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SUMMARY
Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing ther-
apeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested
in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments
customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead
identifies compounds that match to pathways based on the phenotypic information in public cell image
data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy
retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control
gene queries. In prospective, discoverymode, we efficiently identified new compounds related to three query
genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or
pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based
approach could replace many customized labor- and resource-intensive screens and accelerate the discov-
ery of biologically and therapeutically useful compounds.
INTRODUCTION

Thepaceofdefiningnewdiseases is rapidlyaccelerating (Roessler

et al., 2021), as is the cost and time required to develop novel ther-

apeutics (Wouters et al., 2020), creating huge unmet need. The

dominantdrug-discoverystrategies in thepharmaceutical industry

and academia are target-based (biochemical) and phenotypic

(cell-based) screening. Both require significant setup time, are

tailored to a specific target, pathway, or phenotype, and involve
724 Cell Systems 13, 724–736, September 21, 2022 ª 2022 The Auth
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physically screening thousands to millions of candidate com-

pounds at great expense (Moffat et al., 2017). Computational

approaches that allowvirtual screeningof small-moleculemodula-

tors of pathways using the published literature or existing experi-

mental data are beginning to emerge to accelerate drug discovery

(Vamathevan et al., 2019; Schneider et al., 2020), but their predic-

tive power is rarely evaluated systematically and prospectively.

Here, we test a straightforward, image-based computational

matching strategy; querying a compound library using
ors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Image-profile-based drug discov-

ery offers efficient, virtual screening for

pathway modulators

(A) If an overexpressed gene changes the

morphology of cells, its image-based profile can

be used as a query in a database of small-molecule

profiles, looking for those that match (positively

correlate) or oppose (negatively correlate).

(B) Cell Painting images for two positive-control

gene-compoundmatches that yield morphological

phenotypes observable by eye (not all are ex-

pected to). EMPTY (untreated cells) and dimethyl

sulfoxide (DMSO) are the negative controls in the

gene overexpression and compound experiments,

respectively; they differ in confluency and image

acquisition conditions. The phenotype of p38ɑ
(MAPK14) overexpression matches (correlates to)

that of SB-203580, a known p38 inhibitor; in both,

elongated cells are over-represented. The pheno-

type of CDK2 overexpression (small cells) nega-

tively correlates to that of purvalanol-a, a known

CDK inhibitor, which induces an opposite pheno-

type (huge cells). Scale bars, 60 mm.

(C) The rank of the top correct compound for the

control genes. Of 63 genes with known compound

matches in the set, 20 genes (32%) had a correct

compound match in the top 1% of the 30,616

possible compounds (13 genes (21%) had a cor-

rect compound match in the top 0.5%, and 36

genes (57%) had a correct compound match in the

top 2.5%). Breakpoints in the histogram are set to

(0, 306, 612,.) to correspond with 1% increments.

The x axis does not extend to all 30,616 com-

pounds because all data points are in the

top �12,000.
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image-based profiles of genes has not to our knowledge been

previously attempted systematically. One would not expect the

strategy to yield a high-fidelity predictive model for all genes/

pathways, but for some subset, themethod could readily identify

a small set of candidate compounds that could be physically

tested to confirm activity, as a sort of pre-screen. We use exist-

ing public data capturing the complex morphological responses

of cells to a genetic perturbation (in the microscopy assay, Cell

Painting (Bray et al., 2016)), then identify small molecules (i.e.,

chemical compounds) that produce the same (or opposite)

response. In this assay, more than a thousand quantitative

morphology features (including size, shape, intensity, texture,

correlation, and neighbor relationships) are extracted from five-

color images of cells stained with six fluorescent stains that label

eight cellular components or organelles (Figure 1B) to create an

image-based profile of the sample. Conceptually similar to tran-

scriptional profiling (Subramanian et al., 2017), image-based

profiling assays like Cell Painting are cheaper and already proven

in many applications (Lapins and Spjuth, 2019; Chandrasekaran

et al., 2020).

Using image-based data to identify compounds that match a

gene query has never been tested across a set of genes, making

it difficult to estimate its potential. It is unknown whether gene

perturbations yield profiles specific enough such that com-

pounds correlating to a gene are likely to impact the function

of that gene. It is also unknown whether anti-correlations of im-

age-based profiles could reveal biological relationships. Evi-
dence in favor of the strategy includes anecdotal cases where

perturbations of genes phenocopy the compounds targeting

them (Mayer et al., 1999), although these usually were done in

the context of having a compound of interest and looking for

the target instead of vice versa. Almost two decades of research

indicates that image profiles can identify compounds inducing

phenotypes that match other compounds (Perlman et al.,

2004) (reviewed in Chandrasekaran et al., 2020); this can be

helpful in determining a compound’s mechanism of action (if

the matching compounds are annotated) (Futamura et al.,

2012; Schulze et al., 2013; Woehrmann et al., 2013; Foley

et al., 2020; Schneidewind et al., 2020) and in identifying novel

chemical structures with behavior similar to known compounds

with desired bioactivity. This latter case can be useful for finding

compoundswith better physical-chemical or physiological prop-

erties, or working around intellectual property concerns, but it re-

quires having a compound with the desired biological impact

already. Finding compounds that impact a gene/pathway of in-

terest where existing compounds are not already known is a

much harder task and much more likely to yield groundbreaking

medicines.

Recent decades have given rise to an appealing, reductive

ideal in the pharmaceutical industry: one drug that targets one

protein to target one disease (Hughes et al., 2021). However, dis-

eases often involve many interacting proteins, and successful

drugs often impact multiple targets (Bunnage et al., 2013; Lin

et al., 2019; Proschak et al., 2019). There is therefore a renewed
Cell Systems 13, 724–736, September 21, 2022 725
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appreciation for identifying small molecules that can modulate

pathways or networks in living cell systems to yield a desired

phenotypic effect (Hughes et al., 2021). Because genes in a

pathway often show similar morphology (Rohban et al., 2017)

and compounds often show similar morphology based on

their mechanism of action as summarized above (Chandrase-

karan et al., 2020), we examined image-profile matching as a

promising but untested route to capturing perturbations at the

pathway level and accelerating the screening step prior to

identifying useful therapeutics and research tool compounds.

RESULTS

Image-based gene-compound matching: Validation
We began with 69 unique genes whose overexpression yields a

distinctive morphological phenotype by Cell Painting, from our

prior study in U2OS cells (Rohban et al., 2017); roughly 50% of

overexpression reagents in that study passed this criterion as

did 45%–54% in a more recent test of 160 overexpressed genes

(Chandrasekaran et al., 2021). We matched their image-based

profiles to our public Cell Painting profiles of 30,616 small

molecules (Bray et al., 2017; Figure 1A), using simple Pearson

correlations of population-averaged profiles (see ‘‘Scoring gene-

compound and compound-compound connections’’ in STAR

Methods) and avoiding machine-learning methods because of

their potential for overfitting and potential heightened sensitivity

to experimental batch effects. We restricted matching to the

15,863 tested compounds (52%) whose profiles are distinguish-

able from negative controls and confirmed that the profiles show

variety rather than a single uniform toxic phenotype (Figures S1

and S2).

We first verified that image-based profiles allow compounds

to be matched with other compounds that share the same

mechanism of action (for the subset that is annotated with this

information). Consistent with past work (Chandrasekaran et al.,

2020), top-matching compound pairs share a common anno-

tated mechanism of action 4 times more often than the

remainder of pairs (p value < 5 3 10�5 permutation test on the

odds ratio, Figure S3 and ‘‘Permutation test for validation of

known compound-compound pairs’’ in STAR Methods).

We next attempted gene-compound matching. We did not

expect a given compound to produce a profile that matches

that of its annotated gene target in all cases, nor even the

majority. Expecting simple gene-compound matching takes a

reductionist view that does not reflect the complexity of typical

drug action (see Introduction). We therefore included genes

annotated as physically interacting with the gene of interest (us-

ing BioGRID; see ‘‘Compound annotations’’ in STAR Methods)

as a correct match, given our goal of identifying compounds

with the same functional impact in the cell and not only directly

targeting the protein product of the gene of interest. In addition,

existing annotations are imperfect, particularly given the preva-

lence of under-annotation, mis-annotation, off-target effects,

and polypharmacology, where small molecules modulate

protein functions beyond the intended primary target (Lin et al.,

2019; Proschak et al., 2019). Finally, technical reasons can

also confound matching. The genetic and compound experi-

ments were conducted years apart and by different laboratory

personnel, yielding batch effects. They were performed in
726 Cell Systems 13, 724–736, September 21, 2022
U2OS cells which may not be relevant for observing the

annotated gene-compound interaction. In addition, the negative

controls in a gene overexpression experiment (untreated cells)

and a small-molecule experiment (treated with the solvent

control DMSO) do not produce identical profiles (left column,

Figure 1B) and must therefore be normalized to align the nega-

tive controls in the feature space (see ‘‘Feature set alignment’’

in STAR Methods). Despite these concerns, we persisted

because even if the strategy worked in only a small fraction of

cases, dozens of virtual screens and small validations of short-

listed predicted compounds could be done for less than the

cost of a single traditional screening campaign—testing each

compound in singlicate typically costs within an order of magni-

tude of $1 USD, and companies may screen millions of com-

pounds. Although downstream characterization, optimization,

and target deconvolution of compounds will still be necessary,

as for any drug-discovery campaign, this virtual pre-screening

could still translate to substantial resource savings.

Assessing the 63 genes of 69 that had a compound annotated

as targeting that gene in the set, we found that 32% of the

genes successfully matched a compound, using an analysis of

the highest-matching compounds per gene, described next.

Because the method is intended as a virtual pre-screen that

would feed a small proportion of predicted compounds to

physical testing, our analysis mirrored this strategy by counting

that 20 of the 63 genes had a ‘‘correct’’ compound in the top

1%best-matching/opposing compounds in the experiment (Fig-

ure 1C; 1% = 306 of 30,616 compounds in the library, with the

14,753 compounds not expressing a Cell Painting phenotype

placed at the end of the rank order; p value = 0.026 using 844

random permutations; see ‘‘Scoring gene-compound and com-

pound-compound connections’’ and ‘‘Permutation test for vali-

dation of number of genes with a relevant compound match’’

in STAR Methods); 1% represents a typical screen hit rate and

a practical proportion for a confirmation screen of shortlisted

compounds. Here, ‘‘correct’’ matches include cases where the

corresponding protein of a gene interacts physically with at least

one known annotated target of the compound (via BioGrid,

98.6% physical interactions). Although 32% of genes were suc-

cessful at the 1% shortlist level, the success rate increased to 36

genes (57%) having a correct compound match in the top 2.5%

(Figure 1C).

We performed an alternate analysis, focusing not on one com-

pound list per gene as in the two analyses above, but rather on

the single ranked list of all 69 3 1,177 gene-compound pairs

together (69 genes with a phenotype and 1,177 compounds

that target any of them). Top-matching gene-compound pairs

are correct matches 2.5 times more often than for the remainder

of pairs (p value = 0.002 one-sided Fisher test; Figure S4;

Table S1).

For some matches, we visually confirmed that gene

overexpression phenocopies or pheno-opposes the matching/

opposing compound (Figure 1B), although we emphasize that

computationally discovered phenotypes are not always visible

to the human eye, particularly given cell heterogeneity. Exam-

ining the potential impact of polypharmacology, we found no

relationship between the strength of correct gene-compound

matches and the number of annotated targets a compound

has (Figures S5 and S6).
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Throughout this study, we looked for compounds that both

match (positively correlate) and oppose (negatively correlate)

each overexpressed gene profile for several reasons. First, inhibi-

torsandactivatorsofagivenpathwaymaybothbeof interest.Sec-

ond, it is known that negative correlations among profiles can be

biologically meaningful (Rohban et al., 2017). Third, overexpres-

sion may not increase activity of a given gene product in the cell;

it could be neutral or even decrease it via a dominant-negative or

feedback loop/compensatory effect. Fourth, the impact of a

gene or compound perturbation could be cell-type specific; in

our evaluationabove, the existingcompoundannotationsdeemed

as ground truth were determined in particular cell contexts; their

behavior might differ in the U2OS cells used here. Supporting

these theoretical arguments,we found that, empirically, bothposi-

tively and negatively correlating matches were seen in our valida-

tion set (Figure S4E). Furthermore, among the top 12 known gene-

compoundmatches in our validation set, six showedcorrelation of

the opposite directionality than expected (where expected is that

an inhibitor’s profile would have the opposite correlation to its

overexpressed target gene, Figure S7).

Framing our approach as a virtual pre-screen, success even

for 32% of Cell Painting-compatible genes would eliminate the

need to carry out many dozens of large-scale customized

screens in the pharmaceutical setting, instead advancing a few

hundred compounds immediately to disease-relevant assays

and saving hundreds of millions of dollars (see also Discussion

for elaboration on success rates).

Image-based gene-compound matching: Discovery
We next searched virtually for novel small-molecule regulators

of pathways (defined loosely here as groups of genes whose

disruption has a similar impact on biological outcomes). For

each of the 69 genes, we created a rank-ordered list of com-

pounds (from the 15,863 impactful compounds of the 30,616

set) based on the absolute value of correlation to that gene, en-

forcing a minimum of 0.35 (https://github.com/carpenterlab/

2022_Rohban_CellSystems/blob/1de4fe928c30b8118a19be0

736d15c3adae0d7d9/corr_mat.csv.zip). Because there is no

systematic experiment to validate compounds impacting

diverse pathways, we took a customized expert-guided

approach to ensure the results are biologically meaningful

rather than just statistically significant. We found seven experts

studying pathways with strong hits who were willing to conduct

experiments; they chose the most relevant biological systems

and readouts, rather than simply attempting to validate the orig-

inal image-based finding. The experts decided on the number of

compounds reasonable for them to test in their experimental

assay setup, and we provided them with the top matches from

our list (subject to availability of sufficient compound). In a phar-

maceutical context, wewould recommendchoosing the top 1%

of compounds to test (n = 306 in this case); due to throughput

limitations here, we tested less than the top 0.1% of the com-

pounds (n = 9–33, except for RAS where n = 236).

Two cases yielded no confirmation (data not shown): SMAD3

and RAS. Nine compounds matching or opposing the SMAD3

overexpression profile failed to yield activity in a transcription re-

porter assay in A549 lung carcinoma cells involving tandem

Smad binding elements, with and without transforming growth

factor beta 1 (TGF-b1). 236 compounds with positive or negative
correlations to the wild-type RAS or oncogenic HRAS G12V

differential profile (see STARMethods) failed to elicit a RAS-spe-

cific response in a 72 h proliferation assay using isogenic mouse

embryonic fibroblast (MEF) cell lines driven by human KRAS4b

G12D, HRAS WT, or BRAF V600E alleles but otherwise devoid

of RAS isoforms (Drosten et al., 2010). We cannot distinguish

whether the compounds were inactive due to major differences

in the cell types or readouts or whether these represent a failure

of morphological profiling to accurately identify modulators of

the pathway of interest.

A third case affirmed the approach, but the novel compound

identified was not very potent. We tested 17 compounds that

negatively correlated with CSNK1E overexpression in a biochem-

ical assay for the closely related kinase CSNK1A1. Three (SB

203580, SB 239063, and SKF-86002) had inhibitory IC50 concen-

trations in the nanomolar range at Km ATP. Inhibition of CSNK1

family members by these compounds is supported by published

kinase profiling studies (Shanware et al., 2009; Davis et al., 2011;

Klaeger et al., 2017). A fourth compound, BRD-K65952656, failed

to bind any native kinases in a full KINOMEscan panel, suggesting

it mimics CSNK1A1 inhibition via another molecular target. We

chose not to pursue the expensive step of target deconvolution,

given its weak inhibition of CSNK1A1 (IC50 12 mM).

A fourth case affirmed the approach, but the novel compound

failed to replicate following compound resynthesis, suggesting

the desired activity, although validated, was not due to the ex-

pected structure, perhaps due to breakdown. We tested 16

compounds that positively correlated and 17 compounds that

negatively correlated to GSK3B overexpression, for impact on

GSK3a and GSK3b (which generally overlap in function) in a

non-cell-based, biochemical assay. This yielded four hits with

GSK3a IC50s % 10 mM; the two most potent failed to show

activity following resynthesis and hit expansion (testing of

similarly-structured compounds) (Table S2).

We did not pursue these cases further in light of the success

for the three other cases, described next.

Discovery of hits modulating the p38ɑ (MAPK14)
pathway
p38ɑ (MAPK14) inhibitors are sought for a variety of disorders,

including cancers, dementia, asthma, and COVID-19 (NIH, 2022;

Martı́nez-Limón et al., 2020). We chose 20 compounds whose

Cell Painting profile matched (n = 9) or opposed (n = 11) that of

p38a overexpression in U2OS cells. In a single-cell p38 activity re-

porter assay in retinal pigment epithelial-1 (RPE1) cells (Regot

et al., 2014; Liu et al., 2018), we identified many activating com-

pounds; these are less interesting given that the p38 pathway is

activated by many stressors but rarely inhibited. We also found

several inhibitingcompoundsandconfirmedtheiractivity (Figure2;

Figure S8), including a known p38 MAPK inhibitor; most had

diverse chemical structures (Figure S9A). Although the novel com-

pounds are relatively weak, they nevertheless prove the principle

that p38 pathway modulators can be found by image-profile

matching, without a specific assay for the gene’s function.

Discovery of hits impacting PPARGC1A (PGC-1a)
overexpression phenotypes
We next identified compounds with strong morphological corre-

lation to overexpression of peroxisome proliferator-activated
Cell Systems 13, 724–736, September 21, 2022 727
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Figure 2. Cell Painting profiles identify compounds impacting the

p38 pathway

Compounds predicted to perturb p38 activity (triangles) and a set of 14 neutral

compounds (Cell Painting profile correlations to p38a between �0.2 and 0.2;

circles) were tested for their influence on p38 activity at 1 mMusing a two-sided

t test on the single-cell distributions of a p38 activity reporter (Kaufman et al.,

2022) (FDR-adjusted �log10 p values shown). Two potential inhibitors were

found (BRD-K38197229 <K381> and BRD-A64933752 <A649>); an additional

one (BRD-K52394958 <K523>) was identified via an alternative statistical test

(Figures S8A, S8H, and S8I). K543 (BRD-K54330070) denotes SB-202190, a

known p38 inhibitor found as a match (other known inhibitors such as SB-

203580 from Figure 1 were strong matches but excluded from this experiment

because they were already known). The x axis reports the Pearson correlation

between the average Cell Painting profile of the compound with the average

Cell Painting profile of MAPK14 overexpression, where the averages are

computed across five replicates for MAPK14, eight replicates for bioactive

compounds, and four replicates for diversity-oriented synthesis (DOS) com-

pounds. The y axis reports the average FDR-adjusted �log10 p values across

four replicates.
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receptor gamma coactivator 1-alpha (PGC-1a, encoded by the

PPARGC1A gene). We found that these compounds tend to

be hits in a published, targeted screen for PGC-1a activity

(p = 7.73 10�6, Fisher’s exact test) (National Center for Biotech-

nology Information, no date), validating our image-profile-based

matching approach. The dominant matching phenotype is

mitochondrial blobbiness, which can be quantified as the high

standard deviation of the MitoTracker staining at the edge of

the cell (Figures 3A and 3B) without major changes to cell prolif-

eration, size, or overall protein content. Cell subpopulations that

are large, multi-nucleate, and contain fragmented mitochondria

are over-represented when PGC-1a is overexpressed, whereas

subpopulations whose organelles are asymmetric are under-

represented (Figure S10).More symmetric organellemorphology

has been associated with reduced motility and PGC-1a overex-

pression (Lee et al., 2009). The role of PGC-1a in mitochondrial

biogenesis is well appreciated (Luo et al., 2016). The phenotype

uncovered here using image-profile matching is consistent with

other recently discovered mitochondrial phenotypes associated

with this gene (Halling and Pilegaard, 2020).

We chose 24 compounds whose Cell Painting profiles corre-

lated positively or negatively with PGC-1a overexpression in
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U2OS cells (Table S3); they have generally diverse chemical

structures (Figure S9B), and one is a known direct ligand for

PPAR gamma, GW-9662 (BRD-K93258693). PGC-1a is a tran-

scriptional coactivator of several nuclear receptors including

PPAR gamma and estrogen related receptor (ERR) alpha (Hand-

schin and Spiegelman, 2006).We therefore tested compounds in

a reporter assay representing FABP4, a prototypical target gene

of the nuclear receptor, PPARG (Goldstein et al., 2017), in a

bladder cancer cell line (Figure 3C). Three of the five most active

compounds leading to reporter activation (among all the 24 com-

pounds tested) were structurally related and included two anno-

tated SRC inhibitors, PP1 and PP2, which have a known link to

PGC-1a (Usui et al., 2016), as well as a novel analog thereof. In-

hibitors uncovered were CCT018159 (BRD-K65503129) and

Phorbol 12-myristate 13-acetate (BRD-K68552125). Many of

the same compounds also showed activity in a ERRalpha re-

porter assay in 293T cells, albeit with differing effects

(Figure S11).

Encouraged by these results, we tested the impact of the com-

pounds on mitochondrial motility, given the mitochondrial

phenotype we observed and the role of PGC-1a in mitochondrial

phenotypes and neurodegenerative disorders (Nierenberg et al.,

2018). In an automated imaging assay of rat cortical neurons

(Shlevkov et al., 2019), we found several compounds decreased

mitochondrial motility; none increased motility (Figure S12).

Although the latter is preferred due to therapeutic potential,

this result suggests that the virtual screening strategy, applied

to a larger set of compounds, might identify novel motility-pro-

moting compounds. We found 3 of the tested compounds

suppress motility but do not decrease mitochondrial membrane

potential; this is a much higher hit rate (13.0%) than in our prior

screen of 3,280 bioactive compounds, which yielded two such

compounds (0.06%) (Shlevkov et al., 2019).

Discovery of small molecules impacting YAP1-related
phenotypes
The Hippo pathway affects development, organ size regulation,

and tissue regeneration. Small-molecule regulators are highly

sought for research and as potential therapeutics for cancer

and other diseases; the pathway has been deemed relatively un-

druggable (Dey et al., 2020; Tang et al., 2021). We tested 30

compounds (Table S4) whose Cell Painting profile matched (25

compounds) or opposed (5 compounds) the overexpression of

the Hippo pathway effector Yes-associated protein 1 (YAP1),

which we previously explored (Rohban et al., 2017) (Table S5,

images shown in Figure S13). The compounds have generally

diverse chemical structures (Figure S9C). One hit, fipronil, has

a known tie to the Hippo pathway: its impact on mRNA profiles

matches that of another calcium channel blocker, ivermectin, a

potential YAP1 inhibitor (Nishio et al., 2016) (99.9 connectivity

score in the Connectivity Map; Subramanian et al., 2017). After

identifying five promising compounds from the 30 compounds

tested in a cell proliferation assay in KP230 cells (described

later), we focused on the three strongest in various assays and

cell contexts, as follows.

N-Benzylquinazolin-4-amine (NB4A, BRD-K43796186) is an-

notated as an EGFR inhibitor and shares structural similarity

with kinase inhibitors. NB4A showed activity in 30 of 606 assays

recorded in PubChem, one of which detected inhibitors of



Figure 3. Cell Painting profiles identify compounds impacting PPARGC1A (PGC-1a) overexpression phenotypes

(A) Cell Painting images for PPARGC1A (PGC-1a) overexpression compared with negative control (EMPTY [untreated cells], same field as in Figure 1A). Scale

bars, 60 mm.

(B) Compounds with high or low correlations of their Cell Painting profiles to PGC-1a overexpression were chosen for further study (hence, all samples are below

��0.35 or above �0.35 on the x axis, which shows the Pearson correlation between the single, consensus gene profile and the single, consensus compound

profile. The consensus profiles are created using median across 5 replicates for gene overexpressions, eight replicates for bioactive compounds, and four

replicates for diversity-oriented synthesis [DOS] compounds). Correlation to PGC-1a overexpression is dominated by one feature, the standard deviation of the

MitoTracker staining intensity at the edge of the cell, which we term blobbiness (displayed on the y axis as a Z score with respect to the negative controls and is

calculated based on eight replicates for bioactive compounds and four replicates for DOS compounds).

(C) PPARG reporter gene assay dose-response curves in the absence (left) or presence (right) of added PPARG agonist, rosiglitazone. The ten most active

compounds are shown and reported as normalized light units; data representative of two experiments; two replicate data points are shown for each compound

with an identifier beginning with BRD, but they sometimes overlap. Line of best fit generated using GraphPad PRISM using variable slope four parameters fit of

log(inhibitor) versus response. Compounds highlighted in blue/purple are structurally related pyrazolo-pyrimidines.
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TEAD-YAP interaction in HEK-TIYL cells. Its morphological pro-

file positively correlated with that of YAP1 overexpression (0.46)

and, consistently, negatively correlated with overexpression of

STK3/MST2 (�0.49), a known negative regulator of YAP1.

Because the Hippo pathway can regulate the pluripotency and

differentiation of human pluripotent stem cells (hPSCs) (Musah

et al., 2014; Zaltsman et al., 2019), we investigated the effect

of NB4A in H9 hPSCs. NB4A did not affect YAP1mRNA expres-

sion but increased the expression of YAP1 target genes (CTGF

andCYR61) in a dose-dependent manner (Figure 4A), confirming

it impacts YAP1 phenotypes. Accordingly, NB4A increased

YAP1 nuclear localization (Figure 4B). Although decreasing total

YAP1 protein levels, NB4A also reduced YAP1 S127 phosphor-

ylation (Figure 4C; Figure S14A), which promotes YAP1 cyto-

plasmic sequestration (Zhao et al., 2007).

Effects of NB4A on YAP1mRNA expression were not universal

across cell types, consistent with the Hippo pathway’s known

context-specific functions. In most cell types represented in

the Connectivity Map, YAP1 mRNA is unaffected, but in HT29

cells, YAP1 mRNA is upregulated after 6 h of NB4A treatment

(Z score = 3.16; also Z score = 2.04 for WW domain containing

transcription regulator 1 [WWTR1]) and in A375 cells, YAP1

mRNA is slightly downregulated (at 6 and 24 h; Z score �
�0.7) (Subramanian et al., 2017). NB4A had no effect in a

YAP1-responsive reporter assay following 48 h of YAP overex-

pression in HEK293 cells (Figure S14B).

Compounds influencing the Hippo pathway might be thera-

peutic for undifferentiated pleomorphic sarcoma (UPS), an

aggressive mesenchymal tumor that lacks targeted treatments

(Ye et al., 2018). In UPS, YAP1 promotes tumorigenesis and is

inversely correlated with patient survival (Ye et al., 2018). In

KP230 cells, derived from a mouse model of UPS (Ye et al.,

2018), Yap1 protein levels were reduced after 72 h of NB4A treat-

ment (Figures 4E, 4F, and 4H). NB4A also significantly attenu-

ated Yap1 nuclear localization (Figures 4G and 4H), which is

known to reduce its ability to impact transcription. Interestingly,
NB4A did not directly alter transcription of Yap1, its sarcoma

target genes (Foxm1, Ccl2, Hbegf, Birc5, and Rela), nor Yap1’s

negative regulator, angiomotin (Amot) (data not shown). Instead,

pathways such as interferon alpha (IFNa) and interferon gamma

(IFNg) responses were upregulated, whereas pathways such

as the epithelial-mesenchymal transition (EMT), angiogenesis,

and glycolysis were downregulated, according to RNA

sequencing and gene set enrichment analysis (GSEA) (Figure 4D;

Table S6). This indicates a potentially useful mechanism distinct

from transcriptional regulation of YAP1.

Genetic and pharmacologic inhibition of Yap1 is known to

suppress UPS cell proliferation in vitro and tumor initiation and

progression in vivo (Ye et al., 2018). Consistent with being a

Hippo pathway regulator, NB4A inhibited the proliferation of

two YAP1-dependent cell lines: KP230 cells and TC32 human

Ewing’s family sarcoma cells (Hsu and Lawlor, 2011; Figure 4I).

NB4A did not affect the proliferation of two other YAP1-depen-

dent lines, STS-109 human UPS cells (Figure S15A) and HT-

1080 fibrosarcoma cells (Figure S15B; Eisinger-Mathason

et al., 2015; Ye et al., 2018), nor YAP1-independent HCT-116 co-

lon cancer cells (Figures S15C–S15E). Interestingly, NB4A treat-

ment did not exhibit overt toxicity by trypan blue staining in any of

these (not shown), suggesting that it inhibits cell proliferation by a

mechanism other than eliciting cell death.

Next, we investigated two structurally similar compounds

(BRD-K28862419 and BRD-K34692511, distinct from NB4A’s

structure) whose Cell Painting profiles negatively correlated

with YAP1’s overexpression profile (�0.43 for BRD-K28862419

and �0.45 for BRD-K34692511) and positively correlated

with TRAF2 overexpression (0.41 for BRD-K28862419 and 0.29

for BRD-K34692511) (Figure S13). These compounds are not

commercially available, limiting our experiments and past

literature.

We assessed the compounds’ impact on mesenchymal

lineage periosteal cells isolated from 4-day-old femoral fracture

callus from mice with doxycycline (DOX)-inducible YAP-S127A.
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BRD-K34692511 substantially upregulated mRNA levels of rele-

vant Hippo components including Yap1 and Cyr61 after 48 h of

treatment, but not at 1 and 4 h (Figures S14C–S14F). By contrast,

the compounds had no effect on YAP1 or its target genes in H9

hPSCs (Figure S14G), nor in a 48 h YAP-responsive

reporter assay following YAP overexpression in HEK293 cells

(Figure S14B).

Like NB4A, the effects of these compounds on proliferation

varied across cell types. In the U2OS Cell Painting images,

BRD-K28862419 reduced proliferation (�2.0 st dev). Per

PubChem, it inhibits cell proliferation in HEK293, HepG2, and

A549 cells (AC50 5–18 mM), and it inhibits PAX8, which is known

to influence TEAD/YAP signaling (Elias et al., 2016). BRD-

K34692511 had none of these impacts.

Both compounds had the desired effect of inhibiting

KP230 cell proliferation (Figure S15F). Also noteworthy, BRD-

K28862419 modestly yet significantly reduced KP230 cell

viability (Figure S15G), indicating its mechanism of action and/

or therapeutic index may differ from that of NB4A and BRD-

K34692511.

Finally, we resynthesized both of these non-commercially

available compounds to ensure their integrity and identity and

selected a set of close analogs of such compounds to investi-

gate structure-activity relationship. Using a high-throughput

resazurin-based screen (Presto Blue assay), we confirmed the

activity of the two resynthesized compounds to reduce prolifer-

ation of KP230 cells and furthermore found eight additional ana-

logs with activity (Figure 4J). In fact, four of the analogs were

more potent than one or both of the original compounds,

reducing KP230 cell growth by 78.70%–98.95% versus un-

treated cells (Figure 4J). Structural analysis reveals that themac-

rocycle is quite robust to changes in stereochemistry and that

compounds with an amide linker tend to outperform those with

a urea linker (Figure S16).

In summary, although deconvoluting the targets and behaviors

of these compounds in various cell contexts remains to be further

ascertained, we conclude that the strategy identified compounds

that modulate YAP1-related phenotypes, in particular an unusual
Figure 4. Cell Painting profiles identify compounds impacting YAP1 ph

(A) Relative transcript levels of YAP1, CTGF, and CYR61 in H9 human pluripoten

***p < 0.001; ****p < 0.0001 (one-way ANOVA with Dunnett’s multiple compariso

(B) Representative images of YAP1 immunofluorescence (left) and quantification

with 10 mMNB4A or DMSOcontrol for 24 h. Two-tailed Student’s t test. n = 3 biolo

each biological replicate is calculated.

(C) Representative blot of n = 3 biologically independent experiments for phospho

for 24 h, with GAPDH as loading control (quantified in Figure S14A).

(D) Normalized enrichment scores of GSEA show up to 10 of the most significan

control KP230 cells (FDR-adjusted p < 0.25). n = 3. IFNa, interferon alpha; IFNg,

(E) Representative western blot for Yap1 in NB4A-treated and control KP230 cel

(F–H) (F) Immunofluorescence-based analysis of total Yap1 in NB4A-treated an

Immunofluorescence-based analysis of nuclear Yap1 in NB4A-treated and contr

SEM. n = 3. For (F) and (G), the y axis is integrated density normalized to cell num

condition. Scale bars (top left panel), 100 mM.

(I) Growth curves of NB4A-treated and control KP230 and TC32 sarcoma cells. **p

multiple comparisons test). Mean ± SEM. n = 3. For (D)–(I), cells were treated wi

(J) PrestoBlue screen of KP230 cells treated with various analogs of BRD-K28

****p < 0.0001 versus DMSO (one-way ANOVA with Dunnett’s multiple comparis

licates. Suberoylanilide hydroxamic acid (SAHA) (2 mM)/JQ1 (0.5 mM), which inhibi

was used as a positive control. Blue bars indicate the original hits (NB4A, BR

purity > 75%.
ability to reduce growth of certain aggressive sarcoma lines. This

demonstrates that although the directionality and cell specificity

will typically require further study, image-based pathway profiling

can identify modulators of a given pathway.

DISCUSSION

We found that hit-stage small-molecule regulators of pathways

of interest can be discovered by virtual matching of genes and

compounds using Cell Painting profiles, which we term image-

profile-based compound screening. The approach provides a

simple, minimal-resource approach to shortlist top candidates

to target the pathway of a gene of interest, so long as the gene

produces a detectable image-based profile. It can reduce the

cost of compound screening by orders of magnitude by enrich-

ing the signal to noise ratio from compound libraries. We do not

claim the particular compounds we uncovered in this study are

sufficiently potent, specific, and non-toxic for human therapeu-

tics. As with all screening approaches, significant further work

is necessary to develop hits into useful therapeutics; this in-

cludes confirming activity and directionality of hits in a relevant

cell type or model system (as we did successfully for three cases

here), improving potency and specificity, and identifying the mo-

lecular target(s) (including so-called off-target effects that may or

may not be useful to achieve the desired phenotypic effect);

these latter are significant steps. Furthermore, like all drug

discovery, the eventual clinical success relies on the therapeutic

hypothesis for the gene, pathway, and/or phenotype being

correct, which is also challenging.

Even so, virtualizing a large-scale screen by computationally

matching the phenotypic effect of compounds to that of gene

manipulation will in many cases enable rapid and inexpensive

identification of compounds with desired phenotypic impacts

and avoid an expensive large-scale physical screen. Our

approach yielded hits with substantial chemical structure diver-

sity, which is another advantage.

Other virtual drug screening methods have been proposed; to

our knowledge, none have been systematically evaluated that
enotypes

t stem cells treated with NB4A or DMSO control for 24 h. *p < 0.05; **p < 0.01;

ns test). Mean ± SEM. n = 3 biologically independent experiments.

of nuclear/cytoplasmic YAP1 mean intensity (right) in H9 cells after treatment

gically independent experiments; an average of mean intensities from 3 fields of

-YAP1 (S127) and total YAP1 from H9 cells treated with DMSO or 10 mMNB4A

t hallmark pathways upregulated and downregulated in NB4A-treated versus

interferon gamma; EMT, epithelial-mesenchymal transition.

ls.

d control KP230 cells. Two-tailed Student’s t test. Mean ± SEM. n = 3. (G)

ol KP230 cells (normalized to total Yap1). Two-tailed Student’s t test. Mean ±

ber, and representative images are shown in (H), out of 5 fields acquired per

< 0.01; ****p < 0.0001 DMSO versus NB4A (72 h; two-way ANOVAwith Sidak’s

th 10 mM NB4A daily for 72 h.

862419 and BRD-K34692511 (10 mM daily for 48 h). *p < 0.05; **p < 0.01;

ons test). Mean ± SEM. n = 2 biological replicates, each with 3 technical rep-

ts Yap1 expression and transcriptional activity in sarcoma cells (Ye et al., 2018),

D-K28862419, and BRD-K34692511). All test compounds were verified at
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Figure 5. Multiple potential strategies to

accelerate drug discovery by image-profile

matching

(A) Many perturbations can yield distinctive image-

based profiles to be used as queries against

available databases of image-based profiles. In the

study, exogenous overexpression of a gene was

used as the query (blue, left) to interrogate a public

library of small-molecule profiles (blue, right), to

identify candidate regulators of that gene’s func-

tion, and to achieve virtual compound screening.

(B) Many public and private sources of profiles

could be used to achieve many goals, reviewed in

detail in Chandrasekaran et al. (2020). *JUMP-Cell

Painting data are scheduled for public release on

November 1, 2022.
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take a gene name as input. For those using alternative strategies

(e.g., predicting outcomes in a particular assay that is used to

train the model), their success rates across a broad swath of

biology are unavailable or difficult to compare with this study.

Many report retrospective rates on known compound hits

(which can unfortunately be prone to overfitting) but do not

prospectively identify novel hits; others report success in identi-

fying a novel compound prospectively but do not mention the

failures, making it impossible to compute the success rate

across multiple diverse genes. To our knowledge, ours is the

only study to test a sufficient number of genes to report success

rates at the gene level, both retrospectively (63 genes) and pro-

spectively (7 genes). Other methods report predictions with

�8%–70% success rates, but at the assay level (Simm et al.,

2018; Martin et al., 2019; Trapotsi et al., 2021) (and with varying

degrees of stringency in how success is defined). In other words,
732 Cell Systems 13, 724–736, September 21, 2022
they predict compounds’ assay activity

rather than compounds impacting a given

gene function. To study a new area of

biology, these methods require (1) devel-

oping an assay to target the biological

phenotype of interest (this criterionmeans

these methods’ reported success rates

have come from testing on only a subset

of biological ‘‘space,’’ which is likely bet-

ter-studied) and (2) testing a pilot set of

compounds in the assay to train a ma-

chine-learning model (typically thousands

of compounds, which is resource inten-

sive). This is much more intensive effort

than what is needed for the strategy pre-

sented here: a morphological profile of a

single gene perturbation (which will soon

be publicly available at the genome-scale,

see below, but can be done in any labora-

tory with a suitable microscope within a

few days) and profiles for compounds

(which are already publicly available in

the tens of thousands). No other data

are required (e.g., to pre-train models),

nor special equipment, extensive compu-

tational expertise, or compute time.
As mentioned, most virtual compound prediction studies

report only retrospective assay-level success rates—these are

certainly valuable, but a lower bar that, unfortunately, can be in-

flated by unexpected sources of overfitting. For example, if too-

similar assays or too-similar compounds are included in both

training and test sets, success rates will be inflated; only some

studies control for this well. To clarify success rates for this study

in particular, using any gene as an input, roughly 50%will pass at

the first step (having a distinguishable morphological phenotype

under the assay conditions, though other cell types or stains

could be attempted), and the remainder are estimated to suc-

ceed at a rate of 32%–71% as follows: our study showed a

32% retrospective success rate for known gene-compound

connections (for a 1% shortlist); given these known pairs include

highly optimized chemical matter, we wondered whether we

would see a lower success rate in actual prospective validation.
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Nevertheless, we discovered a 43% success rate (albeit with low

n: 3 of 7 genes tested); we also note the rate might even be

considered 71% (5 of 7) if we consider the other two genes as

successes whose hits were abandoned due to chemistry and

potency. Due to resource limits, we tested �0.1% of the best-

matching compounds rather than the recommended 1%, which

would likely also improve results (we tested for SMAD3: 9 com-

pounds, RAS: 236, CSNK1A1: 17, GSK3B: 33, p38 MAPK14: 20,

PPARGC1A: 24, YAP1: 30). Overfitting is not a concern in our

study; we used simple metrics of correlation rather thanmachine

learning that runs that risk; avoiding machine learning also may

make matching of profiles across datasets created under very

different conditions more successful. As a side note, we do not

emphasize success rates in terms of how many of the selected

compounds for each genewere validated in the follow-up assays

because in practice, hundreds of compounds should be short-

listed for testing and the major metric of interest to the screener

is whether good chemical matter is in that set, not whether the

rate within the set is 1% or 100%.

We expect future iterations of this strategy to be more suc-

cessful. First, we would expect better-quality chemical matter

from larger libraries; only 30,000 were screened in this work,

whereas a pharmaceutical screening campaign can test millions

(Mullard, 2019). Large-scale data production efforts are under-

way that will increase the potential for matching profiles against

public data: the Joint Undertaking in Morphological Profiling

(JUMP)-Cell Painting Consortium is producing a public dataset

of 140,000 chemical and genetic perturbations. It is remarkable

that the image-based profile matching strategy worked for two

datasets created years apart by different personnel and equip-

ment; we expect improvements if the query gene and compound

library were created more consistently. The limits of the

approach remain to be tested: how different could image sets

be, in terms of resolution, confluency, imaging modality, and

even cell type? Creating data using other staining sets, cell con-

texts, or more complex biological models, such as co-cultures,

primary cells, or organoids could increase the probability of suc-

cess for some pathways, as could assessing whether gene

knockdown profiles (e.g., by CRISPR) yield better results in prac-

tice than gene overexpression. Pathways where overexpression

and knockdown give opposite profiles may be even better start-

ing points for virtual screening, as might merged profiles based

on several pathway members of interest rather than a single

gene. In general, further study is needed to understand the fre-

quency and general principles governing the directionality of

matching between compounds and gene overexpression and

knockdown. The JUMP dataset should provide sufficient scale

and annotation to assess the hypothesized mechanisms

described in the validation section above.

Another major direction for the future is making better predic-

tions by integrating morphology profiles with other data sources

when available at scale, such as transcriptomic (Haghighi et al.,

2021), proteomic, and metabolomic (Holbrook-Smith et al.,

2022) profiles, or historical assaydata (Martin et al., 2019). Chem-

ical structure information might also be useful (Trapotsi et al.,

2021), although this would require significant adaptation to incor-

porate because it is not a property one can obtain for the genes

used as queries in our matching approach, and the goal is not

to identify compounds of similar structure (diversity is usually
preferred). More advanced computational methods are also on

the horizon, from feature extraction (Pratapa et al., 2021) to ma-

chine learning on new benchmark datasets of gene-compound

pairs (Chandrasekaran et al., 2021); we would expect supervised

machine learning to work better than our unsupervised correla-

tion-based approach (Chandrasekaran et al., 2020).

We hope that image-profile-based virtual screening will be a

new accelerant toward meeting the pressing need for novel

therapeutics. This study adds to the growing evidence that im-

age-based profile matching might accelerate drug discovery in

multiple ways (Figure 5). Here, we used, for the first time, a

gene-based query to identify matching compounds in a virtual

pre-screening strategy. Other applications have been demon-

strated already, such as identifying a compound’s mechanism

of action by matching to other compounds, another significant

bottleneck in the drug-discovery process (Ha et al., 2021). The

release of large public datasets offers opportunities for labora-

tories to carry out these strategies using public data.
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B YAP1-related western blotting
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B Chemical synthesis of BRD4313

B Analog selection for GSK experiments

B Mobility shift microfluidics assay protocol
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anne Car-

penter (anne@broadinstitute.org).

Materials availability
Cell lines and DNA constructs are available from the laboratories that performed the experiments using them or, where restricted by

licensing, from commercial sources.

Data and code availability
d The large-scale Cell Painting datasets used in this paper are publicly available and their details and locations are described in

publications (gene overexpression dataset [Rohban et al., 2017] and compound dataset [Bray et al., 2017]). RNA-sequencing

data have been deposited into the NCBI Gene Expression Omnibus (GEO: GSE198909). The accession numbers are also listed

in the key resources table.

d The code used in this study is available at https://github.com/carpenterlab/2022_Rohban_CellSystems. It is available for use

under the BSD 3-clause license, a permissive open-source license. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Research animals
Boerckel lab:Mouse experiments were conducted in compliancewith all relevant regulations. All animal experiments were performed

at the University of Pennsylvania under IACUC review and in compliance with IACUC protocol #806482.

Cell lines
Cell line details and culture conditions are described within the method details sections describing the experiments for which each

cell line was used.

METHOD DETAILS

Feature set alignment
As the two experiments (gene overexpression and small molecule treatment) were analyzed by a slightly different CellProfiler pipeline,

and also the phenotype of the negative controls are quite different (Figure 1B), an extra data preprocessing step is needed to make

the feature sets comparable. To achieve this, we first took the intersection of features in the two datasets, which resulted in 605 fea-

tures (1399 features in the genetic screen, without any feature selection; and 729 features in the compound screen, obtained using

the findCorrelation with threshold of 0.90 on the original 1,783 dimensional feature set). In order to compare values of the correspond-

ing features across experiments, each feature is standardized (mean-centered and scaled by standard deviation) with respect to the

negative control. This was done platewise based on themean and standard deviation of the controls at profile level for the compound

dataset. The normalization parameters are slightly different for the genetic screen, where median and median absolute deviation

(MAD) are used instead, to remove outlier effects (Rohban et al., 2017). The code repository for all the analyses are publicly available

as described in data and code availability.

Compound annotations
CompoundMOAs and target annotations weremainly acquired from the ‘‘Repurposing hub’’ (Broad Institute, 2022) and then curated to

includemissingannotations fromothersources,suchasDrugBank (DrugBankOnline, nodate).This results in747compoundsannotated

with the gene(s) that they target. The protein interaction data,whichwas used to assess relevance of a protein to compound targets,was

collected fromBioGRID (Lab, no date).We note that 98.6%of BioGrid human gene annotations are based on physical interaction rather

than genetic (Oughtred et al., 2021). For the Gene Ontology-based functional similarity, we used the R package ontologyIndex and

ontologySimilarity (Greene et al., 2017), which were previously developed to calculate semantic similarity between ontological objects.

The similarity score is calculated based on the GO annotations under biological processes through the get_sim_grid function.

Scoring gene-compound and compound-compound connections
WeusePearsoncorrelationonalignedprofilesofageneandcompound toscore their connection. Theprofiles areobtainedbyaveraging

the replicate profiles feature-wise.Weempirically found that for gene-compound connections, an absolute score value greater than0.35

indicates similar/opposite phenotypes in the two profiles and used this for validation experiments. For the follow-up experiments of a

gene, we typically used amore stringent filter of 0.40 and picked a balanced number of strongest-correlating compounds and strongest

anti-correlating, subject to availability in the chemical library.
e2 Cell Systems 13, 724–736.e1–e9, September 21, 2022
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To validate howmany genes find a compoundwith relevant targets among their topmatches, we obtain the rank of the first relevant

compound match for each gene, and simply count the number of genes for which the rank is within the top 306 compounds (1% of

compounds, out of 30,616).

The 69 genes used as queries in the experiment were taken from the 110 reagents scored as expressing a Cell Painting phenotype

in Rohban et al. (2017) by excluding engineered variants of genes, and by selecting a single reference / wild-type construct when

multiple were available (e.g. isoforms).

Permutation test for validation of known compound-compound pairs
The odds ratio of how likely compound pairs that are strongly correlated have the same MoA is considered as the test statistic. The

compound names are then shuffled and the odds ratio is re-calculated. This yields a sample from the null hypothesis. The re-calcu-

lation is repeated n times. The actual odds ratio, without any shuffling of compound names, is ranked against the null distribution

samples to produce a p-value estimation.

Permutation test for validation of number of genes with a relevant compound match
We run a permutation test to test the significance of the number of genes (20 out of 63) that have a match in the top 1% of their rank

ordered list of compounds (with the rank based on their correlation to the gene). To generate a sample from the null distribution, the

compounds are shuffled randomly, and the number of such genes is calculated. The p-value is calculated based on the empirical

sampled null distribution. Note that (1) we perform a single test, where the test statistic is the number of genes, and therefore no

correction for multiple testing is required here, and (2) that this procedure automatically accounts for the fact that some genes

have many associated compounds (many matches) in the set.

Enrichment analysis plots
We follow the same logic as the Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005). The set of gene-compound pairs

are sorted based on their profile correlations on the x-axis. On the y-axis, the plot goes up by a certain fixed amount if the correspond-

ing gene-compound is a valid pair. Otherwise, the plot goes down by the same fixed amount. Scanning the x-axis from left to right,

early existence of abundant valid pairs results in a rapid jump of the plot, and illustrates higher enrichment of profile correlation for

being indicative of biological relevance between the gene-compound pair.

Relationship between strength of gene-compound matching and the number of correct gene annotations
For the analysis shown in Figure S5, we calculated the spearman correlation between the absolute correlation of correct gene-com-

pound pairs (including BioGrid-extended genes) and the number of direct protein targets of the compound (including only the direct

annotated target genes of each compound, to better capture true polypharmacology).

Chemical structure similarity (calculating Tanimoto coefficients for hit compounds)
Similarity matrices were calculated using the Pipeline Pilot (Biovia, version 18.1.0) "Molecular Similarity NxN" function with ECFP4

fingerprints (Rogers and Hahn, 2010) and Tanimoto similarity coefficients (Bajusz et al., 2015). Heatmaps were generated using

the Seaborn library (0.11.2) for Python.

Assessing compound purity and identity
Compound purity and identity were determined by ultra performance liquid chromatography coupled with mass spectroscopy

(UPLC-MS). Purity was measured by UV absorbance at 210 nm. Identity was determined on a SQ mass spectrometer by positive

and/or negative electrospray ionization. Mobile phase A consisted of either 0.1% ammonium hydroxide or 0.05% trifluoroacetic

acid in water, while mobile phase B consisted of either 0.1% ammonium hydroxide or 0.06% trifluoroacetic acid in acetonitrile.

The gradient ran from 5% to 95% mobile phase B over 2.65 min at 0.9 mL/min. An Acquity BEH C18, 1.7 mm, 2.1x50 mm column

was used with column temperature maintained at 65 degrees C. Compounds were dissolved in DMSO at a nominal concentration

of 1 mM, and 1.0 mL of this solution was injected.

SMAD3 experiments
For SMAD3 compounds, given a limit of 10 compounds to study, we chose the top five positive matches and the top two negative

matches (which were somewhat cytotoxic based on cell count in the Cell Painting assay), along with three additional negative

matches (among the top 15) which were less cytotoxic. One was unavailable.

A549 lung carcinoma cells were transfected with the luciferase reporter plasmids 4xSBE-Luc to measure TGF-b/Smad3-activated

transcription (Feng et al., 1998) and pRL-TK (low expressing, constitutively active Renilla luciferase under the HSV-thymidine kinase

promoter) (Promega cat# E224A) to normalize for the 4xSBE Firefly luciferase values. The transfected cell lysates were processed for

luciferase assays as described (Feng et al., 1998) and per manufacturer’s protocol (Promega). In brief, the cells were seeded in

24-well plates at 80% confluency and, after adhering, the media was changed to growth or starvation media (RPMI-1640 with

10%or 2%FBS respectively) for 6 hours. The cells were then transfectedwith 200 ng 4xSBE-Luc and 100ng Rl-Tk-Luc reporter plas-

mids per well using Lipofectamine 2000 per manufacturer recommendations (Thermo Fisher cat# 11668019). 12 hours after trans-

fection cells were treated for 24 hours with 5 ng/ml TGF-b1 or 5 mM SB431542 to inhibit TGF-b-induced Smad activation, and either
Cell Systems 13, 724–736.e1–e9, September 21, 2022 e3
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of 9 compounds at 10mM in triplicate. All cells were harvested with 200 ml of passive lysis buffer (Promega). Luciferase assays were

performed using a Dual-Luciferase assay kit (Promega), and luciferase activities were quantified with a SpectraMax M5 plate lumin-

ometer (Molecular Devices) and normalized to the internal Renilla luciferase control and DMSO control.

Ras experiments
Isogenic RAS-less mouse embryonic fibroblast cell lines driven by human KRAS4b G12D, HRAS WT, or BRAF V600E alleles were

plated in 384-well plates and dosed with compound or DMSO 18 hours later using an Echo acoustic liquid handler in a 10 point,

2-fold dilution in 0.2% DMSO, with 10mM as the top concentration. After 72 hours, Promega CellTiter-Glo� reagent was added,

and the signal was read using Envision software. Values were normalized using day zero and DMSO control readings. Hits were

determined by a one log difference in IC50 values between BRAF V600E and RAS-driven cell line responses.

Casein-kinase 1 alpha experiments
CSNK1A1 enzymatic assays were performed bymobility shift assay using the Labchip EZ Reader II (Perkin Elmer). GST-tagged human

CSNK1A1 (Carna Biosciences) protein was incubated with ATP, substrate, and assay buffer (20 mMHepes - pH 7.5, 5 mMMgCl2, and

0.01% Triton X-100). The assay reaction was initiated with 5 mMATP, 2 mMDTT, and 1 mMProfiler Pro FL-Peptide 16 substrate (Perkin

Elmer). Curve fitting and determination of AC50 values for phosphorylation inhibition were performed using Genedata.

GSK3B experiments
The compounds with a Cell Painting profile matching or opposing GSK3 overexpression were tested against GSK3a and GSK3b as

previously reported (Wagner et al., 2018). Purified GSK3b or GSK3awas incubated with tested compounds in the presence of 4.3 mM

of ATP (at or just below Km to study competitive inhibitors) and 1.5 mMpeptide substrate (Peptide 15, Caliper) for 60 minutes at room

temperature in 384-well plates (Seahorse Bioscience) in assay buffer that contained 100mMHEPES (pH 7.5), 10mMMgCl2, 2.5 mM

DTT, 0.004%Tween-20, and 0.003%Brij-35. Reactions were terminated with the addition of 10mM ethylenediaminetetraacetic acid

(EDTA). Substrate and product were separated electrophoretically, and fluorescence intensity of the substrate and product was

determined by Labchip EZ Reader II (Perkin Elmer). The kinase activity was measured as percent conversion to product. The reac-

tions were performed in duplicate for each sample. The positive control, CHIR99021, was included in each plate and used to scale the

data in conjunction with ‘‘in-plate’’ DMSO controls. The results were analyzed by Genedata Assay Analyzer. The percent inhibition

was plotted against the compound concentration, and the IC50 value was determined from the logistic dose-response curve fitting.

Values are the average of at least three experiments. Compounds were tested using a 12-point dose curve with 3-fold serial dilution

starting from 33 mM. The twomost active compounds were resynthesized for validation and tested along with closely related analogs

(supplemental information).

p38 experiments
Cell Painting profiles for two wild-type variants of p38ɑ (MAPK14) were averaged to create a p38ɑ Cell Painting profile. 20 com-

pounds whose Cell Painting profile correlated positively or negatively to that of p38ɑ overexpression were selected; we also chose

14 "non-correlated" compounds (i.e. absolute value of correlation <0.2) as negative/neutral controls. The compounds were tested for

their influence on p38 activity using the RPE1-p38 kinase translocation reporter (KTR) line that was previously generated (Liu et al.,

2018). This cell line has been tested and confirmed to be negative for mycoplasma contamination, but not authenticated. p38 activity

is measured by phosphorylation of its substrate, MEF2C, which is preferentially phosphorylated by p38ɑ, while p38b and p38d

contribute less (Zetser et al., 1999). RPE1-p38KTR cells were cultured in DMEM/F12 medium supplemented with 10% Fetal Bovine

Serum at 37C in a humidified atmosphere with 5% CO2. 1000 cells were plated per well in 96-well plates and treated with 1mM and

10mM of each compound (n=4 well per concentration per compound, no replicates) for 48 hours. Only the middle 60 wells were used

to prevent potential confounds from the edge effect. Cells were then fixed in 4% paraformaldehyde for 10min, followed by perme-

abilization in coldmethanol at -20C for 5min. Cells were stained with 0.4 mg/mL Alexa Fluor 647 carboxylic acid, succinimidyl ester for

2hr at RT, followed by 1mg/mL DAPI for 10min at RT to facilitate the segmentation of individual cells.

p38 activity in single cells was calculated using the ratio of the median intensity of the p38-KTR in a 5-pixel-wide cytoplasmic ring

around the nucleus to the median intensity of the p38-KTR in the nucleus. p38 activity measurements were normalized to DMSO

within the same plate and column. The Student’s t-test or Kolomogorov-Smirnov (KS) test was used to assess the significance of

changes in the single cell distributions of p38 activity for each compound relative to control; we note that even for the positive control

known inhibitor the effect sizes are small. When reporting hits from the assay, KS test and t-test p-values were adjusted to control the

false discovery rate using the Benjamini-Hochberg method, using the p.adjust(method=’BH’’) method in R.

PPARGC1A (PGC-1a) experiments
Reporter assays

To measure PGC-1a activity related to PPARG, RT112/84 cells were obtained from the Cancer Cell Line Encyclopedia (Broad Insti-

tute, Cambridge, MA), which obtained them from the original source and performed cell line authentication. The cell line was engi-

neered with the NanoLuc gene cloned into the 3’ UTR of the FABP4 (previously described; Goldstein et al., 2017) followed by stable

expression of nuclear GFP (pTagGFP2-H2B, Evrogen) and tested negative for mycoplasma (MycoAlert, Lonza). Cells were plated in

384-well plates at �10,000 cells/well and dosed with indicated compounds in the absence or presence of EC50 of PPARG agonist,
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rosiglitazone, using an HP D300 digital dispenser. The following day nuclei were counted for normalization (IncuCyte S3, Essen

Bioscience) and the reporter activity was evaluated using the NanoGlo Luciferase Assay System (Promega). Normalized data is re-

ported as NanoGlo arbitrary light units divided by cell number. PPARG agonist, rosiglitazone, and inhibitor, T0070907, were obtained

from Tocris and included as controls.

To measure effects on PGC1a/ERRalpha, HEK293T cells purchased from ATCC were co-transfected with Gal4-ERRalpha, with and

without PGC1a (pCDNA3.1-Flag-HA-PGC-1alpha; Rodgers et al., 2005), kind gifts from Pere Puigserver, in combination with the

Gal4 UAS reporter construct, pGL4.35 [luc2P/9XGAL4UAS/Hygro] (Promega) modified by subcloning the HSV-TK promoter into the

unique HindIII site that is downstream of the 9xGal4 UAS sites, in addition to a Renilla luciferase expression vector pRL (Promega) for

normalization. Cells were dosed with compounds and 24 hours later, plates were analyzed using Dual-Glo Luciferase Assay System

(Promega).Normalized light units are reportedasFirefly luciferasedividedbyRenilla luciferase.ERRalphamodulatorsXCT790,Daidzein,

and Biochanin A (Cayman Chemical) were included as controls. 293T cells were not authenticated nor tested for mycoplasma.

High content mitochondrial motility screen

We used our previously published assay to assess mitochondrial motility (Shlevkov et al., 2019). Briefly, we plated E18 rat cortical

neurons in the middle 60 wells of 96 well plates (Greiner) – 40,000 cells per well in 150 ml enriched Neurobasal media. Neurons

were transfected with mito-DsRed at DIV7 using Lipofectamine2000 (Life Technologies). Plating and transfection were all done using

an Integra VIAFLO 96/384 automated liquid handler. At DIV9, test compounds were added into wells to achieve a final concentration

of 10 mM each (4 wells per compound), as well at 10 mM calcimycin for neg. control (Wang and Schwarz, 2009), and DMSO only for

mock treatment. Following a 1-2 hour incubation, plates were imaged on a ArrayScan XTI (Thermo Fisher). Mitochondrial motility data

was extrapolated from imaging data using a MATLAB and CellProfiler based computational pipeline. Compounds A01-A12 were

tested on one plate; B01-B11 were tested separately on another plate on the same day. The experiment was repeated twice in

different weeks. In the second week, TMRE was added to all wells after imaging was completed (20min, then 2 washes) and imaged

to measure mitochondrial membrane potential in order to determine mitochondrial and cell health.

YAP1-related compounds
For the initial experiments, quality control of the compounds revealed that puritywas 88% for A15 (BRD-K34692511-001-01-9), 81% for

A05 (BRD-K28862419-001-01-9), and > 99% for E07 (BRD-K43796186-001-01-1). For subsequent experiments in the Eisinger lab,

BRD-K43796186 (NB4A) was ordered fromMuseChem (cat. #M189943) and for the Kiessling lab, from Ambinter (Cat # Amb2554311).

YAP1 cell culture and treatments
Eisinger lab

Murine KP230 cells, a Yap1-dependent cancer cell line, were derived from a tumor from the KP mouse model (KrasG12D/+; Trp53fl/fl),

as described in Eisinger-Mathason et al. (2015). STS-109UPS cells were derived from a humanUPS tumor and validated by Rebecca

Gladdy, MD (Sinai Health System, Toronto, Ontario, Canada). TC32 cells were a gift from Patrick Grohar, MD, PhD (Children’s Hos-

pital of Philadelphia). HT-1080, HCT-116, and HEK293T cells were purchased from ATCC. KP230, HT-1080, and HEK-293T cells

were grown in DMEM with 10% FBS, 1% L-glutamine, and 1% penicillin/streptomycin (P/S). STS-109 cells were cultured in

DMEM with 20% FBS, 1% L-glutamine, and 1% P/S. TC32 cells were grown in RPMI with 10% FBS, 1% L-glutamine, and 1%

P/S. HCT-116 cells were cultured in McCoy’s 5A medium with 10% FBS and 1% P/S. All cells were confirmed to be negative for

mycoplasma contamination and were maintained in an incubator at 37C with 5% CO2. For experimental purposes, cells were

cultured for up to 20 passages before being discarded, and were grown to approximately 50% confluence to circumvent the effects

of high cell density on Yap1 expression and activity. All cell lines in the Eisinger laboratory were treated with 10 mMof each inhibitor or

an equivalent volume of DMSO every 24 hours for 3 days, except for STS-109 cells, which were treated daily for 8 days.

Kiessling lab

H9 hPSCs (WiCell) were maintained on vitronectin (Thermo Fisher)-coated plates in Essential 8 (E8) medium. The cells were routinely

passaged using 0.5mM EDTA and treated with 5mM Y-27632 dihydrochloride (Tocris) on the first day. For testing the effects of the

small molecules, H9 hPSCs were seeded at 50K cells/cm2 on vitronectin-coated plates in E8 medium supplemented with 5mM

Y-27632 dihydrochloride (day 0). On day 1, the medium was switched to E8 medium. On day 2, the medium was switched to E8 me-

dium supplemented with the small molecules. Following overnight incubation, the cells were collected for subsequent analysis on

day 3. The cells were regularly checked for Mycoplasma contaminations (Sigma Aldrich - Lookout Mycoplasma PCR Detection

Kit) but were not authenticated.

Boerckel lab

Murine periosteal cells were isolated from a transgenic mouse model (CMV-Cre;R26R-rtTAfl; tetO-YAPS127A; C57Bl/6 strain/back-

ground) in which YAP1 can be activated in a doxycycline inducible manner (Camargo et al., 2007). This mouse model expresses

a mutant form of YAP1 (YAPS127A) that escapes degradation. Cells were isolated from 3 female mice (age 15 weeks) from a

4-day-old femoral fracture callus. Cells were cultured in a-MEM with 15% Fetal Bovine serum (S11550, R&D Systems), 1%

GlutaMAX-I (Gibco, 35050-061) and 1% Penicillin/Streptomycin (Gibco, 15140-122).

YAP1-related lentiviral production
Knockdown of YAP1 in HCT-116 cells was performed with shRNAs (TRC clone IDs: TRCN0000107266 and TRCN0000107267); a

scrambled shRNAwas used as a negative control. shRNA plasmids (Dharmacon) were packaged using the third-generation lentiviral
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vector system (pVSV-G, pMDLG, and pRSV-REV; Addgene) and expressed in HEK-293T cells using Fugene 6 transfection reagent

(Promega). Virus-containing supernatants were collected 24 and 48 hours after transfection and concentrated 80-fold by centrifuga-

tion with polyethylene glycol 8000.

YAP1-related proliferation assays
NB4A treatment

Cells were treated with 10 mM of each inhibitor or an equivalent volume of DMSO every 24 hours for 3-8 days, and counted with a

hemocytometer with trypan blue exclusion daily (KP230, HT-1080, TC32, HCT-116), or every 2 days (STS-109).

BRD-K28862419 and BRD-K34692511 analog screen

KP230 cells were treated with 10 mM of each compound or an equivalent volume of DMSO every 24 hours for 2 days. Treated cells

were then incubated with PrestoBlue viability reagent (ThermoFisher Scientific) for 2 hours according to the manufacturer’s recom-

mendations. Fluorescence (560/590 nm) was read on a Spectramax M2e plate reader (Molecular Devices).

shRNA-mediated YAP1 knockdown

HCT-116 cells were infected with YAP1 shRNA-encoding lentiviruses in the presence of 8 mg/mL polybrene (Sigma). Antibiotic se-

lection (3 mg/mL puromycin) was performed after 48 hours, after which cells were cultured for an additional 48 hours. Cells were

then trypsinized, seeded under puromycin-selection conditions, and counted with a hemocytometer with trypan blue exclusion

on days 7, 8, and 9 post-infection.

YAP1-related qRT-PCR
For the Eisinger lab, total RNA from cultured cells was isolated with the QIAGEN RNeasymini kit, and cDNAwas synthesized with the

High-Capacity RNA-to-cDNA kit (Life Technologies). qRT-PCR analysis was performed with TaqMan ‘‘best coverage’’ probes on a

ViiA7 instrument. Hypoxanthine phosphoribosyltransferase (HPRT) and succinate dehydrogenase subunit A (SDHA) were used as

endogenous controls. Relative expression was calculated using the ddCt method.

For theKiessling lab, theRNAwas extracted using TRIzol (Life Technologies) andDirect-zolTMRNAMiniPrep kit (ZymoResearch) as

permanufacturer instructions. TheRNAwas reverse transcribed using iScript cDNAsynthesis kit (Bio-Rad). The qPCRwasperformed

on CFX Connect (Bio-Rad) using iTaq Universal SYBR Green Supermix (Bio-Rad). GAPDH was used as a reference gene for normal-

ization. The relative geneexpression levelsweredeterminedusing theddCtmethod. Theprimer sequencesusedare listed in TableS7.

For the Boerckel lab, to induce YAPS127A, 1mM doxycycline was added to the cell culture medium for 48 hours. This was used as a

positive control to compare YAP1 mRNA expression. Cells were also treated with BRD-K34692511-001-01-9 at 5mM. mRNA was

isolated from cells (n=3/group/time point) at 1, 4 or 48 hours after treatment using Qiagen RNeasy Mini kit (Qiagen, 74106). cDNA

was prepared as per the manufacturer’s protocol using the High-Capacity Reverse Transcription kit (Thermofisher scientific,

4368814). qPCR analysis was performed using the QuantStudio 6 Pro Real-Time PCR System.

YAP1-related reporter assay
Varelas lab

HEK293T cells purchased fromATCCwere co-transfected using Lipofectamine 3000 (Thermo Fisher) with a TEAD luciferase reporter

construct, 8xGTIIC-luciferase (gift from Stefano Piccolo, Addgene plasmid # 34615), a plasmid expressing Renilla Luciferase from a

CMV promoter as a transfection control, along with a plasmid expressing 3xFlag-tagged wild-type YAP1 from a CMV promoter

(pCMV5 backbone). Following transfection the cells were immediately treated with 0.2% DMSO, 10mM NB4A, BRD-K34692511

or BRD-K28862419 and then lysed 48 hours later. Lysates were examined using the Dual-Luciferase Reporter Assay System (Prom-

ega) according to the manufacturer’s protocol and measured using a SpectraMax iD3 plate reader (Molecular Devices). Firefly Lucif-

erase activity from the TEAD reporter was normalized to Renilla Luciferase activity and then plotted as relative values. Mycoplasma

tests are routinely performed, but cells were not recently authenticated.

YAP1-related RNA-sequencing and data analysis
Total RNA from cultured cells was isolated with the QIAGEN RNeasy Mini Kit with on-column DNase digestion. RNA quality checks

were performed with an Agilent 2100 Bioanalyzer (Eukaryotic Total RNA Nano kit). Library preparation (500 ng input RNA) was

performed with the NEBNext Poly(A) mRNA Magnetic Isolation Module (#E7490) with SPRIselect Beads (Beckman Coulter), the

NEBNext Ultra II Single-End RNA Library Prep kit (#7775S), and the NEBNext Multiplex Oligos for Illumina (Index Primers Set 1)

according to the manufacturer’s instructions. Library size was confirmed with an Agilent 2100 Bioanalyzer (DNA1000 chip). Pooled

libraries were diluted to 1.8 pM (concentrations checked with the Qubit Fluorometer high-sensitivity assay, Thermo Fisher), and

sequenced on an Illumina NexSeq 500 instrument with the NexSeq 500 75-cycle high-output kit.

For data analysis, FASTQ files were generated with the bcl2fastq command line program (Illumina). Transcript alignment was per-

formed with Salmon (Patro et al., 2017). Differential expression analysis (NB4A- vs. DMSO-treated cells) was performed with the

DESeq2 R package. DESeq2 ‘‘stat’’ values for each gene were used as inputs to pre-ranked GSEA, where enrichment was tested

against the Hallmark gene sets from the Molecular Signatures Database (MSigDB). Access to sequencing data is discussed in the

data and code availability section.
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YAP1-related western blotting
For the Kiessling lab, the cells were lysed in RIPA buffer (Pierce) supplemented with Halt Protease inhibitor cocktail and Halt Phos-

phatase inhibitor cocktail (Thermo Fisher). The Eisinger lab lysed cells in hot Tris-SDS buffer (pH 7.6) and boiled for 5minutes at 95
�
C.

The protein concentration of each sample was quantified using the Pierce BCA protein assay (Thermo Fisher). The proteins were

resolved by SDS-PAGE and transferred to PVDFmembranes using the Trans-Blot Turbo Transfer system (Bio-Rad). Themembranes

were blocked in 5% non-fat milk in TBS-T for up to 1 hour at room temperature and incubated with primary antibodies in 5% bovine

serum albumin in TBS-T overnight at 4
�
C. Then, the membranes were incubated with HRP-conjugated anti-rabbit IgG secondary an-

tibodies at 1:10000 (Kiessling lab; Jackson ImmunoResearch Laboratories, #111-035-003) or 1:2500 (Eisinger lab; Cell Signaling

Technology [CST] #7074) for 1 hour at RT and developed in the ChemiDoc MP Imaging system (Kiessling lab) or on autoradiography

film (Eisinger lab) using ECL Prime reagent (Amersham). The band intensities in immunoblots were quantified with Image Lab soft-

ware. The primary antibodies and dilutions used are: anti-YAP1 (CST 4912S and CST 14074 [clone D8H1X]) at 1:1000, anti-phospho-

YAP1-S127 (CST 4911S) at 1:1000, and anti-GAPDH (CST 5174 and CST 2118 [clone 14C10]) at 1:15000 and 1:1000, respectively.

Primary antibodies were validated commercially in cells both wild-type and deficient (e.g., knockout) for the gene/protein of interest.

YAP1-related immunofluorescence and image analysis
For the Eisinger lab, cells grown on poly-L-lysine-coated chamber slides were fixed in 4% PFA (15 minutes at room temperature),

permeabilized with 0.5% Triton-X100/PBS (15 minutes at room temperature), and blocked with 5% goat serum (Vector Laboratories

S-1000; 1 hour at room temperature). Cells were then incubated with anti-Yap1 primary antibodies (CST #14074 [clone D8H1X];

1:1000) diluted in blocking buffer overnight at 4
�
C. Subsequently, cells were incubated with Alexa Fluor 488-conjugated secondary

antibodies (4 ug/mL in blocking buffer; Thermo Fisher Scientific #A-11008) for 1 hour at room temperature. Coverslip mounting was

performedwith ProLongGold Antifade reagent with DAPI. Images (5 fields per condition for each of 3 independent experiments) were

acquired with a Nikon Eclipse Ni microscope and Nikon NES Elements software. Image analysis was performed with Fiji as follows:

For nuclear staining intensity, watershed analysis of DAPI channel images (8-bit) was performed to ‘‘separate’’ nuclei that appeared

to be touching. Nuclei were then converted to regions of interest (ROIs) that were ‘‘applied’’ to the corresponding GFP channel image

(8-bit format). Analysis of staining intensity in these nuclear ROIs was then performed, excluding objects smaller than 100 pixels2

(integrated density normalized to number of nuclei). A similar process was followed to determine whole-cell staining intensity: using

8-bit GFP channel images, cells were distinguished from background via thresholding, and converted to ROIs that were applied back

to the 8-bit GFP channel images. Analysis of staining intensity (integrated density normalized to number of nuclei) was then performed

in these ROIs, excluding objects smaller than 500 pixels2. The ratio of nuclear to total Yap1 expression was determined after sub-

tracting out background GFP signal from no-primary antibody controls.

For the Kiessling lab, the cells were fixedwith 4% formaldehyde for 15mins at room temperature. The cells were permeabilized and

blocked with PBS containing 2% BSA and 0.1% Triton-X100. The cells were incubated with a primary antibody against YAP1 (Santa

Cruz Biotechnology, sc-101199) at 1:200 dilution in a blocking buffer overnight at 4
�
C. Then, the cells were incubatedwith a goat anti-

mouse Alexa Fluor 488 conjugated secondary antibody (Thermo Fisher, #A11001) at 1:1000 dilution for 1 hour at room temperature.

The nuclei were counterstained with DAPI dilactate (Molecular Probes). Images were collected with Olympus FV1200 microscope

and analyzed with CellProfiler. Briefly, nuclei and cell bodies were segmented using DAPI and YAP channels respectively. The

cell cytoplasm was determined as the region outside nuclei but within the cell bodies. Then, the ratio of mean intensity of YAP in

the nucleus to cytoplasm was calculated to determine YAP translocation.

Chemical synthesis of BRD4486
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We followed prior work (Marcaurelle et al., 2010). To a solution of the Fmoc-protected intermediate (100 mg, 0.140 mmol, 1 eq) in

tetrahydrofuran (1 mL) was added diethylamine (150 mL, 1.44 mmol, 10.3 eq). The mixture was stirred 2.5 h, and the solvent and

excess amine were evaporated.

The residuewas dissolved in acetonitrile (1mL), then formaldehyde (37%aqueous, 100 mL, 1.32mmol, 9.4 eq), catalytic acetic acid

(1 drop), and sodium triacetoxyborohydride (100 mg, 0.472 mmol, 3.4 eq) were added. The mixture was stirred 1 h, then quenched

with saturated aqueous NaHCO3 and diluted with CH2Cl2. The layers were separated, and the aqueous layer was extracted with

CH2Cl2. The combined organic layers were dried over MgSO4, filtered, and evaporated, and the residue was purified by flash column

chromatography (0-10% MeOH/CH2Cl2) to provide the dimethylaniline (70.2 mg, 97% yield).

A yellow solution of the resulting Alloc-protected amine (68 mg, 0.131 mmol, 1 eq), 1,3-dimethyl-barbituric acid (200 mg,

1.28 mmol, 9.8 eq), and tetrakis(triphenylphosphine)palladium(0) (15 mg, 0.013 mmol, 0.1 eq) in dichloromethane (1 mL) was stirred

at room temperature for 3 h. The reaction was quenched with 0.1 M HCl and stirred 15 min. The layers were separated, and the

organic layer was extracted with 0.1 M HCl. The pH of the combined aqueous layers was adjusted to �12 with 4 M NaOH, then ex-

tracted with CH2Cl2. The combined organic layers were dried over Na2CO3, filtered, and evaporated to provide the crude free amine

(52 mg, 91% yield), which was used directly in the urea formation.

To a solution of the crude secondary amine (52 mg, 0.119 mmol, 1 eq) and 3,5-dimethylisoxazol-4-yl isocyanate (20 mg,

0.145 mmol, 1.2 eq) in chloroform (1 mL) was added triethylamine (16.5 mL, 0.119 mmol, 1 eq). The mixture was stirred at room tem-

perature for 16 h, and the solvent was evaporated. The residue was purified by flash column chromatography (0-10%MeOH/CH2Cl2)

to provide BRD4486 (46.2 mg, 68% yield) as a white solid.

MS: 574.5 [M+H]+; 572.3 [M-H]-

Chemical synthesis of BRD4313

We followed prior work (Fitzgerald et al., 2012). To the aniline intermediate (100mg, 0.247mmol, 1 eq) dissolved in pyridine (0.5mL)

was added propionyl chloride (45 mL, 0.514 mmol, 2.1 eq). The resulting mixture was stirred at room temperature for 40 min.

Chloroform (0.5 mL) and 1,3-dimethylbarbituric acid (385 mg, 2.46 mmol, 10 eq) were added, and, after 5 min, tetrakis(triphenyl-

phenylphosphine)palladium(0) (28mg, 0.024mmol, 0.1 eq) was added. The yellow-green solution was stirred at 45 �C for 45min (CO2

evolution), then acetyl chloride (261 mL, 3.69 mmol, 15 eq) was added. After stirring 1 h, the mixture was diluted with CH2Cl2 and

poured into 0.1 M HCl. The layers were separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers

werewashedwith saturated aqueousNaHCO3, dried overMgSO4, filtered, and evaporated. The residuewas purified by flash column

chromatograph (2.5-10%MeOH/CH2Cl2) to provide the product (82.4 mg) in 84% purity. The material was further purified by mass-

directed prep-HPLC (0-100% MeCN/water + 0.1% TFA) to provide BRD4313 (54.6 mg, 51% yield over 3 steps) as a tan solid.

MS: 420.8 [M+H]+

Analog selection for GSK experiments
Compounds for (stereochemical) structure-activity relationship determination were selected from the Broad compound library in the

following order until 24 analogs had been reached for each hit:

1) All available stereoisomers of the hit compound

2) Available regioisomers of the hit compound

3) Analogs with high structural similarity (Tanimoto R 0.75) to the hit compound, selected for chemical diversity

Assay plates for each series (RCM/H2T) were prepared with 4 on-plate controls plus the hit compound from the opposing series.

The controls included 3 dual GSK3a/b inhibitors (CHIR-99021, GW8510, and BRD0320) and one GSK3a-specific inhibitor

(BRD0705). All compounds tested are shown in Figures S17 and S18, with results shown in Figure S19.

Mobility shift microfluidics assay protocol
We followed previous protocol (Wagner et al., 2018). Purified GSK3b or GSK3a was incubated with tested compounds in the pres-

ence of 4.3 mM of ATP (at or just below Km to study competitive inhibitors) and 1.5 mM peptide substrate (Peptide 15, Caliper) for

60 minutes at room temperature in 384-well plates (Seahorse Bioscience) in assay buffer that contained 100 mM HEPES (pH 7.5),
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10 mM MgCl2, 2.5 mM DTT, 0.004% Tween-20, and 0.003% Briji-35. Reactions were terminated by the addition of 10 mM ethyle-

nediaminetetraacetic acid (EDTA). Substrate and product were separated electrophoretically, and fluorescence intensity of the sub-

strate and product was determined by Labchip EZ Reader II (Caliper Life Sciences). The kinase activity was measured as percent

conversion. The reactions were performed in duplicate for each sample. The positive control, CHIR99021, was included in each plate

and used to scale the data in conjunction with in-plate DMSO controls. The results were analyzed by Genedata Assay Analyzer. The

percent inhibition was plotted against the compound concentration, and the IC50 value was determined from the logistic dose-

response curve fitting. Values are the average of at least three experiments. Compounds were tested using a 12-point dose curve

with 3-fold serial dilution starting from 33 mM.

Chemical synthesis of BRD-K28862419

We followed prior work (Fitzgerald et al., 2012). To a solution of the alloc protected aniline intermediate (45 mg, 0.111 mmol, 1.20

eq) and of 4-phenylbenzoyl chloride (20 mg, 0.0923 mmol, 1.00 eq) in CH2Cl2 (0.5 mL) was added triethylamine (0.277 mmol, 3 eq).

The mixture was stirred at 60�C for 16 h. The solvent was evaporated, and the residue purified by normal phase chromatography (0-

50% ethyl acetate in hexanes) to provide the diphenylamide (39 mg, 73% yield).

A vial of the alloc protected intermediate (51 mg) in tetrahydrofuran (0.5 mL) was sparged with Ag for 10 mins. In a separate vial

Pd(PPH3)4 (102 mg, 0.0883 mmol, 1.00 eq) and barbituric acid (207 mg, 1.32 mmol, 15.0 eq) were combined and backfilled with

Ag. Then, the THF solution was transferred (by syringe) to the powder. The reaction was stirred under nitrogen for 48 h. The reaction

was concentrated then purified by normal phase chromatography (silica, 0 – 40% CH3OH in CH2Cl2) to provide N-((3S,6S,7S)-7-

methoxy-3,6,9-trimethyl-10-oxo-3,4,5,6,7,8,9,10-octahydro-2H-benzo[k][1]oxa[4,9]diazacyclododecin-13-yl)-[1,1’-biphenyl]-4-

carboxamide (21 mg, 0.0409 mmol,?, 46% yield). MS: 502.96 [M+H] + 500.62 [M-H]-.

Chemical synthesis of BRD-K34692511

We followed prior work (Fitzgerald et al., 2012). To a vial of the analine intermediate (42mg, 0.104mmol, 1.00 eq) in CH2Cl2 (0.5mL)

was added 1-isocyanato-4-(trifluoromethyl)benzene (0.01 mL, 0.104 mmol, 1.00 eq) and stirred at 25 �C for 30 min. The reaction was

concentrated and the residue was purified by normal phase chromatography (0-100% ethyl acetate in hexanes) to provide the pro-

tected urea intermediate (52 mg, 81% yield).

A vial of the urea intermediate (52 mg, 0.0871 mmol, 1.00 eq) in tetrahydrofuran (0.4 mL) was sparged with Ag for 10 mins. In a

separate vial Pd(PPH3)4 (101 mg, 0.0871 mmol, 1.00 eq) and 1,3 - dimethylbarbituric acid (14 mg, 0.0871 mmol, 1.00 eq) were com-

bined and backfilled with Ag. Then the THF solution was transferred (by syringe) to the powder. The reaction was stirred under ni-

trogen for 48 h. The reaction remained bright yellow. The reaction was concentrated then purifed by normal phase chromatography

(0-100% CH3OH in CH2Cl2, product elutes). The collected fractions were concentrated and purified with a focused gradient of 35-

45% CH3OH in CH2Cl2 was run to separate remaining impurities. Fractions containing product were collected to provide

1-[(4R,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-[4-

(trifluoromethyl)phenyl]urea, (13 mg, 0.0224 mmol, 26% yield). MS: 510.63 [M+H]+, 553.860 [M+CHOO-]-.
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