in Heidelberg, 
Germany, and her colleagues are now 
working to improve the software’s ability 
to train neural networks for tasks such as 
classification and segmentation. “Everybody 
needs segmentation,” she says, “but 
everyone is segmenting different things.” 
A training feature is already available in an 
unsupported debug mode.

Learning to program, particularly in 
Python, can help researchers who want to 
customize or train new models. “This will 
really give you an edge, like being able to 
manipulate your data more freely to apply 
methods that people have not specifically 
packaged for you in the best possible 
way,” says Kreshuk. Also helpful will be 
one or more graphics processing units and 
computers capable of using them. 

But neither software nor hardware matters 
as much as the data. “The hardest and the 
most time-consuming part of any deep 
learning is acquiring training data. And if 
your data’s crappy, then your model’s going 
to be crappy,” says Cimini. “You typically 
need hundreds or thousands of examples at 
minimum, and creating the annotations itself 
is tedious.”

Data sets ideally should be large 
and diverse, and it helps if humans can 
unambiguously identify whatever the 
deep-learning model is being asked to 
find. “People kind of expect that these 
models can just perform miracles, but if 
the information that you want to pull out 
isn’t there in the data, then in my view 
and also in my experience, it’s unlikely to 
work,” says David Van Valen, a bioengineer 
at the California Institute of Technology in 
Pasadena.

Deep-learning algorithms effectively 
operate as black boxes, but some tools can 
provide clues to their reasoning. “You can 
tell, for example, which part of an image 
was most important in making a particular 
decision,” says Cimini. 

For now, unambiguous but tedious tasks 
such as identifying cells or nuclei are ideal, 
because humans can easily verify the results. 
But as algorithms improve, the scale and 
scope of researchers’ ambitions will change, 
too. “It’s a really exciting field,” Cimini says. “I 
think it’s going to make a lot of people’s lives 
easier.”

Taking the leap 
into deep learning
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the human brain. But as algorithms and hard-
ware improve, researchers should be able to 
map ever larger portions of the brain, while 
having the resolution to spot more cellular fea-
tures, such as organelles and even proteins. 
“In some ways,” says Jain, “we are just scratch-
ing the surface of what might be possible to 
extract from these images.” 

Virtual histology
Histology is a key tool in medicine, and is used 
to diagnose disease on the basis of chemical or 
molecular staining. But it’s laborious, and the 
process can take days or even weeks to com-
plete. Biopsies are sliced into thin sections and 
stained to reveal cellular and sub-cellular fea-
tures. A pathologist then reads the slides and 
interprets the results. Aydogan Ozcan reck-
oned he could accelerate the process. 

An electrical and computer engineer at the 
University of California, Los Angeles, Ozcan 
trained a custom deep-learning model to stain 
a tissue section computationally by presenting 
it with tens of thousands of examples of both 
unstained and stained versions of the same 
section, and letting the model work out how 
they differed.

Virtual staining is almost instantaneous, and 
board-certified pathologists found it almost 
impossible to distinguish the resulting images 
from conventionally stained ones2. Ozcan 
has also shown that the algorithm can repli-
cate a molecular stain for the breast cancer 
biomarker HER2 in seconds, a process that 
typically takes at least 24 hours in a histology 
lab. A panel of three board-certified breast 
pathologists rated the images as having com-
parable quality and accuracy to conventional 
immunohistochemical staining3. 

Ozcan, who aims to commercialize virtual 
staining, hopes to see applications in drug 
development. But by eliminating the need for 
toxic dyes and expensive staining equipment, 
the technique could also increase access to 
histology services worldwide, he says.

Cell finding
If you want to extract data from cellular 
images, you have to know where in the images 
the cells actually are. 

Researchers usually perform this process, 
called cell segmentation, either by looking at 
cells under the microscope or outlining them 
in software, image by image. “The word that 
most describes what people have been doing 
is ‘painstaking’,” says Morgan Schwartz, a com-
putational biologist at the California Institute 
of Technology in Pasadena, who is developing 
deep-learning tools for bioimage analysis. But 
these painstaking approaches are hitting a 
wall as imaging data sets become ever larger. 
“Some of these experiments you just couldn’t 
analyse without automating the process.” 

Schwartz’s graduate adviser, bioengineer 
David Van Valen, has created a suite of AI 

models, available at deepcell.org, to count and 
analyse cells and other features from images 
both of live cells and of preserved tissue. 
Working with collaborators including Noah 
Greenwald, a cancer biologist at Stanford Uni-
versity in California, Van Valen developed a 
deep-learning model called Mesmer to quickly 
and accurately detect cells and nuclei across 
different tissue types4. “If you’ve got data that 
you need processed, now you can just upload 
them, download the results and visualize them 
either within the web portal or using other 

software packages,” Van Valen says.
According to Greenwald, researchers 

can use such information to differentiate 
cancerous from non-cancerous tissue and to 
search for differences before and after treat-
ment. “You can look at the imaging-based 
changes to have a better idea of why some 
patients respond or don’t respond, or to iden-
tify subtypes of tumours,” he says. 

Mapping protein localization
The Human Protein Atlas project exploits yet 
another application of deep learning: intra-
cellular localization. “We have for decades 
been generating millions of images, outlin-
ing the protein expression in cells and tissues 
of the human body,” says Emma Lundberg, 
a bioengineer at Stanford University and a 
co-manager of the project. At first, the project 
annotated those images manually. But because 
that approach wasn’t sustainable long term, 
Lundberg turned to AI. 

Lundberg first combined deep learning 
with citizen science, tasking volunteers with 
annotating millions of images while playing 
a massively multiplayer game, EVE Online5. 

Over the past few years, she has switched to 
a crowdsourced AI-only solution, launching 
Kaggle challenges — in which scientists and AI 
enthusiasts compete to achieve various com-
putational tasks — of US$37,000 and $25,000, 
to devise supervised machine-learning models 
to annotate protein-atlas images. “The Kaggle 
challenge afterwards blew the gamers away,” 
Lundberg says. The winning models outper-
formed Lundberg’s previous efforts at mul-
ti-label classification of protein-localization 
patterns by about 20% and were generalizable 
across cell lines6. And they managed some-
thing no published models had done before, 
she adds, which was to accurately classify pro-
teins that exist in multiple cellular locations. 

“We have shown that half of all human pro-
teins localized to multiple cellular compart-
ments,” says Lundberg. And location matters, 
because the same protein might behave dif-
ferently in different places. “Knowing if a pro-
tein is in the nucleus or in the mitochondria, 
it helps understand lots of things about its 
function,” she says. 

Tracking animal behaviour
Mackenzie Mathis, a neuroscientist at the 
Campus Biotech hub of the Swiss Federal Insti-
tute of Technology, Lausanne, in Geneva, has 
long been interested in how the brain drives 
behaviour. She developed a program called 
DeepLabCut to enable neuroscientists to track 
animal poses and fine movements from videos, 
turning ‘cat videos’ and recordings of other 
animals into data7. 

DeepLabCut offers a graphical user inter-
face so that scientists can upload and label 
their videos and train a deep-learning model 
at the click of a button. In April, Mathis’s team 
expanded the software to estimate poses for 
multiple animals at the same time, something 
that’s typically been challenging for both 
humans and AI8. 

Applying multi-animal DeepLabCut to 
marmosets, the researchers found that when 
the animals were in close proximity, their bod-
ies were aligned and they tended to look in sim-
ilar directions, whereas they tended to face 
each other when apart. “That’s a really good 
case where pose actually matters,” Mathis says. 
“If you want to understand how two animals 
are interacting and looking at each other or 
surveying the world.”

Sandeep Ravindran is a science writer based 
in Bethesda, Maryland. 
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Annotation of fish for DeepLabCut training.
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“We have for decades been 
generating millions of 
images, outlining the protein 
expression in cells.”
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