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The identification of genetic and chemical perturbations with similar 
impacts on cell morphology can elucidate compounds’ mechanisms of 
action or novel regulators of genetic pathways. Research on methods for 
identifying such similarities has lagged due to a lack of carefully designed 
and well-annotated image sets of cells treated with chemical and genetic 
perturbations. Here we create such a Resource dataset, CPJUMP1, in which 
each perturbed gene’s product is a known target of at least two chemical 
compounds in the dataset. We systematically explore the directionality 
of correlations among perturbations that target the same protein 
encoded by a given gene, and we find that identifying matches between 
chemical and genetic perturbations is a challenging task. Our dataset 
and baseline analyses provide a benchmark for evaluating methods that 
measure perturbation similarities and impact, and more generally, learn 
effective representations of cellular state from microscopy images. Such 
advancements would accelerate the applications of image-based profiling 
of cellular states, such as uncovering drug mode of action or probing 
functional genomics.

Image-based profiling of cell samples is proving increasingly useful for 
biological discovery1. In image-based profiling, cells are treated with 
perturbations of interest and the resulting morphology is captured by 
microscopy. Cell morphology is quantitatively compared with identify 
meaningful similarities and differences among the perturbations, in the 
same way that transcriptional profiles are used to compare samples. 
More than a dozen applications have been demonstrated1, including 
identification of the mechanisms of a disease by comparing cells from 
patients with a disease to those of healthy patients, identification of 
the impact of a chemical compound by comparing cells treated with 

it to untreated cells, and identification of gene functions by clustering 
large sets of genetically perturbed samples to determine relationships 
among the genes.

Typically, morphological features are extracted from each cell 
using classical image processing software. These so-called ‘hand- 
engineered’ features have been carefully developed and optimized  
to capture cellular morphology variations, including size, shape,  
intensity and texture of the various stains in the image. These fea-
tures are the current standard in the field and require post-processing 
steps including normalization, feature selection and dimensionality 
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As well, it includes only a single cell type, time point and imaging con-
dition. Thus, the nature of CPJUMP1 enables the testing of computa-
tional strategies to optimally represent the samples so that they can be 
compared and thus uncover valuable biological relationships. It also 
enables comparison of CRISPR-Cas9 knockout and ORF (open reading 
frame) overexpression as mechanisms to perturb genetic pathways and 
to identify the compounds’ mechanisms of action.

Results
To push forward advancements in this field, we assembled a consor-
tium of 10 pharmaceutical companies, two non-profit institutions, 
and several supporting companies, known as the JUMP Cell Painting 
Consortium ( Joint Undertaking in Morphological Profiling). Members 
of this Consortium created the ground truth dataset we present here, 
for optimizing the main assay used in image-based profiling, called 
the Cell Painting assay, and to move methods in the field forward6,7. 
We selected and curated a set of 160 genes and 303 compounds with 
(relatively) known relationships between each other, and designed an 
experimental layout to enable testing and comparing methods to quan-
tify their similarities (Methods), all with a strong emphasis on making 
this dataset useful for developing computational methods for the field.

There are two groups of experimental conditions in this dataset, 
the primary group and the secondary group. In the primary group 
we separately captured chemical and genetic perturbation (CRISPR 
knockout and ORF overexpression) profiles in two cell types (U2OS 
and A549) at two time points (Supplementary Table 1; a representation 
of profiles from a subset of this experiment is shown in Fig. 2). There 
are a total of 40 384-well plates in the primary group of experimental 
conditions (Fig. 3). The secondary group consists of additional plates 
of experimental conditions as well as plates from the primary group 
that have undergone additional imaging conditions (Fig. 3), which 
are described in the Methods section. In addition to being used to 
optimize the assay conditions7, the primary and secondary groups 
offer multiple views of cells treated with each chemical or genetic 
perturbation, and therefore can be used for many interesting machine 

reduction2. With advances in representation learning during the last 
decade, it is natural to ask what set of features could be automatically 
identified by machine learning algorithms, directly from pixels.

However, image-based profiling has yet to fully benefit from the 
latest machine learning research. The vast majority of studies use clas-
sical segmentation and feature extraction; deep learning methods are 
beginning to be explored and there is much room for advancement3,4. 
Historically, the lack of ground truth has been a major limiting factor 
in the field; that is, the true relationships among perturbations (for 
example, genes and compounds) are unknown and require significant 
effort to ascertain5. Although this is exciting because the potential  
for biological discovery is high, the lack of ground truth presents a 
challenge for optimizing deep learning pipelines.

Here we describe our design and creation of a benchmark dataset 
via a single large experiment, CPJUMP1. The dataset consists of approxi-
mately 3 million images of cells, image-based profiles of 75 million 
single cells, and well-level aggregated profiles. A sample five-channel 
image is shown in Fig. 1. This dataset contains chemical and genetic 
perturbation pairs that target the same genes and are tested in separate 
wells to see whether they produce similar (or opposite) phenotypes. 
Although these pairings are not absolute truth for a number of reasons 
discussed later, they are nevertheless more likely than random pairs to 
match (that is, induce similar or opposite morphology changes). This 
Resource is unique because there are no other image-based datasets of 
the Cell Painting assay (described later) that include pairs of annotated 
genetic and chemical perturbations performed side by side, under 
different experimental conditions such as different cell types, time 
points and imaging conditions. These were also executed in parallel to 
minimize technical variations that may confound the signal. There are 
many public Cell Painting datasets (for example, https://github.com/
broadinstitute/cellpainting-gallery) but we are aware only of one with 
genetic and chemical perturbation types run in parallel (RxRx3, https://
www.rxrx.ai/rxrx3). RxRx3 has not been provided with gene–com-
pound relationship annotations and all but 733 genes are anonymized; 
any pairs that exist would be scattered across many plates and batches. 

Mito AGP RNA

ER DNA Composite

Fig. 1 | Sample images from the dataset. A five-channel image of human 
U2OS cells treated with the compound PFI-1 (a BRD4-specific inhibitor). This 
is a representative image from one of four wells of cells treated with PFI-1. The 
channel names indicate the cellular structures identified in each image (see 
Methods section for details; AGP, actin, Golgi, plasma membrane; DNA, nucleus; 

ER, endoplasmic reticulum; mito, mitochondria; RNA, nucleoli and cytoplasmic 
RNA). Other example images (including brightfield channels not shown here) 
are available at https://github.com/jump-cellpainting/2024_Chandrasekaran_
NatureMethods/tree/6ba3fcd1495d9e844e4607373a568641981ffcd8/example_
images. Scale bar, 100 µm.
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learning explorations, such as style transfer (for example, to attempt 
prediction of one experimental condition from another), information 
retrieval and multi-view learning, and for benchmarking representa-
tion learning methods. There are 11 additional plates in the secondary 
group, but there are 67 plates of images because several plates were 
imaged multiple times (Fig. 3; Methods).

A major goal of image-based profiling is to derive a representa-
tion from the quantitative images of cell samples, such that samples 
in biologically similar states have similar representations. Given such 
a representation, solutions for many of the applications discussed 
become immediately feasible. Here we benchmark representation 
learning as a foundation for methods development in the future.

As a way to compare different representation methods, we created 
benchmarks based on two tasks: detection of differences between 
perturbations and negative controls to identify active perturbations, 
and the grouping of gene–compound pairs in which the gene’s prod-
uct (protein) is a target of the compound (as well as grouping two 
CRISPR guides targeting the same gene, or two compounds annotated 
with the same target). For both tasks we use cosine similarity (or its 
absolute value), a simple but widely used correlation-like metric, to 
measure similarities between pairs of well-level aggregated profiles. In 
some cases the expected directionality of correlation is positive while  
in other tasks the correlations may be strongly positive or negative;  
we adjust statistical tests for each task accordingly.

Benchmarking perturbation detection methods
We chose perturbation detection as one of the tasks to evaluate  
representations because it often precedes other useful applications  
(by removing samples that have no or little true signal), and is equiva-
lent to measuring statistical significance of the perturbation’s sig-
nal. For example, a set of chemical or genetic perturbations might 
be filtered by this phenotypic activity criterion before embarking on 
subsequent laboratory experiments, or prior to training a model, or 
other analysis that could be confounded by noisy signals. It can also be 
useful for determining which experimental protocol or computational 
analysis pipeline is most sensitive from among several alternatives. It 
should be noted that even given perfect computational methods for 

feature extraction, batch correction and profile comparison, many 
samples will be detectably different from negative controls for several 
biological reasons. For example, a chemical or genetic perturbation 
may affect cell morphology only in a particular cell type, under par-
ticular environmental conditions, at a particular time, or if particular 
stains were used, conditions that may not have been met in the experi-
ment. Conversely, a perturbation’s impact may be amplified by the 
plate layout, given that even unrelated perturbations in the same well 
position might look similar. This concern is overcome by matching 
treatments in different well positions, where such data are available 
(see Benchmarking perturbation matching methods).

We used average precision to measure each primary group  
sample’s ability to retrieve its replicates against the background of 
negative control samples, using cosine similarity as the similarity 
metric. The significance of the average precision value is assessed 
using permutation testing to obtain a P value, which is then adjusted 
using the false discovery rate to yield a corrected P value (q value). 
We calculate the mean of the average precision for each perturbation 
and then term the fraction of perturbations with a q value below the 
significance threshold (0.05) as the fraction retrieved. Details about the 
computation of average precision and fraction retrieved are provided 
in the Methods section.

In general, we find that the fraction retrieved for compounds is 
higher than that of genetic perturbations, across all conditions (Fig. 4a). 
This indicates that chemical compounds produce phenotypes that are 
more distinguishable from negative controls, compared with pheno-
types produced by CRISPR knockout and ORF overexpression. We also 
find that the fraction retrieved is higher for CRISPR knockout than for 
ORF overexpression (Fig. 4a). In summary, compounds, CRISPRs and  
ORFs all yield signals in the assay, with the compounds being the strongest  
and ORFs the weakest. However, we emphasize a strong technical 
variable that precludes a strong conclusion here: the reduced fraction 
retrieved values for ORF may be attributed to plate layout effects, in 
which identical treatments in different rows or columns have dissimilar 
profiles. This factor amplifies the systematic technical noise in the 
compound and CRISPR plates due to their particular layout, while it 
adversely impacts ORFs (Methods). Retrieving the same position repli-
cates for ORF does increase the fraction retrieved, as would be expected 
if plate layout effects are substantial (Extended Data Fig. 1). Plate layout 
effects may be partly mitigated by mean centering every feature at 
each well position, although we have not applied the correction to this 
dataset because we do not have sufficient diversity of samples in each 
well position across a large number of plates. Furthermore, although 
there is a presence of signal for all three perturbation modalities, we 
note that these were not random sets of genes and compounds; instead, 
the compounds were chosen from the Drug Repurposing set8 and the 
genes were selected secondarily depending on whether their protein 
products are targeted by those compounds. This is likely to select for 
reagents that yield phenotypes versus random genes and compounds.

Benchmarking perturbation matching methods
We next established a benchmark for researchers to develop and test 
strategies for a real-world retrieval task, in which we search for genes 
or compounds that have a similar impact on cell morphologies as the 
query gene or compound. Improved methods would enable improved 
discovery of the compounds’ mechanisms of action based on a com-
pound query9, and virtual screening for useful compounds based on 
a gene query10. This dataset presents a unique opportunity to match 
profiles of perturbations across modalities (chemical versus genetic) 
because genes in this dataset are targeted by two types of genetic 
perturbations (ORF and CRISPR-Cas9 knockout) and by at least two 
compounds. Similarly, because there are both a pair of CRISPR guides 
and a pair of compounds targeting each gene or gene’s product, this 
dataset can be used to match profiles within a perturbation modality 
(there is only one ORF reagent per gene, therefore a similar analysis is 
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not possible for overexpression). It also offers an opportunity to study 
the directionality of profile matching; for example, whether CRISPR 
knockouts and ORF overexpressions consistently yield anti-correlated 
profiles.

After filtering out perturbations that were indistinguishable from 
negative controls (q > 0.05), we then evaluated average precision to 
identify true connections (that is, perturbation pairs that target the 
same gene or gene’s product), which are distinct from false connections 
(that is, pairs not known to target the same gene or gene’s product).

We first tested the ability to retrieve true connections within the 
same perturbation modality: that is, ‘sister’ compounds that are anno-
tated as targeting the same gene should match each other, and ‘sister’ 
CRISPR guides that target the same gene should match each other. 
Because compounds can enhance or inhibit the function of a protein 
(or have other impacts), those with the same gene annotation might 
be positively correlated or negatively correlated; for compounds, we 
therefore used the absolute value of cosine similarities while calculat-
ing average precision. By contrast, for CRISPR guides, those targeting 
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the same gene are expected to be positively correlated, therefore we 
used the actual values of cosine similarities, as in the perturbation 
detection task.

With baseline methods, this task is (not surprisingly) much more 
challenging than retrieving replicates of the same sample (compare 
Fig. 4a,b). Of all of the compounds that yield a signal, only ~5–25% 
of them correctly match their sister compounds targeting the same 
protein. Likewise, and more surprisingly given their expected accurate 
annotation and specificity, only 7–17% of the CRISPR reagents cor-
rectly match to their sister guides targeting the same gene. We cannot 
distinguish the many factors that are likely to make this a challenging 
task, including non-optimal ground truth annotations for compounds, 
off-target effects (for compounds and CRISPR guides), differing levels 
of knockdown for CRISPR guides, lack of information content in the 
assay, polypharmacology in which each compound impacts multiple 
targets (see Discussion) and/or non-optimal methods for matching 
samples. Although the values of fraction retrieved are similar for com-
pounds and CRISPR guides, more compounds are distinguishable 
from negative control than CRISPR guides (Fig. 4a and Supplemen-
tary Table 2). Thus, surprisingly, retrieving sister compounds is more 

successful than retrieving sister CRISPR guides (Fig. 4b), perhaps 
because compounds tend to induce stronger phenotypes (Fig. 4a).

Next, we assessed cross-modality matching: that is, the ability to 
retrieve correct gene–compound pairs. Retrieving compound–gene 
pairs is more difficult than perturbation detection and sister perturba-
tion retrieval (which itself reached only ~25% in the best scenario), but 
it is extraordinarily useful for identifying novel chemical regulators 
of genes and identifying the mechanism of query compounds. Even a 
low success rate, therefore, can accelerate drug discovery. Given the 
potential for compound–gene matches to be positive or negatively 
correlated (detailed in the next paragraph), we used the absolute cosine 
similarities for both compound–ORF and compound–CRISPR retrieval.

Gene–compound retrieval is only slightly better than expected 
by chance (Fig. 4c) and, as expected, is less effective than compound–
compound and CRISPR–CRISPR matching (Fig. 4b). This might  
reflect that gene–compound annotations are less reliable than com-
pound–compound annotations (and certainly less reliable than CRISPR 
guide annotations, for which the target gene is designed a priori to 
be accurate and specific), and/or that better methods are needed to 
align data across modalities. Comparing the two genetic perturbation 
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well-position artifacts. b, Perturbation matching, within a perturbation type: the 
plot shows mAP for sister perturbation retrieval (that is, pairs of compounds or 
pairs of CRISPR guides annotated with the same gene target). ORFs are not shown 
because there is only a single ORF reagent per gene. Absolute cosine similarity 
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independent biological samples is available in Supplementary Table 2.
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modalities, we find that the values of mean average precision for 
retrieving compound–CRISPR pairs were better than that of com-
pound–ORF pairs across various cell types and time points, except at 
one time point, where ORFs match better to compounds than CRISPR 
reagents do (Fig. 4c).

Although the performance for compound–genetic perturbation 
retrieval is low compared with the other retrieval tasks discussed above, 
it should be strongly noted that significant time and resources are 
otherwise required to identify the target of a compound, and similarly 
to identify compounds that target a particular gene. Therefore, even 
the baseline’s relatively low matching rates might accelerate drug  
development by yielding a list of possibilities for biologists to test 
directly in subsequent experiments, or to be combined with orthogonal 
lists of candidate targets for a compound, to improve accuracy. Improv-
ing image representations and thus the accuracy of predicted matches 
by a few percentage points could therefore have a major impact on 
the discovery of compounds that impact proteins of interest, and the 
identification of the mechanism of action of compounds of interest.

Finally, we examined the directionality of gene–compound match-
ing, that is, whether a compound targeting a protein encoded by a given 
gene has a correlating or anti-correlating profile with CRISPR (which 
reduces the amount of gene product) and with ORF (which increases  
the amount of gene product). Most compounds are annotated as inhib-
iting the function of their target gene’s product, therefore one might 
expect image-based profiles from cells treated with CRISPR guides 
to generally positively correlate to (mimic) the corresponding com-
pound’s profile, whereas ORF profiles might generally be expected 
to anti-correlate (oppose) the corresponding small molecule’s pro-
file because overexpression often increases a gene’s function. By the 
same rationale, ORFs and CRISPR guides targeting the same gene 
might be expected to yield opposite (anti-correlated) effects on the 
cells’ profiles. However, we strongly note that there will be numerous  
exceptions, given the nonlinear behavior of many biological systems, 
and any number of distinct mechanisms for which these general prin-
ciples may not hold, which we have previously detailed10. For example, 
many compounds do not inhibit their target protein’s function but 
instead activate it or induce some new function, and many overex-
pressed genes may have no impact at all, or even have a dominant 
negative or feedback loop or compensatory impact on the gene’s 
function. Furthermore, the choice of cell type, time point or readout 
for capturing the similarity may not be optimal. In fact, the exceptions 

may be more common than the commonsense rules in this case. One 
aim of generating this dataset was to quantify how often the expected 
relationships and directionalities occur, to provide concrete evidence 
in this so-far theoretical debate with only anecdotal evidence available.

We began by testing the basic hypothesis that CRISPR and ORF 
reagents targeting the same gene should yield negatively correlated 
(opposite) profiles to each other. Surprisingly, we found that the 
CRISPR and ORF profiles are slightly positively correlated with each 
other, in both cell types (Fig. 5a and Supplementary Table 3). We then 
compared the cosine similarities between compound–CRISPR pairs 
and compound–ORF pairs that target the same gene. In both U2OS  
and A549 cells, we found that both compound–CRISPR and compound–
ORF pairs were more positively correlated than negatively correlated 
(Fig. 5b and Supplementary Table 4).

Looking at the strongest-matching positive and negative gene–
compound pairings (Supplementary Tables 5 and 6), we found many 
pairings with explainable directionality (for example, CRISPR knockout 
of a gene matches a compound annotated as inhibiting the protein  
product of that gene). For example, the top positively correlated gene–
compound match in U2OS cells is the PLK1 inhibitor compound BI-2536 
matched with CRISPR against PLK1 (Extended Data Fig. 2), and the next 
two matches are annotated as Aurora kinase inhibitors that match 
CRISPR against AURKB (Supplementary Table 5). Similarly, the five 
strongest matches in A549 cells (Supplementary Table 6) are all CRISPR 
reagents positively correlating with compounds annotated as targeting 
the correct protein encoded by a given gene. Some overexpressions 
also match the expected directionality, such as the second strongest 
negatively correlated match in U2OS cells, which is the compound 
GSK2110183, an AKT inhibitor negatively correlated to overexpression 
of AKT1. Still, there were many pairings with unexpected directional-
ity, possibly due to ORFs exhibiting dominant-negative behavior, 
as in the seventh positively correlated gene–compound match in  
U2OS cells, the compound pentostatin, which is annotated as an 
adenosine deaminase inhibitor; it matches with overexpression of 
ADA (adenosine deaminase). Unexpected directionality is evident 
when examining BRD4 overexpression and BI-2536 treatment, both 
of which induce cell death (Extended Data Fig. 2). Because BI-2536 
inhibits BRD4, one might expect BRD4 knockout to closely align with 
BI-2536’s effects. This discrepancy suggests two possibilities: either the 
multi-target nature of BI-2536 leads to a dominant phenotype (PLK1 
inhibition may be stronger than BRD4 inhibition), or BRD4 inhibition 
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Fig. 5 | Directionality of matching cross-modality. a, Cosine similarity between 
ORF and CRISPR reagents targeting the same gene is shown for the two cell 
types, A549 (pink) and U2OS (blue). The 5th and 95th percentile thresholds of 
their respective nulls (ORFs and CRISPR reagents targeting different genes), 
along with the percentage of true pairs below the thresholds, are shown. We 
performed Fisher’s exact test to determine whether the true pairs beyond the 
threshold are more likely to be positively correlated or negatively correlated. We 
find them to be significantly more positively correlated (P values are available in 
Supplementary Table 3). b, Cosine similarity between compounds and the two 

genetic perturbation modalities, CRISPR (orange) and ORF (green) targeting the 
same gene or gene product. All analyses here were also statistically significantly 
more positively correlated; P values are available in Supplementary Table 4. 
Cosine similarity of zero is shown as a gray dashed line in both subplots. In a 
there were n = 3,728 biological independent ORF and CRISPR reagents and in b 
there were n = 1,864 independent pairs of compounds and genetic perturbations 
targeting the same gene or gene product. Box plot boundaries are 75th (Q3) and 
25th (Q1) percentiles, with whiskers at ±1.5-fold the interquartile range (Q3–Q1) 
or the highest or lowest data point.
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has a limited phenotypic impact. This latter possibility aligns with the 
negative control-like phenotype observed with the BRD4-specific 
inhibitor, PFI-1 (Extended Data Fig. 2). Some CRISPR reagents produce 
surprising directionality, as in the case of the compound TG-003 in 
U2OS cells, annotated as a CLK inhibitor but negatively correlated to 
CRISPR knockout of CLK1. Given these findings, and the possibility that 
compounds often behave differently in different cellular contexts and 
may be annotated based on a particular one, it is not surprising that 
compounds targeting the products of particular genes do not show a 
consistent directionality relationship with ORFs or CRISPRs.

Discussion
Biology would benefit greatly from the machine learning community 
turning its attention to rich, single-cell imaging data. Although our 
results may only touch upon the potential applications of machine 
learning, our emphasis is a strategic appeal to the machine learning 
community. We hope that the Resource and benchmarks we have cre-
ated will provide a foundation on which researchers can develop and 
test novel methods for representation learning, multi-view learning, 
information retrieval and style transfer, among others. The task of 
identifying targets of a compound to understand its mechanism is 
exceptionally difficult, expensive and time-consuming, creating a 
major bottleneck in developing useful compounds for chemical biology  
and drug discovery11. This has several implications for this work:  
first, even with low but non-zero success rates, biologists can use 
their understanding of the compound’s known traits to create and 
test hypotheses about a chemical’s mechanism of action, accelerat-
ing discovery. Second, the predictions from this method might be 
combined with other predictive approaches, such as rank ordered 
candidate gene lists from structure-based chemical–protein bind-
ing predictions, to produce more reliable results. And last, we also 
emphasize that, as a direct result of the fact that identifying the targets  
of compounds is so difficult, only a very limited amount of rather 
noisy ground truth exists; each known compound–gene interaction  
has been painstakingly discovered after hundreds of thousands  
of dollars of effort over many years, and many pairings are uncertain. 
By contrast, many mainstream machine learning tasks are oriented to 
replicate specific human skills where ground truth can be collected 
at large scale (for example, translation or image recognition), and, 
given sufficient resources, the accuracy often approaches 100%. We 
believe that supervised methods hold promise1, and we hope that novel 
machine learning methods developed using our dataset will be used to 
discover new gene–compound connections that can add to the ground 
truth for this problem in the future.

Beyond biology, our dataset provides a challenging, real-world test 
bed for many kinds of more general machine learning algorithms. It is a 
large-scale perturbation experiment with complex multidimensional, 
hierarchical data (images displaying dozens of cells each), and we 
believe that new machine learning strategies still need to be developed 
to realize its full potential. In addition to the prediction problems we 
present in this paper, it also opens up problems in high-level reason-
ing on experimental data, enabling the study of complex artificial 
intelligence strategies, such as causal inference (observations from 
interventional experiments), planning (optimizing the next interven-
tion that maximizes discovery), and simulations (what would have 
happened if other interventions are applied).

Finally, unusual aspects of the data type that we present pose 
challenges to machine learning algorithms and will require that they 
be pushed in different directions to adapt. This may spark creative 
solutions with broader impact in machine learning. For example, mul-
tiplexed imaging will push the field of machine learning to adapt to 
domains outside the red–green–blue (RGB) colorspace of natural 
images in which the number and relationship between the channels 
(for example, the extent of correlation) is very different, compared 
with natural images of everyday objects.

In general, deep learning-based features may provide improvements 
in performance for some tasks over the classical CellProfiler-based 
features, although interpretability remains a challenge. The direct 
interpretability of CellProfiler-based features can help in examining 
signatures and comparing them to evidence found in existing research 
relevant to a particular profiling task. One can readily visualize any 
target cell population by looking up the associated sample cell images 
or by converting CellProfiler representations into images with convo-
lutional neural network-based image generators. An example set of cell 
images generated by a fundamental version of such a model is shown 
in Extended Data Fig. 3. The research community can delve deeper into 
creating interpretative models from CellProfiler profiles that we have 
provided in this resource.

Still, this dataset has limitations. It covers only 160 genes and 303 
compounds, and ~21% of compounds in this dataset are annotated 
as targeting proteins in more than one gene family (Supplementary 
Table 7). Ideally, such a dataset would include only compounds that are 
very well-studied as targeting one and only one gene’s product. In real-
ity, this is impractical. Polypharmacology is increasingly recognized as 
common for compounds12,13, and this is likely to substantially impact 
the ability of compounds’ images to match one of the annotated genes’ 
images. As well, the target annotations of the compounds may not be 
complete because of undiscovered gene–compound relationships.

We also note limitations in the selection of genes and compounds. 
This dataset was curated with compounds and genes available in the 
Broad Institute’s Drug Repurposing Hub and in its library of genetic 
perturbation reagents, respectively, which introduces several biases. 
First, the set contains only preclinical or clinical compounds with 
stronger binding and higher specificity than randomly synthesized 
compounds; however, for the tasks of mechanism of action determi-
nation and virtual screening (in which the goal is ultimately to identify 
such compounds), this is not an overly concerning bias. Second, 
because of our selection criterion that at least two compounds should 
target the product of every gene, all compound–gene pairs without 
a second compound in the Drug Repurposing Hub were excluded, 
making better-studied compounds more represented. There were 
also other selection criteria that introduce various biases, such as 
that the selected compounds should not be a controlled substance. 
In terms of experimental conditions, we used a single concentration 
(5 μM) for all compounds, which is not ideal, and we created this data-
set in a single experiment at a single facility; this choice minimizes 
technical variability and therefore maximizes the biological signal in 
the data, but also limits the potential for generalizability of any mod-
els using it as training data. We note that generalizability of models 
across datasets is often unnecessary in biology experiments, where 
controls can be included in each experiment; in fact, we recommend 
that those creating large datasets include the sets of compounds and 
genes we present here in the experiment to have internal controls 
and/or landmarks for the assay. Our consortium has adopted this 
approach in creating our large-scale dataset of 136,000 chemical and 
genetic perturbations14.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02241-6.
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Methods
Compound and gene selection
The CPJUMP1 dataset consists of images and profiles of cells that 
were perturbed separately by chemical and genetic perturbations, 
in which both sets were chosen based on expected matching relation-
ships between them. Chemical perturbations refer to small molecules 
(compounds) that affect the function of cells, while the genetic per-
turbations refer either to ORFs that overexpress genes (that is, yield 
more of the gene’s product in the cell) or to guide RNAs that medi-
ate CRISPR-Cas9 (clustered regularly interspaced short palindromic 
repeats), which cause knockout of gene function (by decreasing pro-
duction of the gene’s product in the cell; the term 'knockout' is used in 
the field, although in the timescale of these experiments residual pro-
tein probably remains, depending on natural rates of protein turnover).

We therefore designed CPJUMP1 such that for each gene, we have 
one ORF, two CRISPR guides (for all but 15 genes), and one or two com-
pounds that are thought to affect the cell by influencing the function 
of that gene’s product (although they may also influence the function 
of other genes due to polypharmacology, complicating the signal; 
Supplementary Tables 8 and 9).

We derived the list of compounds from the Broad Institute’s Drug 
Repurposing Hub dataset8, a curated and annotated collection of 
Food and Drug Administration-approved drugs, clinical trial drugs 
and preclinical tool compounds (Extended Data Fig. 4d). The genes 
perturbed by genetic perturbations were chosen because their asso-
ciated proteins are annotated targets of the compounds. The specific 
criteria for compounds, genetic reagents (considering their on- and 
off-target effects), and controls are described in the section 'Compound 
selection criteria', and their layout on the plates is described in the 
section 'Plate layout design'. After applying the filters and including 
controls, we selected a total of 303 compounds and 160 genes such 
that their corresponding perturbations could fit into three 384-well 
plates with controls.

Compound selection criteria
We filtered the Drug Repurposing Hub compounds using several  
criteria, of which three are most important:

•	 The compounds should target proteins encoded by genes that 
belong to diverse gene families (Supplementary Table 10).  
This is because methods for representation learning and gene– 
compound matching should work well for many different  
biological pathways, rather than for only a few that are well- 
characterized and/or easy to predict.

•	 Each gene product should be targeted by at least two compounds,  
so that gene–compound matching and compound–compound 
matching can both be performed using the dataset.

•	 The requirement that each compound should target only a single 
gene product, which was considered, but which is difficult to 
achieve due to polypharmacology (Supplementary Tables 8 and 
9), that is, the property for compounds to bind and affect many 
different gene products in the cell; this is especially common for 
protein kinase inhibitors in the dataset. Instead, we filtered out 
only the so-called ‘historical compounds’ listed in the Chemical  
Probes Portal15, which are compounds that are known to be 
quite non-selective (or not sufficiently potent) compared with 
other available chemical probes.

Our list of compounds and genes also includes both negative  
and positive controls. The negative controls for each perturbation 
modality are, first, the compounds (DMSO, that is, dimethyl sulfoxide, 
which is the solvent for all of the compounds studied; in other words, 
all samples will have DMSO added at the same concentration, but 
the negative controls have no additional compound added); second, 
ORFs (15 ORFs with the weakest signature in previous image-based 
profiling experiments16; thus, the total number of genes with ORFs 

is 160 + 15 = 175); and third, CRISPR guides (30 CRISPR guides that 
target an intergenic site (cutting controls, n = 3) or do not have a target 
sequence that exists in human cells (non-cutting controls, n = 27)).

There are three types of compound positive controls in our list. 
First, we included chemical probes that are very well-studied and 
(unlike most compounds) are known to very selectively modulate the 
target genes’ product (poscon_cp)15. Second, we included compounds 
that strongly correlate with the correct genetic perturbation in previ-
ous image-based profiling experiments with ORFs16 and compounds 
(poscon_orf)17. Finally, we included a set of very diverse pairs of com-
pounds with strong intra-pair and weak inter-pair correlations, based 
on prior experiments (poscon_diverse).

Additionally, compounds were filtered based on availability from 
at least one of four compound vendors (Sigma, SelleckChem, Tocris 
and MedChemEx) and genetic reagents via the Broad Insitute’s Genetic 
Perturbation Platform portal. Last, we also excluded compounds on 
the U.S. Drug Enforcement Agency (DEA) list of controlled substances 
or the Organisation for the Prohibition of Chemical Weapons (OPCW) 
list of chemical weapons precursors.

Target loci selection
We picked the target loci for the CRISPR experiments by selecting the 
top-two-ranking single-guide RNA sequences that maximize their 
on-target activity, calculated using the Azimuth 2.0 model18, and mini-
mize the off-target activity, calculated using the Cutting Frequency 
Determination score (additional details can be found at https://portals.
broadinstitute.org/gpp/public/software/sgrna-scoring-help).

Compound and gene metadata
A list of CRISPR reagents and their target sequences is available here:

https://github.com/jump-cellpainting/2024_Chandrasekaran_
NatureMethods/blob/6ba3fcd1495d9e844e4607373a568641981f
fcd8/metadata/external_metadata/JUMP-Target-1_crispr_metadata.tsv

A list of ORF reagents and their target sequences is available here:
https://github.com/jump-cellpainting/2024_Chandrasekaran_

NatureMethods/blob/6ba3fcd1495d9e844e4607373a568641981f
fcd8/metadata/external_metadata/JUMP-Target-1_orf_metadata_with_
sequence.tsv

A list of compounds with their names, PubChem unique identi-
fier, SMILES (Simplified Molecular Input Line Entry System) string, 
and gene product targets is available here: https://github.com/ 
jump-cellpainting/2024_Chandrasekaran_NatureMethods/blob/ 
6ba3fcd1495d9e844e4607373a568641981ffcd8/metadata/external_
metadata/JUMP-Target-1_compound_metadata_targets.tsv

Infection efficiency data for the ORF and CRISPR regents for each 
time point and cell type from the CellTiter-Glo cell viability assay  
are available here: https://github.com/jump-cellpainting/2024_ 
Chandrasekaran_NatureMethods/blob/6ba3fcd1495d9e844e4
607373a568641981ffcd8/metadata/external_metadata/CPJUMP1_ 
Infection_Efficiency.xlsx

Plate layout design
The first plate (Extended Data Fig. 4a) consists entirely of compounds, 
with two compounds per gene product target. Each compound is in 
singlicate on the plate except for a dozen or so compounds (poscon_
diverse) in duplicate and the negative control DMSO described above, 
in n = 64 replicates. The second plate (Extended Data Fig. 4b) consists 
entirely of CRISPR reagents, with two guides per gene, each arrayed in 
its own well and kept separate, with no within-plate replicates; there 
are two replicates of the 30 CRISPR negative controls described above. 
The third plate (Extended Data Fig. 4c) consists entirely of ORFs: 
because there was only one perturbation reagent per gene, there are 
two replicates of each per plate, plus n = 4 replicates of the 15 ORF 
negative controls. Each plate contains only one type of perturbation 
modality.
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We also considered the impact of edge effects, or plate layout 
effects, in our design. Edge effects are the technical artifact whereby 
different samples will yield different behavior depending on where they 
are located on a plate; generally this is observed mainly in the outer 
two rows and columns of the plate, and the problem persists despite 
efforts to mitigate it experimentally19. While designing the plate layout, 
we divided the plate into outer and inner wells, where the outer wells 
are the two rows and columns closest to the edge of the plate and the 
inner wells are the rest of the wells on the plate. Then we applied the 
following constraints to minimize the impact of edge effects: both of 
the compounds that have the same target will either be in the inner 
wells or in the outer wells (they will not be split such that one of the 
compounds is in the inner well while the other is in the outer well); 
the gene associated with the target of outer well compounds will be in  
the outer wells of the genetic perturbation plate; and all of the positive 
control compounds will be in the inner wells. If preferable, with this 
design, an analysis can be constrained to the inner wells only, to ensure 
that edge effects have minimal influence on the results.

Experimental conditions
Compounds. The treatment compounds were assayed at 5 μM and  
the cell seeding density was 1,000 cells per well.

Open reading frames. The cell seeding density was 1,625 cells per 
well, with a media seeding volume of 40 μl per 384 wells. The viral 
volume was 1 μl virus for 384 wells. The concentration of polybrene 
was 4 μg ml−1. The media was changed after 24 h, removing polybrene 
and virus and adding back 50 μl media. No selection was done with 
blasticidin.

CRISPR. The cell seeding density was 350 cells per well, with a media 
seeding volume of 40 μl for 384 wells. The viral volume was 0.5 μl virus 
for 384 wells, and the polybrene concentration was 4 μg ml−1. The media 
was changed after 24 h, removing polybrene and virus and adding back 
50 μl media. No selection was done with blasticidin.

Experimental conditions tested
Although constrained by cost, we captured the compound, ORF and 
CRISPR plates under several experimental conditions to identify those 
that improve gene–compound, compound–compound and gene–
gene matching (Fig. 3). We did more replicate plates for conditions 
that were less expensive or that were the most promising, and for the 
compound and CRISPR plates that had only singlicates of most samples 
(as compared with ORFs, which had duplicates on the plate). Addition-
ally, we captured plates under many other experimental conditions, 
listed below, to optimize the experimental conditions. UMAP embed-
dings of all of the experimental conditions are shown in Extended 
Data Figs. 5–10.

We note that the cell types commonly used are historical lines 
derived from two white patients, one male (A549) and one female 
(U2OS). Therefore, conclusions from these data may hold true only 
for the demographics or genomics of those persons and not broader 
groups. They were chosen because the lines are both well-suited for 
microscopy, and they offer the advantage of enabling direct compari-
son with extensive prior studies using them.

Primary group of experimental conditions. For the primary group of 
experimental conditions we used four replicate plates of compounds 
and CRISPR guides and two replicate plates of ORFs (which, as men-
tioned, contain two replicates in each plate) at two time points and 
two cell lines each. The short and long time points were different for 
each perturbation type: for compounds they were 24 h and 48 h; for 
ORFs they were 48 h and 96 h; and for CRISPR guides they were 96 h 
and 144 h. The two cell lines were U2OS and A549. For CRISPR experi-
ments, polyclonal A549 and U2OS were used.

Secondary group of experimental conditions. The experimental 
conditions are as follows: we used one A549 96 h ORF plate, in which 
the cells have been additionally treated with blasticidin (a drug that kills 
cells that have not been properly infected with the genetic reagent); 
two replicate plates of the A549 144 h CRISPR plate, in which the cells 
have been additionally treated with puromycin (a drug that kills cells 
that have not been properly infected with the genetic reagent); two 
replicate plates of the A549 48 h compound plate with 20% higher cell 
seeding density than the baseline; two replicate plates of the A549 48 h 
compound plate with 20% lower cell seeding density than the baseline; 
we imaged four replicate plates of the A549 24 h compound plate six 
additional times to test for photobleaching from repeated imaging; 
we imaged two replicates of the ORF plates in U2OS and A549 at 96 h 
and 144 h four additional times, once each on days 1, 4, 14 and 28 after 
the first imaging, to test the stability of samples over time; and we used 
four replicate plates of 48 h compound plates in polyclonal A549 cells 
with Cas9.

Number of plates and images
Across both of the groups of experimental conditions there are 51  
physical plates and 107 plates of images: 40 physical plates and 40 
plates of images in the primary group, and 11 physical plates and 67 
plates of images in the secondary group. Each plate consists of 384 wells 
and, on average, nine sites were imaged within each well. At each site, 
eight (five fluorescent and three brightfield) images were captured. 
This amounts to nearly 3 million images across the 107 plates.

Sample preparation and image acquisition
The A549 and U2OS parent lines can be ordered from ATCC directly, 
but the Cas9 cells are not available due to Broad Institute licensing 
restrictions. The Cell Painting assay involves staining eight compo-
nents of cells with six fluorescent dyes that are imaged in five chan-
nels: nucleus (Hoechst; DNA), nucleoli and cytoplasmic RNA (SYTO 
14; RNA), endoplasmic reticulum (concanavalin A; ER), Golgi and 
plasma membrane (wheat germ agglutinin (WGA); AGP), mitochon-
dria (MitoTracker; Mito), and the actin cytoskeleton (phalloidin; AGP) 
(Fig. 1). We optimized the Cell Painting assay described by ref. 6 by 
changing the concentrations of Hoechst and phalloidin, and combin-
ing dye addition and dye permeabilization steps to create Cell Paint-
ing v2.5. The changes to the protocol are listed at https://github.com/
carpenterlab/2022_Cimini_NatureProtocols/wiki#changes-in-the-off
icial-protocol-to-create-v25-chandrasekaran-et-al-2021. The changes 
are described in more detail by ref. 7, in which we further developed Cell 
Painting v3, where we also changed the concentrations of concanava-
lin A and SYTO14. The images were acquired across five fluorescent 
channels plus three brightfield planes using a Revvity Opera Phenix 
HCI microscope in widefield mode with 16 bit depth and with a ×20, 
1.0 numerical aperture water immersion lens. Pixel binning was used 
at 2 × 2, for a final effective pixel size of 0.598 µm.

Image display
In Fig. 1, each channel was mapped to a final 0–255 look-up table per 
the following colors and display ranges in Fiji20: channel 1 (Mito): Red 
(1,078–10,191); channel 2 (AGP): Orange Hot (426–22,225); channel 
3 (RNA): Yellow (360–33,716); channel 4 (ER): Green (238–14,272); 
and channel 5 (DNA): Cyan (238–20,508). The final image represents 
the maximum value in the RGB color space for all five channels, cre-
ated with Fiji’s Composite (Max) mode. No other (linear or nonlinear) 
adjustments were performed. Panels were assembled using the Magic 
Montage Fiji tool and channel annotations added in Google Draw.

Image processing
We used CellProfiler bioimage analysis software (v4.0.6) to process the 
images using classical algorithms21. We corrected for variations in back-
ground intensity22 and then segmented cells, distinguishing between 
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nuclei and cytoplasm. Then, across the various channels captured, we 
measured various features of cells across several categories including 
fluorescence intensity, texture, granularity, density and location (see 
http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.6/
index.html for more details). Following the image analysis pipeline 
(see https://github.com/jump-cellpainting/2024_Chandrasekaran_
NatureMethods/tree/6ba3fcd1495d9e844e4607373a568641981ffcd8/
pipelines for the pipelines), we obtained 5,792 feature measurements 
from each of more than 75 million cells.

Image-based profiling
We used cytominer and pycytominer workflows to process the 
single-cell features extracted using CellProfiler23–26. We aggregated the 
single-cell profiles by computing the median profile, and then normal-
ized the averaged profiles by subtracting the median and dividing by 
the median absolute deviation (m.a.d.) of each feature. This was done 
in two ways: using the median and m.a.d. of, first, the negative control 
wells on the plate (used in the analysis shown here), and second, all the 
wells on the plate. Finally, we filtered out redundant features (such that 
no pair of features has Pearson correlation greater than 0.9), as well as 
features with near-zero variance across all the plates.

Average precision, mean average precision and fraction 
retrieved
Average precision serves as our primary metric for both replicabil-
ity (how distinguishable the replicates of a perturbation are from 
negative controls) and biological relevance (how distinguishable the 
sister perturbations are from other perturbations). We measure the 
similarity between profiles using cosine similarity or absolute value 
of cosine similarity for cases in which both positive and negative cor-
relations are considered matches. To calculate average precision we 
first construct a binary ranking of sample and negative control profiles 
by their cosine similarities. Based on this rank list, calculation of the 
average precision (AP) score follows the common formulation in the 
field27, that is, we average the precision values at each rank k where 
recall changes:

AP = ∑
k
(Rk − Rk−1)Pk

We then assign a P value to each average precision score by a 
permutation-based significance testing approach. Specifically, we 
assess the significance of the average precision score against a null 
distribution built by randomly shuffling the rank list 100,000 times 
and computing corresponding random average precision scores. 
These P values are then adjusted for multiple testing using the  
Benjamini–Hochberg procedure to obtain corrected P values (which 
we refer to as q values).

We also compute mean average precision by calculating the mean 
of the average precision scores for each class, where ‘class’ refers to 
either a specific perturbation (for replicability) or perturbations associ-
ated with the same gene (for biological relevance). We report a per-class 
mean average precision value along with a combined q value obtained 
by taking the geometric mean of the q values. Finally, we summarize 
the mean average precision values for a specific task by calculating 
the fraction of classes with q values below the significance threshold 
(0.05), termed 'fraction retrieved'.

Recommended dataset splits
The methods presented in the benchmarks do not involve any training 
(we simply use a predetermined similarity metric and hand-engineered 
features or a pre-trained model) and thus did not require the typical 
train–validate–test data splits. Depending on the use case, we suggest 
using different splits. For the two benchmarks, we offer the following 
guidelines for creating data splits when training is involved.

Representation learning. For general representation learning and 
domain adaptation tasks, one could train on the dataset from one cell 
line or time point and test it on the other cell line or time point.

Gene–compound matching. For gene–compound matching, first, all 
replicates of a perturbation should be in the same split. Second, for the 
CRISPR dataset, both guides should be in the same split. Third, three of 
the compounds (BVT-948, dexamethasone and thiostrepton) have two 
different identifiers each in the dataset (because of small differences in 
structures) but the same compound name, therefore each pair should 
be in the same split. And last, if analyzing data at the single-cell level, 
all cells from a well should be in the same split.

We provide recommended data splits in https://github.com/ 
jump-cellpainting/2024_Chandrasekaran_NatureMethods/tree/ 
6ba3fcd1495d9e844e4607373a568641981ffcd8/datasplits

Tools and software used
Data analysis was performed using python code written in a Jupyter 
notebook environment28,29. Python libraries used for data analysis  
include Numpy, Scipy, scikit-learn and pandas30–33. Plots were gene
rated using matplotlib, seaborn and Plotly libraries34–36. The Fiji20 
Magic Montage plugin, Lucidchart and Inkscape were used for  
generating montages, creating schematics and for adding text to 
images. Two-dimensional representations of image-based profiles 
in Fig. 2 and Extended Data Figs. 5–10 were generated using UMAP37.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Well-level morphological profiles, image analysis pipelines, profile 
generation pipelines, plate maps and plate and compound metadata, 
and instructions for retrieving the cell images and single-cell profiles are 
publicly available online at https://broad.io/cpjump1. The landing page 
of the GitHub repository for this dataset has relevant additional infor-
mation: https://broad.io/cpjump1. Cell Painting images and single-cell 
profiles are available at the Cell Painting Gallery on the Registry of Open 
Data on AWS (https://registry.opendata.aws/cellpainting-gallery/) 
under accession number cpg0000-jump-pilot. For well-level aggre-
gated profiles, we use GitHub as the hosting platform and the files  
are stored in GitLFS. We have released the data with a CC0 license. 
Source data are provided with this paper.

Code availability
The code for reproducing the benchmark results, tables and figures  
are available at https://github.com/jump-cellpainting/2024_
Chandrasekaran_NatureMethods/tree/6ba3fcd1495d9e844e4
607373a568641981ffcd8/benchmark and https://github.com/
jump-cellpainting/2024_Chandrasekaran_NatureMethods/tree/6ba
3fcd1495d9e844e4607373a568641981ffcd8/visualization. We have 
released the code with a BSD 3-Clause license.
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Extended Data Fig. 1 | Well position effect. mAP for perturbation detection 
for ORFs in the same well position (blue), same or different well positions (red) 
and different well positions (pink); the same or different well positions is what 
is shown in Fig. 4a in the main text. ORFs in different well positions are affected 
by plate layout effects, which lowers mAP and FR scores for retrieving replicates 
against a background of negative control wells. The numerical values shown 

above each box plot are the fraction of perturbations that can be successfully 
retrieved (FR) values for each retrieval task. Box plot boundaries are 75th (Q3) 
and 25th (Q1) percentiles, with whiskers at +/− 1.5 times the interquartile range 
(Q3–Q1) or the highest or lowest data point. n = 320 biologically independent 
ORF reagents in the blue boxes and n = 160 biologically independent ORF 
reagents in the pink and red boxes.
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Extended Data Fig. 2 | Similarity of perturbation impact across modalities 
for genes and compounds related to the compound BI-2536. Treatment 
of U2OS cells with BRD4 inhibitors BI-2536 (multi-target, including PLK1 and 
BRD4) and PFI-1 (BRD4-specific) is shown (top row; all images are composites of 
max intensity across all five imaging channels). BI-2536 causes cell death, and 
this phenotype is mimicked by PLK1 knockout (middle row). In contrast, BRD4 
knockout fails to produce a distinct phenotype, death-related or otherwise, as 
is the case for the BRD4-specific inhibitor PFI-1 (middle column, top and middle 
row); both profiles are quantitatively similar to negative controls. This implies 
that BRD4 inhibition has a limited phenotypic impact in this assay under these 

experimental conditions, allowing the PLK1-inhibiting phenotype of BI-2536 
to dominate the profile. BRD4 overexpression, on the other hand, also induces 
cell death (bottom row) and a profile strongly similar to BI-2536, which could 
indicate that BRD4 overexpression yields a dominant negative phenotype. 
Overexpression of PLK1 produces a phenotype that is not distinguishable from 
negative control. Negative controls for compounds, CRISPR, and ORF reagents 
are included. These are representative images from one of the four replicate wells 
of each treatment in the dataset. Wells were sampled from the longer time point 
for each perturbation modality (Supplementary Table 1).

http://www.nature.com/naturemethods


Nature Methods

Resource https://doi.org/10.1038/s41592-024-02241-6

Extended Data Fig. 3 | CellProfiler features to cell images. Example single-cell 
images (first row) and their synthetically generated version (second row) are 
shown in each sub figure. The synthetic version is generated by each single cell’s 
corresponding CellProfiler measurements. To learn a transformation function 
from single-cell’s CellProfiler extracted features to single-cell images, 7077 single 
cells were randomly selected from a set of eight diverse compounds (aloxistatin, 
AMG900, dexamethasone, TC-S-7004, FK-866, LY2109761, NVS-PAK1-1 and 
quinidine) to train a convolutional neural network (CNN). The set of cell-level 

Cell Painting measurements was reduced to a non-redundant set of features 
for five channels of DNA, RNA, ER, AGP and Mito. Location related features and 
low variance features were excluded. Single-cell images corresponding to each 
cell’s CellProfiler measurements were extracted by image crops of a fixed size 
(160 pixels) bounding box around the cell’s Cells_Location_Center coordinates. 
CNN model learns the transformation from (3019,1) size CellProfiler features to 
(128, 128, 5) size images.
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Extended Data Fig. 4 | Plate maps and overview of compounds’ clinical phase 
status. Maps in a-c show a) Compound plate, b) CRISPR plate and c) ORF plate. 
The control wells and the treatment (trt) wells are shown in different colors. 
Poscon are positive controls (additional details in the Methods section) and 

negcon is the negative control. d) Over a third of the compounds in the dataset 
have been launched for sale, whereas others have progressed to various stages of 
human clinical trials.
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Extended Data Fig. 5 | Cell type and time, for all tested perturbations and 
conditions. The primary group of tested samples in the CPJUMP1 experiment 
consists of three perturbation modalities (compounds, CRISPR guides and 
ORFs), two cell types (U2OS and A549) and two time points per perturbation 

modality (Supplementary Table 1). This UMAP plot includes the CPJUMP1 
primary experiment (4 Compound, 4 CRISPR and 2 ORF plates per cell type and 
time point) plus all other data points from the CPJUMP1 experiments, as outlined 
in Fig. 3.
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Extended Data Fig. 6 | Cas9 status. Parental line is the original cell line with no 
modifications. Cas9 cell line is a polyclonal cell line expressing Cas9 (used for all 
CRISPR and one compound experiment). This UMAP plot includes the CPJUMP1 

primary experiment (4 Compound, 4 CRISPR and 2 ORF plates per cell type and 
time point) plus all other data points from the CPJUMP1 experiments, as outlined 
in Fig. 3.
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Extended Data Fig. 7 | Different cell seeding densities. Experiments were 
performed with the baseline seeding density (100%; 1000 cells/well), increased 
seeding density (120%), and decreased seeding density (80%). This UMAP plot 

includes the CPJUMP1 primary experiment (4 Compound, 4 CRISPR and 2 ORF 
plates per cell type and time point) plus all other data points from the CPJUMP1 
experiments, as outlined in Fig. 3.
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Extended Data Fig. 8 | Impact of repeat imaging. Some plates were imaged more than once. This UMAP plot includes the CPJUMP1 primary experiment  
(4 Compound, 4 CRISPR and 2 ORF plates per cell type and time point) plus all other data points from the CPJUMP1 experiments, as outlined in Fig. 3.
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Extended Data Fig. 9 | Imaging after a time delay. A subset of plates were imaged after a certain number of days. This UMAP plot includes the CPJUMP1 primary 
experiment (4 Compound, 4 CRISPR and 2 ORF plates per cell type and time point) plus all other data points from the CPJUMP1 experiments, as outlined in Fig. 3.
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Extended Data Fig. 10 | Antibiotic selection. In some CRISPR and ORF plates, cells were selected using antibiotics. This UMAP plot includes the CPJUMP1 primary 
experiment (4 Compound, 4 CRISPR and 2 ORF plates per cell type and time point) plus all other data points from the CPJUMP1 experiments, as outlined in Fig. 3.
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